public class GlobalPoolingLayer extends NoParamLayer
PoolingType
s: SUM, AVG, MAX, PNORM
Behaviour with default settings:
- 3d (time series) input with shape [miniBatchSize, vectorSize,
timeSeriesLength] -> 2d output [miniBatchSize, vectorSize]
- 4d (CNN) input with shape [miniBatchSize, channels,
height, width] -> 2d output [miniBatchSize, channels]
- 5d (CNN3D) input with shape [miniBatchSize, channels,
depth, height, width] -> 2d output [miniBatchSize, channels]
Alternatively, by setting collapseDimensions = false in the configuration, it is possible to retain the reduced
dimensions as 1s: this gives
- [miniBatchSize, vectorSize, 1] for RNN output,
- [miniBatchSize, channels, 1,
1] for CNN output, and
- [miniBatchSize, channels, 1, 1, 1] for CNN3D output.
Modifier and Type | Class and Description |
---|---|
static class |
GlobalPoolingLayer.Builder |
constraints, iDropout, layerName
Constructor and Description |
---|
GlobalPoolingLayer() |
GlobalPoolingLayer(PoolingType poolingType) |
Modifier and Type | Method and Description |
---|---|
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessor |
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input
type
|
getGradientNormalization, getGradientNormalizationThreshold, getRegularizationByParam
clone, getUpdaterByParam, initializeConstraints, resetLayerDefaultConfig, setDataType
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getLayerName
public GlobalPoolingLayer()
public GlobalPoolingLayer(PoolingType poolingType)
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, org.nd4j.linalg.api.buffer.DataType networkDataType)
instantiate
in class Layer
public ParamInitializer initializer()
initializer
in class NoParamLayer
public InputType getOutputType(int layerIndex, InputType inputType)
Layer
getOutputType
in class Layer
layerIndex
- Index of the layerinputType
- Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
Layer
setNIn
in class NoParamLayer
inputType
- Input type for this layeroverride
- If false: only set the nIn value if it's not already set. If true: set it
regardless of whether it's already set or not.public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Layer
InputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessor
getPreProcessorForInputType
in class Layer
inputType
- InputType to this layerpublic boolean isPretrainParam(String paramName)
Layer
isPretrainParam
in interface TrainingConfig
isPretrainParam
in class NoParamLayer
paramName
- Parameter name/keypublic LayerMemoryReport getMemoryReport(InputType inputType)
Layer
getMemoryReport
in class Layer
inputType
- Input type to the layer. Memory consumption is often a function of the input
typeCopyright © 2019. All rights reserved.