DynamicCustomOp.DynamicCustomOpsBuilder
lossReduce
axis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArguments
dimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue
Constructor and Description |
---|
WeightedCrossEntropyLoss() |
WeightedCrossEntropyLoss(INDArray targets,
INDArray inputs,
INDArray weights) |
WeightedCrossEntropyLoss(@NonNull LossReduce lossReduce,
@NonNull INDArray predictions,
INDArray weights,
@NonNull INDArray labels) |
WeightedCrossEntropyLoss(@NonNull SameDiff sameDiff,
@NonNull LossReduce lossReduce,
@NonNull SDVariable predictions,
SDVariable weights,
@NonNull SDVariable labels) |
WeightedCrossEntropyLoss(SameDiff sd,
SDVariable targets,
SDVariable inputs,
SDVariable weights) |
Modifier and Type | Method and Description |
---|---|
List<DataType> |
calculateOutputDataTypes(List<DataType> inputDataTypes)
Calculate the data types for the output arrays.
|
String |
onnxName()
The opName of this function in onnx
|
String |
opName()
This method returns op opName as string
|
Op.Type |
opType()
The type of the op
|
String |
tensorflowName()
The opName of this function tensorflow
|
addArgs, getWeights, getWeights
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, configureFromArguments, dArgs, doDiff, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, initFromOnnx, initFromTensorFlow, inputArguments, mappingsForFunction, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, opHash, opNum, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setPropertiesForFunction, setValueFor, tArgs, toString, wrapFilterNull, wrapOrNull, wrapOrNull
arg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getNumOutputs, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId, tensorflowNames
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
isInplaceCall
public WeightedCrossEntropyLoss(@NonNull @NonNull SameDiff sameDiff, @NonNull @NonNull LossReduce lossReduce, @NonNull @NonNull SDVariable predictions, SDVariable weights, @NonNull @NonNull SDVariable labels)
public WeightedCrossEntropyLoss(@NonNull @NonNull LossReduce lossReduce, @NonNull @NonNull INDArray predictions, INDArray weights, @NonNull @NonNull INDArray labels)
public WeightedCrossEntropyLoss()
public WeightedCrossEntropyLoss(SameDiff sd, SDVariable targets, SDVariable inputs, SDVariable weights)
public String opName()
DynamicCustomOp
public String onnxName()
DifferentialFunction
onnxName
in class DynamicCustomOp
public String tensorflowName()
DifferentialFunction
tensorflowName
in class DynamicCustomOp
public Op.Type opType()
DifferentialFunction
opType
in class DynamicCustomOp
public List<DataType> calculateOutputDataTypes(List<DataType> inputDataTypes)
DifferentialFunction
DifferentialFunction.calculateOutputShape()
, this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes
in class BaseLoss
inputDataTypes
- The data types of the inputsCopyright © 2022. All rights reserved.