public class LossLayer extends FeedForwardLayer
OutputLayer
in that both perform loss calculations for network outputs vs. labels, but LossLayer
does not have any parameters. Consequently, setting nIn/nOut isn't supported - the output size is the same size as
the input activations.Modifier and Type | Class and Description |
---|---|
static class |
LossLayer.Builder |
Modifier and Type | Field and Description |
---|---|
protected ILossFunction |
lossFn |
nIn, nOut
activationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoise
constraints, iDropout, layerName
Modifier | Constructor and Description |
---|---|
protected |
LossLayer(LossLayer.Builder builder) |
Modifier and Type | Method and Description |
---|---|
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
getOutputType, getPreProcessorForInputType, setNIn
clone, getGradientNormalization, getRegularizationByParam, getUpdaterByParam, resetLayerDefaultConfig
initializeConstraints
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getGradientNormalizationThreshold, getLayerName
protected ILossFunction lossFn
protected LossLayer(LossLayer.Builder builder)
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, org.nd4j.linalg.api.buffer.DataType networkDataType)
instantiate
in class Layer
public boolean isPretrainParam(String paramName)
Layer
isPretrainParam
in interface TrainingConfig
isPretrainParam
in class FeedForwardLayer
paramName
- Parameter name/keypublic LayerMemoryReport getMemoryReport(InputType inputType)
Layer
getMemoryReport
in class Layer
inputType
- Input type to the layer. Memory consumption is often a function of the input
typepublic ParamInitializer initializer()
initializer
in class Layer
Copyright © 2019. All rights reserved.