public static class FineTuneConfiguration.Builder extends Object
Constructor and Description |
---|
Builder() |
Modifier and Type | Method and Description |
---|---|
FineTuneConfiguration.Builder |
activation(Activation activation)
Activation function / neuron non-linearity
|
FineTuneConfiguration.Builder |
activation(IActivation activationFn)
Activation function / neuron non-linearity
|
FineTuneConfiguration.Builder |
backprop(boolean backprop) |
FineTuneConfiguration.Builder |
backpropType(BackpropType backpropType)
The type of backprop.
|
FineTuneConfiguration.Builder |
biasInit(double biasInit)
Constant for bias initialization.
|
FineTuneConfiguration.Builder |
biasUpdater(IUpdater biasUpdater)
Gradient updater configuration, for the biases only.
|
FineTuneConfiguration |
build() |
FineTuneConfiguration.Builder |
constraints(List<LayerConstraint> constraints)
Set constraints to be applied to all layers.
|
FineTuneConfiguration.Builder |
convolutionMode(ConvolutionMode convolutionMode)
Sets the convolution mode for convolutional layers, which impacts padding and output sizes.
|
FineTuneConfiguration.Builder |
cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
Sets the cuDNN algo mode for convolutional layers, which impacts performance and memory usage of cuDNN.
|
FineTuneConfiguration.Builder |
dist(Distribution dist)
Distribution to sample initial weights from.
|
FineTuneConfiguration.Builder |
dropOut(double inputRetainProbability)
Dropout probability.
|
FineTuneConfiguration.Builder |
dropout(IDropout dropout)
Set the dropout
|
FineTuneConfiguration.Builder |
gradientNormalization(GradientNormalization gradientNormalization)
Gradient normalization strategy.
|
FineTuneConfiguration.Builder |
gradientNormalizationThreshold(double gradientNormalizationThreshold)
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise. L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping |
FineTuneConfiguration.Builder |
inferenceWorkspaceMode(WorkspaceMode inferenceWorkspaceMode)
This method defines Workspace mode being used during inference:
NONE: workspace won't be used ENABLED: workspaces will be used for inference (reduced memory and better performance) |
FineTuneConfiguration.Builder |
l1(double l1)
L1 regularization coefficient for the weights
|
FineTuneConfiguration.Builder |
l1Bias(double l1Bias)
L1 regularization coefficient for the bias parameters
|
FineTuneConfiguration.Builder |
l2(double l2)
L2 regularization coefficient for the weights
|
FineTuneConfiguration.Builder |
l2Bias(double l2Bias)
L2 regularization coefficient for the bias parameters
|
FineTuneConfiguration.Builder |
maxNumLineSearchIterations(int maxNumLineSearchIterations) |
FineTuneConfiguration.Builder |
miniBatch(boolean miniBatch)
Whether scores and gradients should be divided by the minibatch size.
Most users should leave this ast he default value of true. |
FineTuneConfiguration.Builder |
minimize(boolean minimize) |
FineTuneConfiguration.Builder |
optimizationAlgo(OptimizationAlgorithm optimizationAlgo) |
FineTuneConfiguration.Builder |
pretrain(boolean pretrain) |
FineTuneConfiguration.Builder |
seed(int seed)
RNG seed for reproducibility
|
FineTuneConfiguration.Builder |
seed(long seed)
RNG seed for reproducibility
|
FineTuneConfiguration.Builder |
stepFunction(StepFunction stepFunction) |
FineTuneConfiguration.Builder |
tbpttBackLength(int tbpttBackLength)
When doing truncated BPTT: how many steps of backward should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) This is the k2 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
FineTuneConfiguration.Builder |
tbpttFwdLength(int tbpttFwdLength)
When doing truncated BPTT: how many steps of forward pass should we do
before doing (truncated) backprop?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT) Typically tBPTTForwardLength parameter is same as the tBPTTBackwardLength parameter, but may be larger than it in some circumstances (but never smaller) Ideally your training data time series length should be divisible by this This is the k1 parameter on pg23 of http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
String |
toString() |
FineTuneConfiguration.Builder |
trainingWorkspaceMode(WorkspaceMode trainingWorkspaceMode)
This method defines Workspace mode being used during training:
NONE: workspace won't be used
ENABLED: workspaces will be used for training (reduced memory and better performance)
|
FineTuneConfiguration.Builder |
updater(IUpdater updater)
Gradient updater configuration.
|
FineTuneConfiguration.Builder |
updater(Updater updater)
Deprecated.
|
FineTuneConfiguration.Builder |
weightInit(Distribution distribution)
Set weight initialization scheme to random sampling via the specified distribution.
