Package | Description |
---|---|
org.deeplearning4j.nn.api | |
org.deeplearning4j.nn.layers | |
org.deeplearning4j.nn.layers.normalization | |
org.deeplearning4j.nn.multilayer |
Modifier and Type | Method and Description |
---|---|
static Layer.TrainingMode |
Layer.TrainingMode.valueOf(String name)
Returns the enum constant of this type with the specified name.
|
static Layer.TrainingMode[] |
Layer.TrainingMode.values()
Returns an array containing the constants of this enum type, in
the order they are declared.
|
Modifier and Type | Method and Description |
---|---|
void |
FrozenLayer.logTestMode(Layer.TrainingMode training) |
void |
FrozenLayerWithBackprop.logTestMode(Layer.TrainingMode training) |
Modifier and Type | Method and Description |
---|---|
INDArray |
BatchNormalization.preOutput(INDArray x,
Layer.TrainingMode training,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
MultiLayerNetwork.activate(INDArray input,
Layer.TrainingMode training)
Equivalent to
#output(INDArray, TrainingMode) |
INDArray |
MultiLayerNetwork.activate(Layer.TrainingMode training)
Equivalent to
MultiLayerNetwork.output(INDArray) using the input set via MultiLayerNetwork.setInput(INDArray) |
INDArray |
MultiLayerNetwork.output(INDArray input,
Layer.TrainingMode train)
Perform inference on the provided input/features - i.e., perform forward pass using the provided input/features
and return the output of the final layer.
|
Copyright © 2019. All rights reserved.