public abstract class BasePretrainNetwork extends FeedForwardLayer
Modifier and Type | Class and Description |
---|---|
static class |
BasePretrainNetwork.Builder<T extends BasePretrainNetwork.Builder<T>> |
Modifier and Type | Field and Description |
---|---|
protected LossFunctions.LossFunction |
lossFunction |
protected boolean |
pretrain |
protected double |
visibleBiasInit |
nIn, nOut
activationFn, biasInit, biasUpdater, dist, gradientNormalization, gradientNormalizationThreshold, iUpdater, l1, l1Bias, l2, l2Bias, weightInit, weightNoise
constraints, iDropout, layerName
Constructor and Description |
---|
BasePretrainNetwork(BasePretrainNetwork.Builder builder) |
Modifier and Type | Method and Description |
---|---|
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
boolean |
isPretrain() |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setPretrain(boolean pretrain) |
getOutputType, getPreProcessorForInputType, setNIn
clone, getGradientNormalization, getUpdaterByParam, resetLayerDefaultConfig
getMemoryReport, initializeConstraints, initializer, instantiate
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getGradientNormalizationThreshold, getLayerName
protected LossFunctions.LossFunction lossFunction
protected double visibleBiasInit
protected boolean pretrain
public BasePretrainNetwork(BasePretrainNetwork.Builder builder)
public double getL1ByParam(String paramName)
Layer
getL1ByParam
in interface TrainingConfig
getL1ByParam
in class FeedForwardLayer
paramName
- Parameter namepublic double getL2ByParam(String paramName)
Layer
getL2ByParam
in interface TrainingConfig
getL2ByParam
in class FeedForwardLayer
paramName
- Parameter namepublic boolean isPretrainParam(String paramName)
Layer
isPretrainParam
in interface TrainingConfig
isPretrainParam
in class FeedForwardLayer
paramName
- Parameter name/keypublic boolean isPretrain()
isPretrain
in interface TrainingConfig
isPretrain
in class FeedForwardLayer
public void setPretrain(boolean pretrain)
setPretrain
in interface TrainingConfig
setPretrain
in class Layer
pretrain
- Whether the layer is currently undergoing layerwise unsupervised training, or multi-layer backpropCopyright © 2018. All rights reserved.