Equivalent to: .weightInit(WeightInit.DISTRIBUTION).dist(distribution) |
FineTuneConfiguration.Builder |
weightInit(WeightInit weightInit)
Weight initialization scheme
|
FineTuneConfiguration.Builder |
weightNoise(IWeightNoise weightNoise)
Set the weight noise (such as
DropConnect and
WeightNoise ) |
public FineTuneConfiguration.Builder activation(IActivation activationFn)
public FineTuneConfiguration.Builder activation(Activation activation)
public FineTuneConfiguration.Builder weightInit(WeightInit weightInit)
WeightInit
public FineTuneConfiguration.Builder weightInit(Distribution distribution)
.weightInit(WeightInit.DISTRIBUTION).dist(distribution)
distribution
- Distribution to use for weight initializationpublic FineTuneConfiguration.Builder biasInit(double biasInit)
biasInit
- Constant for bias initializationpublic FineTuneConfiguration.Builder dist(Distribution dist)
weightInit(Distribution)
public FineTuneConfiguration.Builder l1(double l1)
public FineTuneConfiguration.Builder l2(double l2)
public FineTuneConfiguration.Builder l1Bias(double l1Bias)
public FineTuneConfiguration.Builder l2Bias(double l2Bias)
public FineTuneConfiguration.Builder dropout(IDropout dropout)
dropout
- Dropout, such as Dropout
, GaussianDropout
,
GaussianNoise
etcpublic FineTuneConfiguration.Builder dropOut(double inputRetainProbability)
Note 1: Dropout is applied at training time only - and is automatically not applied at test time
(for evaluation, etc)
Note 2: This sets the probability per-layer. Care should be taken when setting lower values for
complex networks (too much information may be lost with aggressive (very low) dropout values).
Note 3: Frequently, dropout is not applied to (or, has higher retain probability for) input (first layer)
layers. Dropout is also often not applied to output layers. This needs to be handled MANUALLY by the user
- set .dropout(0) on those layers when using global dropout setting.
Note 4: Implementation detail (most users can ignore): DL4J uses inverted dropout, as described here:
http://cs231n.github.io/neural-networks-2/
inputRetainProbability
- Dropout probability (probability of retaining each input activation value for a layer)dropout(IDropout)
public FineTuneConfiguration.Builder weightNoise(IWeightNoise weightNoise)
DropConnect
and
WeightNoise
)weightNoise
- Weight noise instance to usepublic FineTuneConfiguration.Builder updater(IUpdater updater)
updater
- Updater to use@Deprecated public FineTuneConfiguration.Builder updater(Updater updater)
updater(IUpdater)
public FineTuneConfiguration.Builder biasUpdater(IUpdater biasUpdater)
updater(IUpdater)
biasUpdater
- Updater to use for bias parameterspublic FineTuneConfiguration.Builder miniBatch(boolean miniBatch)
public FineTuneConfiguration.Builder maxNumLineSearchIterations(int maxNumLineSearchIterations)
public FineTuneConfiguration.Builder seed(long seed)
seed
- RNG seed to usepublic FineTuneConfiguration.Builder seed(int seed)
seed
- RNG seed to usepublic FineTuneConfiguration.Builder optimizationAlgo(OptimizationAlgorithm optimizationAlgo)
public FineTuneConfiguration.Builder stepFunction(StepFunction stepFunction)
public FineTuneConfiguration.Builder minimize(boolean minimize)
public FineTuneConfiguration.Builder gradientNormalization(GradientNormalization gradientNormalization)
GradientNormalization
for detailsgradientNormalization
- Type of normalization to use. Defaults to None.GradientNormalization
public FineTuneConfiguration.Builder gradientNormalizationThreshold(double gradientNormalizationThreshold)
public FineTuneConfiguration.Builder convolutionMode(ConvolutionMode convolutionMode)
ConvolutionMode
for details. Defaults to ConvolutionMode.TRUNCATEconvolutionMode
- Convolution mode to usepublic FineTuneConfiguration.Builder cudnnAlgoMode(ConvolutionLayer.AlgoMode cudnnAlgoMode)
ConvolutionLayer.AlgoMode
for details. Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.public FineTuneConfiguration.Builder constraints(List<LayerConstraint> constraints)
constraints
- Constraints to apply to all parameters of all layerspublic FineTuneConfiguration.Builder pretrain(boolean pretrain)
public FineTuneConfiguration.Builder backprop(boolean backprop)
public FineTuneConfiguration.Builder backpropType(BackpropType backpropType)
backpropType
- Type of backprop. Default: BackpropType.Standardpublic FineTuneConfiguration.Builder tbpttFwdLength(int tbpttFwdLength)
tbpttFwdLength
- Forward length > 0, >= backwardLengthpublic FineTuneConfiguration.Builder tbpttBackLength(int tbpttBackLength)
tbpttBackLength
- <= forwardLengthpublic FineTuneConfiguration.Builder trainingWorkspaceMode(WorkspaceMode trainingWorkspaceMode)
trainingWorkspaceMode
- Workspace mode for trainingpublic FineTuneConfiguration.Builder inferenceWorkspaceMode(WorkspaceMode inferenceWorkspaceMode)
inferenceWorkspaceMode
- Workspace mode for inferencepublic FineTuneConfiguration build()
Copyright © 2018. All rights reserved.