public class Split extends DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilder
axis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArguments
dimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue
Constructor and Description |
---|
Split() |
Split(@NonNull INDArray in,
INDArray out) |
Split(INDArray input,
INDArray numSplit,
int splitDim) |
Split(INDArray input,
int numSplit,
int splitDim) |
Split(SameDiff sameDiff,
SDVariable input,
int numSplit,
int splitDim) |
Split(SameDiff sd,
SDVariable input,
SDVariable numSplit,
int splitDim) |
Modifier and Type | Method and Description |
---|---|
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
void |
configureFromArguments()
This allows a custom op to configure relevant fields from its arguments.
|
List<SDVariable> |
doDiff(List<SDVariable> f1)
The actual implementation for automatic differentiation.
|
int |
getNumOutputs() |
void |
initFromTensorFlow(NodeDef nodeDef,
SameDiff initWith,
Map<String,AttrValue> attributesForNode,
GraphDef graph)
Initialize the function from the given
NodeDef |
Map<String,Map<String,PropertyMapping>> |
mappingsForFunction()
Returns the mappings for a given function (
for tensorflow and onnx import mapping properties
of this function).
|
String |
opName()
This method returns op opName as string
|
Map<String,Object> |
propertiesForFunction()
Returns the properties for a given function
|
void |
setPropertiesForFunction(Map<String,Object> properties) |
String |
tensorflowName()
The opName of this function tensorflow
|
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, dArgs, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, initFromOnnx, inputArguments, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, onnxName, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setValueFor, tArgs, toString, wrapFilterNull, wrapOrNull, wrapOrNull
arg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId, tensorflowNames
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
isInplaceCall
public Split()
public Split(SameDiff sameDiff, SDVariable input, int numSplit, int splitDim)
public Split(INDArray input, int numSplit, int splitDim)
public Split(SameDiff sd, SDVariable input, SDVariable numSplit, int splitDim)
public String opName()
DynamicCustomOp
opName
in interface CustomOp
opName
in class DynamicCustomOp
public String tensorflowName()
DifferentialFunction
tensorflowName
in class DynamicCustomOp
public void configureFromArguments()
CustomOp
configureFromArguments
in interface CustomOp
configureFromArguments
in class DynamicCustomOp
public Map<String,Object> propertiesForFunction()
DifferentialFunction
propertiesForFunction
in class DynamicCustomOp
public void setPropertiesForFunction(Map<String,Object> properties)
setPropertiesForFunction
in class DynamicCustomOp
public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String,AttrValue> attributesForNode, GraphDef graph)
DifferentialFunction
NodeDef
initFromTensorFlow
in class DynamicCustomOp
public Map<String,Map<String,PropertyMapping>> mappingsForFunction()
DifferentialFunction
mappingsForFunction
in class DynamicCustomOp
public int getNumOutputs()
getNumOutputs
in class DifferentialFunction
public List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunction
DifferentialFunction.calculateOutputShape()
, this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes
in class DifferentialFunction
dataTypes
- The data types of the inputspublic List<SDVariable> doDiff(List<SDVariable> f1)
DifferentialFunction
doDiff
in class DynamicCustomOp
Copyright © 2022. All rights reserved.