Modifier and Type | Method and Description |
---|---|
ComputationGraph |
LocalFileGraphSaver.getBestModel() |
ComputationGraph |
LocalFileGraphSaver.getLatestModel() |
Modifier and Type | Method and Description |
---|---|
void |
LocalFileGraphSaver.saveBestModel(ComputationGraph net,
double score) |
void |
LocalFileGraphSaver.saveLatestModel(ComputationGraph net,
double score) |
Modifier and Type | Method and Description |
---|---|
double |
DataSetLossCalculatorCG.calculateScore(ComputationGraph network)
Deprecated.
|
Constructor and Description |
---|
EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph> esConfig,
ComputationGraph net,
DataSetIterator train) |
EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph> esConfig,
ComputationGraph net,
DataSetIterator train,
EarlyStoppingListener<ComputationGraph> listener)
Constructor for training using a
DataSetIterator |
EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph> esConfig,
ComputationGraph net,
MultiDataSetIterator train,
EarlyStoppingListener<ComputationGraph> listener)
Constructor for training using a
MultiDataSetIterator |
Modifier and Type | Method and Description |
---|---|
static boolean |
GradientCheckUtil.checkGradients(ComputationGraph graph,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
INDArray[] inputs,
INDArray[] labels)
Check backprop gradients for a ComputationGraph
|
static boolean |
GradientCheckUtil.checkGradients(ComputationGraph graph,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
INDArray[] inputs,
INDArray[] labels,
INDArray[] fMask,
INDArray[] lMask) |
static boolean |
GradientCheckUtil.checkGradients(ComputationGraph graph,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
INDArray[] inputs,
INDArray[] labels,
INDArray[] fMask,
INDArray[] lMask,
Set<String> excludeParams) |
static boolean |
GradientCheckUtil.checkGradients(ComputationGraph graph,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
INDArray[] inputs,
INDArray[] labels,
INDArray[] fMask,
INDArray[] lMask,
Set<String> excludeParams,
Consumer<ComputationGraph> callEachIter) |
static boolean |
GradientCheckUtil.checkGradients(ComputationGraph graph,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
INDArray[] inputs,
INDArray[] labels,
INDArray[] fMask,
INDArray[] lMask,
Set<String> excludeParams,
Integer rngSeedResetEachIter) |
Modifier and Type | Method and Description |
---|---|
static boolean |
GradientCheckUtil.checkGradients(ComputationGraph graph,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
INDArray[] inputs,
INDArray[] labels,
INDArray[] fMask,
INDArray[] lMask,
Set<String> excludeParams,
Consumer<ComputationGraph> callEachIter) |
Modifier and Type | Method and Description |
---|---|
GraphVertex |
LayerVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
ScaleVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
L2Vertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
PoolHelperVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
MergeVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
FrozenVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
abstract GraphVertex |
GraphVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype)
Create a
GraphVertex instance, for the given computation graph,
given the configuration instance. |
GraphVertex |
PreprocessorVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
L2NormalizeVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
ElementWiseVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
ReshapeVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
UnstackVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
ShiftVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
SubsetVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
StackVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
Modifier and Type | Method and Description |
---|---|
LastTimeStepVertex |
LastTimeStepVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
GraphVertex |
DuplicateToTimeSeriesVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
ReverseTimeSeriesVertex |
ReverseTimeSeriesVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
Modifier and Type | Method and Description |
---|---|
GraphVertex |
SameDiffVertex.instantiate(ComputationGraph graph,
String name,
int idx,
INDArray paramsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDatatype) |
Modifier and Type | Method and Description |
---|---|
ComputationGraph |
ComputationGraph.clone() |
ComputationGraph |
ComputationGraph.convertDataType(org.nd4j.linalg.api.buffer.DataType dataType)
Return a copy of the network with the parameters and activations set to use the specified (floating point) data type.
