public class SimpleRnn extends BaseRecurrentLayer
out_t = activationFn( in_t * inWeight + out_(t-1) * recurrentWeights + bias)
.
Note that other architectures (LSTM, etc) are usually much more effective, especially for longer time series;
however SimpleRnn is very fast to compute, and hence may be considered where the length of the temporal dependencies
in the dataset are only a few steps long.Modifier and Type | Class and Description |
---|---|
static class |
SimpleRnn.Builder |
distRecurrent, weightInitRecurrent
nIn, nOut
activationFn, biasInit, biasUpdater, dist, gradientNormalization, gradientNormalizationThreshold, iUpdater, l1, l1Bias, l2, l2Bias, weightInit, weightNoise
constraints, iDropout, layerName
Modifier | Constructor and Description |
---|---|
protected |
SimpleRnn(SimpleRnn.Builder builder) |
Modifier and Type | Method and Description |
---|---|
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams) |
getOutputType, getPreProcessorForInputType, isPretrain, setNIn
isPretrainParam
clone, getGradientNormalization, getUpdaterByParam, resetLayerDefaultConfig
initializeConstraints, setPretrain
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getGradientNormalizationThreshold, getLayerName
protected SimpleRnn(SimpleRnn.Builder builder)
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams)
instantiate
in class Layer
public ParamInitializer initializer()
initializer
in class Layer
public double getL1ByParam(String paramName)
Layer
getL1ByParam
in interface TrainingConfig
getL1ByParam
in class FeedForwardLayer
paramName
- Parameter namepublic double getL2ByParam(String paramName)
Layer
getL2ByParam
in interface TrainingConfig
getL2ByParam
in class FeedForwardLayer
paramName
- Parameter namepublic LayerMemoryReport getMemoryReport(InputType inputType)
Layer
getMemoryReport
in class Layer
inputType
- Input type to the layer. Memory consumption is often a function of the input typeCopyright © 2018. All rights reserved.