public class Dot extends BaseReduce3Op
dimensionVariable, isComplex, isEmptyReduce, keepDims
dimensionz, extraArgz, x, xVertexId, y, yVertexId, z, zVertexId
dimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue
Constructor and Description |
---|
Dot() |
Dot(INDArray x,
INDArray y,
boolean allDistances,
int... dimensions) |
Dot(INDArray x,
INDArray y,
INDArray z) |
Dot(INDArray x,
INDArray y,
INDArray z,
boolean newFormat,
boolean keepDims,
int... dimensions) |
Dot(INDArray x,
INDArray y,
INDArray z,
boolean keepDims,
int... dimensions) |
Dot(INDArray x,
INDArray y,
INDArray z,
int... dimensions)
Full array dot product reduction, optionally along specified dimensions.
See wikipedia for details. |
Dot(INDArray x,
INDArray y,
int... dimensions) |
Dot(SameDiff sameDiff,
SDVariable i_v,
int[] dimensions) |
Dot(SameDiff sameDiff,
SDVariable i_v,
SDVariable dimensions) |
Dot(SameDiff sameDiff,
SDVariable i_v,
SDVariable i_v2,
int... dimensions) |
Dot(SameDiff sameDiff,
SDVariable i_v,
SDVariable i_v2,
SDVariable dimensions) |
Modifier and Type | Method and Description |
---|---|
List<SDVariable> |
doDiff(List<SDVariable> f1)
The actual implementation for automatic differentiation.
|
String |
opName()
The name of the op
|
int |
opNum()
The number of the op (mainly for old legacy XYZ ops
like
Op ) |
calculateOutputDataTypes, getOpType, onnxName, opType, resultType, tensorflowName
calculateOutputShape, calculateOutputShape, resultType, validateDataTypes
configureWithSameDiff, hasReductionIndices, initFromOnnx, initFromTensorFlow, isComplexAccumulation, isKeepDims, noOp, setDimensions, setPropertiesForFunction
clearArrays, computeVariables, defineDimensions, dimensions, equals, extraArgs, extraArgsBuff, extraArgsDataBuff, getFinalResult, getInputArgument, getNumOutputs, getOpType, hashCode, outputVariables, setX, setY, setZ, toCustomOp, toString, x, y, z
arg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, diff, dup, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getStringFromProperty, getValue, isConfigProperties, larg, mappingsForFunction, onnxNames, outputs, outputVariable, outputVariables, outputVariablesNames, propertiesForFunction, rarg, replaceArg, setInstanceId, setValueFor, tensorflowNames
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
dimensions, getFinalResult, isComplexAccumulation, isKeepDims, noOp, setDimensions
clearArrays, extraArgs, extraArgsBuff, extraArgsDataBuff, setExtraArgs, setX, setY, setZ, toCustomOp, x, y, z
public Dot(SameDiff sameDiff, SDVariable i_v, SDVariable i_v2, int... dimensions)
public Dot(SameDiff sameDiff, SDVariable i_v, SDVariable dimensions)
public Dot(SameDiff sameDiff, SDVariable i_v, SDVariable i_v2, SDVariable dimensions)
public Dot()
public Dot(INDArray x, INDArray y, INDArray z, int... dimensions)
x
- input variable.y
- input variable.z
- (optional) place holder for the result. Must have the expected shape.dimensions
- (optional) Dimensions to reduce over. If dimensions are not specified, full array reduction is performed.Transforms.dot(...) for a wrapper around the common use case of 2 INDArrays.
public Dot(INDArray x, INDArray y, INDArray z, boolean newFormat, boolean keepDims, int... dimensions)
public Dot(SameDiff sameDiff, SDVariable i_v, int[] dimensions)
public int opNum()
DifferentialFunction
Op
)opNum
in interface Op
opNum
in class DifferentialFunction
public String opName()
DifferentialFunction
opName
in interface Op
opName
in class DifferentialFunction
public List<SDVariable> doDiff(List<SDVariable> f1)
DifferentialFunction
doDiff
in class DifferentialFunction
Copyright © 2022. All rights reserved.