|
static ComputationGraph |
ComputationGraph.load(File f,
boolean loadUpdater)
Restore a ComputationGraph to a file, saved using
save(File) or ModelSerializer |
Modifier and Type | Field and Description |
---|---|
protected ComputationGraph |
BaseGraphVertex.graph |
Constructor and Description |
---|
BaseGraphVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
org.nd4j.linalg.api.buffer.DataType dataType) |
Constructor and Description |
---|
ElementWiseVertex(ComputationGraph graph,
String name,
int vertexIndex,
ElementWiseVertex.Op op,
org.nd4j.linalg.api.buffer.DataType dataType) |
ElementWiseVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
ElementWiseVertex.Op op,
org.nd4j.linalg.api.buffer.DataType dataType) |
InputVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] outputVertices,
org.nd4j.linalg.api.buffer.DataType dataType) |
L2NormalizeVertex(ComputationGraph graph,
String name,
int vertexIndex,
int[] dimension,
double eps,
org.nd4j.linalg.api.buffer.DataType dataType) |
L2NormalizeVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
int[] dimension,
double eps,
org.nd4j.linalg.api.buffer.DataType dataType) |
L2Vertex(ComputationGraph graph,
String name,
int vertexIndex,
double eps,
org.nd4j.linalg.api.buffer.DataType dataType) |
L2Vertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
double eps,
org.nd4j.linalg.api.buffer.DataType dataType) |
LayerVertex(ComputationGraph graph,
String name,
int vertexIndex,
Layer layer,
InputPreProcessor layerPreProcessor,
boolean outputVertex,
org.nd4j.linalg.api.buffer.DataType dataType)
Create a network input vertex:
|
LayerVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
Layer layer,
InputPreProcessor layerPreProcessor,
boolean outputVertex,
org.nd4j.linalg.api.buffer.DataType dataType) |
MergeVertex(ComputationGraph graph,
String name,
int vertexIndex,
org.nd4j.linalg.api.buffer.DataType dataType) |
MergeVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
org.nd4j.linalg.api.buffer.DataType dataType) |
PoolHelperVertex(ComputationGraph graph,
String name,
int vertexIndex,
org.nd4j.linalg.api.buffer.DataType dataType) |
PoolHelperVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
org.nd4j.linalg.api.buffer.DataType dataType) |
PreprocessorVertex(ComputationGraph graph,
String name,
int vertexIndex,
InputPreProcessor preProcessor,
org.nd4j.linalg.api.buffer.DataType dataType) |
PreprocessorVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
InputPreProcessor preProcessor,
org.nd4j.linalg.api.buffer.DataType dataType) |
ReshapeVertex(ComputationGraph graph,
String name,
int vertexIndex,
char order,
int[] newShape,
int[] maskShape,
org.nd4j.linalg.api.buffer.DataType dataType) |
ReshapeVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
char order,
int[] newShape,
int[] maskShape,
org.nd4j.linalg.api.buffer.DataType dataType) |
ScaleVertex(ComputationGraph graph,
String name,
int vertexIndex,
double scaleFactor,
org.nd4j.linalg.api.buffer.DataType dataType) |
ScaleVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
double scaleFactor,
org.nd4j.linalg.api.buffer.DataType dataType) |
ShiftVertex(ComputationGraph graph,
String name,
int vertexIndex,
double shiftFactor,
org.nd4j.linalg.api.buffer.DataType dataType) |
ShiftVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
double shiftFactor,
org.nd4j.linalg.api.buffer.DataType dataType) |
StackVertex(ComputationGraph graph,
String name,
int vertexIndex,
org.nd4j.linalg.api.buffer.DataType dataType) |
StackVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
org.nd4j.linalg.api.buffer.DataType dataType) |
SubsetVertex(ComputationGraph graph,
String name,
int vertexIndex,
int from,
int to,
org.nd4j.linalg.api.buffer.DataType dataType) |
SubsetVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
int from,
int to,
org.nd4j.linalg.api.buffer.DataType dataType) |
UnstackVertex(ComputationGraph graph,
String name,
int vertexIndex,
int from,
int stackSize,
org.nd4j.linalg.api.buffer.DataType dataType) |
UnstackVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
int from,
int stackSize,
org.nd4j.linalg.api.buffer.DataType dataType) |
Constructor and Description |
---|
DuplicateToTimeSeriesVertex(ComputationGraph graph,
String name,
int vertexIndex,
String inputVertexName,
org.nd4j.linalg.api.buffer.DataType dataType) |
DuplicateToTimeSeriesVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
String inputName,
org.nd4j.linalg.api.buffer.DataType dataType) |
LastTimeStepVertex(ComputationGraph graph,
String name,
int vertexIndex,
String inputName,
org.nd4j.linalg.api.buffer.DataType dataType) |
LastTimeStepVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
String inputName,
org.nd4j.linalg.api.buffer.DataType dataType) |
ReverseTimeSeriesVertex(ComputationGraph graph,
String name,
int vertexIndex,
String inputName,
org.nd4j.linalg.api.buffer.DataType dataType) |
Constructor and Description |
---|
SameDiffGraphVertex(SameDiffVertex config,
ComputationGraph graph,
String name,
int vertexIndex,
INDArray paramsView,
boolean initParams,
org.nd4j.linalg.api.buffer.DataType dataType) |
Modifier and Type | Method and Description |
---|---|
ComputationGraph |
MultiLayerNetwork.toComputationGraph()
Convert this MultiLayerNetwork to a ComputationGraph
|
Modifier and Type | Method and Description |
---|---|
ComputationGraph |
TransferLearning.GraphBuilder.build()
Returns a computation graph build to specifications.
