public class ElementWiseMultiplicationLayer extends FeedForwardLayer
out = activationFn(input .* w + b)
where:created by jingshu
Modifier and Type | Class and Description |
---|---|
static class |
ElementWiseMultiplicationLayer.Builder |
nIn, nOut
activationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoise
constraints, iDropout, layerName
Modifier | Constructor and Description |
---|---|
protected |
ElementWiseMultiplicationLayer() |
protected |
ElementWiseMultiplicationLayer(ElementWiseMultiplicationLayer.Builder builder) |
Modifier and Type | Method and Description |
---|---|
ElementWiseMultiplicationLayer |
clone() |
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDataType) |
getOutputType, getPreProcessorForInputType, isPretrainParam, setNIn
getGradientNormalization, getRegularizationByParam, getUpdaterByParam, resetLayerDefaultConfig
initializeConstraints
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getGradientNormalizationThreshold, getLayerName
protected ElementWiseMultiplicationLayer()
protected ElementWiseMultiplicationLayer(ElementWiseMultiplicationLayer.Builder builder)
public ElementWiseMultiplicationLayer clone()
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, org.nd4j.linalg.api.buffer.DataType networkDataType)
instantiate
in class Layer
public ParamInitializer initializer()
initializer
in class Layer
public LayerMemoryReport getMemoryReport(InputType inputType)
getMemoryReport
in class Layer
inputType
- Input type to the layer. Memory consumption is often a function of the input typeCopyright © 2019. All rights reserved.