DynamicCustomOp.DynamicCustomOpsBuilder
permuteDims
axis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArguments
dimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue
Constructor and Description |
---|
Permute() |
Permute(INDArray input,
INDArray result,
int... permuteDims) |
Permute(INDArray input,
int... permuteDims) |
Permute(SameDiff sameDiff,
SDVariable i_v,
int... permuteDims) |
Permute(SameDiff sd,
SDVariable input,
SDVariable permuteDims) |
Modifier and Type | Method and Description |
---|---|
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
void |
configureFromArguments()
This allows a custom op to configure relevant fields from its arguments.
|
List<SDVariable> |
doDiff(List<SDVariable> i_v)
The actual implementation for automatic differentiation.
|
String |
onnxName()
The opName of this function in onnx
|
String |
opName()
This method returns op opName as string
|
void |
setPropertiesForFunction(Map<String,Object> properties) |
String |
tensorflowName()
The opName of this function tensorflow
|
initFromOnnx, initFromTensorFlow, mappingsForFunction
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, dArgs, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, inputArguments, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setValueFor, tArgs, toString, wrapFilterNull, wrapOrNull, wrapOrNull
arg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getNumOutputs, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId, tensorflowNames
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
isInplaceCall
public Permute(SameDiff sameDiff, SDVariable i_v, int... permuteDims)
public Permute(SameDiff sd, SDVariable input, SDVariable permuteDims)
public Permute(INDArray input, int... permuteDims)
public Permute()
public String opName()
DynamicCustomOp
public List<SDVariable> doDiff(List<SDVariable> i_v)
DifferentialFunction
public void configureFromArguments()
CustomOp
configureFromArguments
in interface CustomOp
configureFromArguments
in class DynamicCustomOp
public void setPropertiesForFunction(Map<String,Object> properties)
setPropertiesForFunction
in class DynamicCustomOp
public List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunction
DifferentialFunction.calculateOutputShape()
, this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes
in class Transpose
dataTypes
- The data types of the inputspublic String tensorflowName()
DifferentialFunction
tensorflowName
in class Transpose
public String onnxName()
DifferentialFunction
Copyright © 2022. All rights reserved.