Uses of Interface
org.nd4j.linalg.learning.regularization.Regularization
-
Packages that use Regularization Package Description org.nd4j.autodiff.samediff org.nd4j.linalg.learning.regularization -
-
Uses of Regularization in org.nd4j.autodiff.samediff
Methods in org.nd4j.autodiff.samediff with parameters of type Regularization Modifier and Type Method Description TrainingConfig.Builder
TrainingConfig.Builder. addRegularization(Regularization... regularizations)
Add regularization to all trainable parameters in the networkTrainingConfig.Builder
TrainingConfig.Builder. regularization(Regularization... regularization)
Set the regularization for all trainable parameters in the network.Method parameters in org.nd4j.autodiff.samediff with type arguments of type Regularization Modifier and Type Method Description TrainingConfig.Builder
TrainingConfig.Builder. regularization(List<Regularization> regularization)
Set the regularization for all trainable parameters in the network.Constructor parameters in org.nd4j.autodiff.samediff with type arguments of type Regularization Constructor Description TrainingConfig(IUpdater updater, List<Regularization> regularization, boolean minimize, List<String> dataSetFeatureMapping, List<String> dataSetLabelMapping, List<String> dataSetFeatureMaskMapping, List<String> dataSetLabelMaskMapping, List<String> lossVariables, Map<String,List<IEvaluation>> trainEvaluations, Map<String,Integer> trainEvaluationLabels, Map<String,List<IEvaluation>> validationEvaluations, Map<String,Integer> validationEvaluationLabels, DataType initialLossDataType)
TrainingConfig(IUpdater updater, List<Regularization> regularization, boolean minimize, List<String> dataSetFeatureMapping, List<String> dataSetLabelMapping, List<String> dataSetFeatureMaskMapping, List<String> dataSetLabelMaskMapping, List<String> lossVariables, DataType initialLossDataType)
Create a training configuration suitable for training both single input/output and multi input/output networks.
See also theTrainingConfig.Builder
for creating a TrainingConfigTrainingConfig(IUpdater updater, List<Regularization> regularization, String dataSetFeatureMapping, String dataSetLabelMapping)
Create a training configuration suitable for training a single input, single output network.
See also theTrainingConfig.Builder
for creating a TrainingConfig -
Uses of Regularization in org.nd4j.linalg.learning.regularization
Classes in org.nd4j.linalg.learning.regularization that implement Regularization Modifier and Type Class Description class
L1Regularization
class
L2Regularization
class
WeightDecay
Methods in org.nd4j.linalg.learning.regularization that return Regularization Modifier and Type Method Description Regularization
L1Regularization. clone()
Regularization
L2Regularization. clone()
Regularization
Regularization. clone()
Regularization
WeightDecay. clone()
-