|
ComputationGraph |
TransferLearningHelper.unfrozenGraph()
Returns the unfrozen subset of the original computation graph as a computation graph
Note that with each call to featurizedFit the parameters to the original computation graph are also updated
|
Constructor and Description |
---|
GraphBuilder(ComputationGraph origGraph)
Computation Graph to tweak for transfer learning
|
TransferLearningHelper(ComputationGraph orig)
Expects a computation graph where some vertices are frozen
|
TransferLearningHelper(ComputationGraph orig,
String... frozenOutputAt)
Will modify the given comp graph (in place!) to freeze vertices from input to the vertex specified.
|
Constructor and Description |
---|
ComputationGraphUpdater(ComputationGraph graph) |
ComputationGraphUpdater(ComputationGraph graph,
INDArray updaterState) |
Modifier and Type | Method and Description |
---|---|
ComputationGraph |
CheckpointListener.loadCheckpointCG(Checkpoint checkpoint)
Load a ComputationGraph for the given checkpoint
|
static ComputationGraph |
CheckpointListener.loadCheckpointCG(File rootDir,
Checkpoint checkpoint)
Load a ComputationGraph for the given checkpoint from the specified root direcotry
|
static ComputationGraph |
CheckpointListener.loadCheckpointCG(File rootDir,
int checkpointNum)
Load a ComputationGraph for the given checkpoint that resides in the specified root directory
|
ComputationGraph |
CheckpointListener.loadCheckpointCG(int checkpointNum)
Load a ComputationGraph for the given checkpoint
|
static ComputationGraph |
CheckpointListener.loadLastCheckpointCG(File rootDir)
Load the last (most recent) checkpoint from the specified root directory
|
Modifier and Type | Method and Description |
---|---|
static ComputationGraph |
ModelSerializer.restoreComputationGraph(File file)
Load a computation graph from a file
|
static ComputationGraph |
ModelSerializer.restoreComputationGraph(File file,
boolean loadUpdater)
Load a computation graph from a file
|
static ComputationGraph |
ModelSerializer.restoreComputationGraph(InputStream is)
Load a computation graph from a InputStream
|
static ComputationGraph |
ModelSerializer.restoreComputationGraph(InputStream is,
boolean loadUpdater)
Load a computation graph from a InputStream
|
static ComputationGraph |
ModelSerializer.restoreComputationGraph(String path)
Load a computation graph from a file
|
static ComputationGraph |
ModelSerializer.restoreComputationGraph(String path,
boolean loadUpdater)
Load a computation graph from a file
|
static ComputationGraph |
NetworkUtils.toComputationGraph(MultiLayerNetwork net)
Convert a MultiLayerNetwork to a ComputationGraph
|
Modifier and Type | Method and Description |
---|---|
static Pair<ComputationGraph,Normalizer> |
ModelSerializer.restoreComputationGraphAndNormalizer(File file,
boolean loadUpdater)
Restore a ComputationGraph and Normalizer (if present - null if not) from a File
|
static Pair<ComputationGraph,Normalizer> |
ModelSerializer.restoreComputationGraphAndNormalizer(InputStream is,
boolean loadUpdater)
Restore a ComputationGraph and Normalizer (if present - null if not) from the InputStream.
|
Modifier and Type | Method and Description |
---|---|
static Double |
NetworkUtils.getLearningRate(ComputationGraph net,
String layerName)
Get the current learning rate, for the specified layer, from the network.
|
static void |
NetworkUtils.setLearningRate(ComputationGraph net,
double newLr)
Set the learning rate for all layers in the network to the specified value.
|
static void |
NetworkUtils.setLearningRate(ComputationGraph net,
ISchedule newLrSchedule)
Set the learning rate schedule for all layers in the network to the specified schedule.
|
static void |
NetworkUtils.setLearningRate(ComputationGraph net,
String layerName,
double newLr)
Set the learning rate for a single layer in the network to the specified value.
|
static void |
NetworkUtils.setLearningRate(ComputationGraph net,
String layerName,
ISchedule lrSchedule)
Set the learning rate schedule for a single layer in the network to the specified value.
Note also that NetworkUtils.setLearningRate(ComputationGraph, ISchedule) should also be used in preference, when all
layers need to be set to a new LR schedule.This schedule will replace any/all existing schedules, and also any fixed learning rate values. Note also that the iteration/epoch counts will not be reset. |
Copyright © 2019. All rights reserved.