Package org.tensorflow.framework
Class TensorShapeProto.Builder
- java.lang.Object
-
- org.nd4j.shade.protobuf.AbstractMessageLite.Builder
-
- org.nd4j.shade.protobuf.AbstractMessage.Builder<BuilderType>
-
- org.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
- org.tensorflow.framework.TensorShapeProto.Builder
-
- All Implemented Interfaces:
Cloneable
,org.nd4j.shade.protobuf.Message.Builder
,org.nd4j.shade.protobuf.MessageLite.Builder
,org.nd4j.shade.protobuf.MessageLiteOrBuilder
,org.nd4j.shade.protobuf.MessageOrBuilder
,TensorShapeProtoOrBuilder
- Enclosing class:
- TensorShapeProto
public static final class TensorShapeProto.Builder extends org.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder> implements TensorShapeProtoOrBuilder
Dimensions of a tensor.
Protobuf typetensorflow.TensorShapeProto
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description TensorShapeProto.Builder
addAllDim(Iterable<? extends TensorShapeProto.Dim> values)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Builder
addDim(int index, TensorShapeProto.Dim value)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Builder
addDim(int index, TensorShapeProto.Dim.Builder builderForValue)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Builder
addDim(TensorShapeProto.Dim value)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Builder
addDim(TensorShapeProto.Dim.Builder builderForValue)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Dim.Builder
addDimBuilder()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Dim.Builder
addDimBuilder(int index)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Builder
addRepeatedField(org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field, Object value)
TensorShapeProto
build()
TensorShapeProto
buildPartial()
TensorShapeProto.Builder
clear()
TensorShapeProto.Builder
clearDim()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Builder
clearField(org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field)
TensorShapeProto.Builder
clearOneof(org.nd4j.shade.protobuf.Descriptors.OneofDescriptor oneof)
TensorShapeProto.Builder
clearUnknownRank()
If true, the number of dimensions in the shape is unknown.TensorShapeProto.Builder
clone()
TensorShapeProto
getDefaultInstanceForType()
static org.nd4j.shade.protobuf.Descriptors.Descriptor
getDescriptor()
org.nd4j.shade.protobuf.Descriptors.Descriptor
getDescriptorForType()
TensorShapeProto.Dim
getDim(int index)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Dim.Builder
getDimBuilder(int index)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.List<TensorShapeProto.Dim.Builder>
getDimBuilderList()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.int
getDimCount()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.List<TensorShapeProto.Dim>
getDimList()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.DimOrBuilder
getDimOrBuilder(int index)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.List<? extends TensorShapeProto.DimOrBuilder>
getDimOrBuilderList()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.boolean
getUnknownRank()
If true, the number of dimensions in the shape is unknown.protected org.nd4j.shade.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable()
boolean
isInitialized()
TensorShapeProto.Builder
mergeFrom(org.nd4j.shade.protobuf.CodedInputStream input, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry)
TensorShapeProto.Builder
mergeFrom(org.nd4j.shade.protobuf.Message other)
TensorShapeProto.Builder
mergeFrom(TensorShapeProto other)
TensorShapeProto.Builder
mergeUnknownFields(org.nd4j.shade.protobuf.UnknownFieldSet unknownFields)
TensorShapeProto.Builder
removeDim(int index)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Builder
setDim(int index, TensorShapeProto.Dim value)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Builder
setDim(int index, TensorShapeProto.Dim.Builder builderForValue)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor.TensorShapeProto.Builder
setField(org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field, Object value)
TensorShapeProto.Builder
setRepeatedField(org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
TensorShapeProto.Builder
setUnknownFields(org.nd4j.shade.protobuf.UnknownFieldSet unknownFields)
TensorShapeProto.Builder
setUnknownRank(boolean value)
If true, the number of dimensions in the shape is unknown.-
Methods inherited from class org.nd4j.shade.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof, internalGetMapField, internalGetMutableMapField, isClean, markClean, newBuilderForField, onBuilt, onChanged, setUnknownFieldsProto3
-
Methods inherited from class org.nd4j.shade.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
-
Methods inherited from class org.nd4j.shade.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
-
-
-
Method Detail
-
getDescriptor
public static final org.nd4j.shade.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetFieldAccessorTable
protected org.nd4j.shade.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTable
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
clear
public TensorShapeProto.Builder clear()
- Specified by:
clear
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Specified by:
clear
in interfaceorg.nd4j.shade.protobuf.MessageLite.Builder
- Overrides:
clear
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
getDescriptorForType
public org.nd4j.shade.protobuf.Descriptors.Descriptor getDescriptorForType()
- Specified by:
getDescriptorForType
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Specified by:
getDescriptorForType
in interfaceorg.nd4j.shade.protobuf.MessageOrBuilder
- Overrides:
getDescriptorForType
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
getDefaultInstanceForType
public TensorShapeProto getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForType
in interfaceorg.nd4j.shade.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfaceorg.nd4j.shade.protobuf.MessageOrBuilder
-
build
public TensorShapeProto build()
- Specified by:
build
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Specified by:
build
in interfaceorg.nd4j.shade.protobuf.MessageLite.Builder
-
buildPartial
public TensorShapeProto buildPartial()
- Specified by:
buildPartial
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Specified by:
buildPartial
in interfaceorg.nd4j.shade.protobuf.MessageLite.Builder
-
clone
public TensorShapeProto.Builder clone()
- Specified by:
clone
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Specified by:
clone
in interfaceorg.nd4j.shade.protobuf.MessageLite.Builder
- Overrides:
clone
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
setField
public TensorShapeProto.Builder setField(org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
setField
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Overrides:
setField
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
clearField
public TensorShapeProto.Builder clearField(org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field)
- Specified by:
clearField
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Overrides:
clearField
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
clearOneof
public TensorShapeProto.Builder clearOneof(org.nd4j.shade.protobuf.Descriptors.OneofDescriptor oneof)
- Specified by:
clearOneof
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Overrides:
clearOneof
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
setRepeatedField
public TensorShapeProto.Builder setRepeatedField(org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field, int index, Object value)
- Specified by:
setRepeatedField
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Overrides:
setRepeatedField
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
addRepeatedField
public TensorShapeProto.Builder addRepeatedField(org.nd4j.shade.protobuf.Descriptors.FieldDescriptor field, Object value)
- Specified by:
addRepeatedField
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Overrides:
addRepeatedField
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
mergeFrom
public TensorShapeProto.Builder mergeFrom(org.nd4j.shade.protobuf.Message other)
- Specified by:
mergeFrom
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Overrides:
mergeFrom
in classorg.nd4j.shade.protobuf.AbstractMessage.Builder<TensorShapeProto.Builder>
-
mergeFrom
public TensorShapeProto.Builder mergeFrom(TensorShapeProto other)
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitialized
in interfaceorg.nd4j.shade.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
mergeFrom
public TensorShapeProto.Builder mergeFrom(org.nd4j.shade.protobuf.CodedInputStream input, org.nd4j.shade.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
- Specified by:
mergeFrom
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Specified by:
mergeFrom
in interfaceorg.nd4j.shade.protobuf.MessageLite.Builder
- Overrides:
mergeFrom
in classorg.nd4j.shade.protobuf.AbstractMessage.Builder<TensorShapeProto.Builder>
- Throws:
IOException
-
getDimList
public List<TensorShapeProto.Dim> getDimList()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
- Specified by:
getDimList
in interfaceTensorShapeProtoOrBuilder
-
getDimCount
public int getDimCount()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
- Specified by:
getDimCount
in interfaceTensorShapeProtoOrBuilder
-
getDim
public TensorShapeProto.Dim getDim(int index)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
- Specified by:
getDim
in interfaceTensorShapeProtoOrBuilder
-
setDim
public TensorShapeProto.Builder setDim(int index, TensorShapeProto.Dim value)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
setDim
public TensorShapeProto.Builder setDim(int index, TensorShapeProto.Dim.Builder builderForValue)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
addDim
public TensorShapeProto.Builder addDim(TensorShapeProto.Dim value)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
addDim
public TensorShapeProto.Builder addDim(int index, TensorShapeProto.Dim value)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
addDim
public TensorShapeProto.Builder addDim(TensorShapeProto.Dim.Builder builderForValue)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
addDim
public TensorShapeProto.Builder addDim(int index, TensorShapeProto.Dim.Builder builderForValue)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
addAllDim
public TensorShapeProto.Builder addAllDim(Iterable<? extends TensorShapeProto.Dim> values)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
clearDim
public TensorShapeProto.Builder clearDim()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
removeDim
public TensorShapeProto.Builder removeDim(int index)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
getDimBuilder
public TensorShapeProto.Dim.Builder getDimBuilder(int index)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
getDimOrBuilder
public TensorShapeProto.DimOrBuilder getDimOrBuilder(int index)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
- Specified by:
getDimOrBuilder
in interfaceTensorShapeProtoOrBuilder
-
getDimOrBuilderList
public List<? extends TensorShapeProto.DimOrBuilder> getDimOrBuilderList()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
- Specified by:
getDimOrBuilderList
in interfaceTensorShapeProtoOrBuilder
-
addDimBuilder
public TensorShapeProto.Dim.Builder addDimBuilder()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
addDimBuilder
public TensorShapeProto.Dim.Builder addDimBuilder(int index)
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
getDimBuilderList
public List<TensorShapeProto.Dim.Builder> getDimBuilderList()
Dimensions of the tensor, such as {"input", 30}, {"output", 40} for a 30 x 40 2D tensor. If an entry has size -1, this corresponds to a dimension of unknown size. The names are optional. The order of entries in "dim" matters: It indicates the layout of the values in the tensor in-memory representation. The first entry in "dim" is the outermost dimension used to layout the values, the last entry is the innermost dimension. This matches the in-memory layout of RowMajor Eigen tensors. If "dim.size()" > 0, "unknown_rank" must be false.
repeated .tensorflow.TensorShapeProto.Dim dim = 2;
-
getUnknownRank
public boolean getUnknownRank()
If true, the number of dimensions in the shape is unknown. If true, "dim.size()" must be 0.
bool unknown_rank = 3;
- Specified by:
getUnknownRank
in interfaceTensorShapeProtoOrBuilder
- Returns:
- The unknownRank.
-
setUnknownRank
public TensorShapeProto.Builder setUnknownRank(boolean value)
If true, the number of dimensions in the shape is unknown. If true, "dim.size()" must be 0.
bool unknown_rank = 3;
- Parameters:
value
- The unknownRank to set.- Returns:
- This builder for chaining.
-
clearUnknownRank
public TensorShapeProto.Builder clearUnknownRank()
If true, the number of dimensions in the shape is unknown. If true, "dim.size()" must be 0.
bool unknown_rank = 3;
- Returns:
- This builder for chaining.
-
setUnknownFields
public final TensorShapeProto.Builder setUnknownFields(org.nd4j.shade.protobuf.UnknownFieldSet unknownFields)
- Specified by:
setUnknownFields
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Overrides:
setUnknownFields
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
mergeUnknownFields
public final TensorShapeProto.Builder mergeUnknownFields(org.nd4j.shade.protobuf.UnknownFieldSet unknownFields)
- Specified by:
mergeUnknownFields
in interfaceorg.nd4j.shade.protobuf.Message.Builder
- Overrides:
mergeUnknownFields
in classorg.nd4j.shade.protobuf.GeneratedMessageV3.Builder<TensorShapeProto.Builder>
-
-