public class DifferentialFunctionFactory extends Object
Constructor and Description |
---|
DifferentialFunctionFactory(SameDiff sameDiff) |
protected SameDiff sameDiff
public DifferentialFunctionFactory(SameDiff sameDiff)
sameDiff
- public SameDiff sameDiff()
public SDVariable invoke(String name, Object[] args)
public Constant val(SDVariable iX)
public SDVariable var(String iName, SDVariable iX)
public SDVariable zero(int[] shape)
public SDVariable zerosLike(SDVariable input)
public SDVariable zerosLike(String name, SDVariable input)
public SDVariable one(int[] shape)
public SDVariable onesLike(String name, SDVariable input)
public SDVariable localResponseNormalization(SDVariable inputs, LocalResponseNormalizationConfig lrnConfig)
inputs
- the inputs to lrnlrnConfig
- the configurationpublic SDVariable conv1d(SDVariable[] inputs, Conv1DConfig conv1DConfig)
inputs
- the inputs to conv1dconv1DConfig
- the configurationpublic SDVariable conv2d(SDVariable[] inputs, Conv2DConfig conv2DConfig)
inputs
- the inputs to conv2dconv2DConfig
- the configurationpublic SDVariable avgPooling2d(SDVariable[] inputs, Pooling2DConfig pooling2DConfig)
inputs
- the inputs to poolingpooling2DConfig
- the configurationpublic SDVariable maxPooling2d(SDVariable[] inputs, Pooling2DConfig pooling2DConfig)
inputs
- the inputs to poolingpooling2DConfig
- the configurationpublic SDVariable avgPooling3d(SDVariable[] inputs, Pooling3DConfig pooling3DConfig)
inputs
- the inputs to poolingpooling3DConfig
- the configurationpublic SDVariable maxPooling3d(SDVariable[] inputs, Pooling3DConfig pooling3DConfig)
inputs
- the inputs to poolingpooling3DConfig
- the configurationpublic SDVariable sconv2d(SDVariable[] inputs, Conv2DConfig conv2DConfig)
inputs
- the inputs to conv2dconv2DConfig
- the configurationpublic SDVariable depthWiseConv2d(SDVariable[] inputs, Conv2DConfig depthConv2DConfig)
inputs
- the inputs to conv2ddepthConv2DConfig
- the configurationpublic SDVariable deconv2d(SDVariable[] inputs, DeConv2DConfig deconv2DConfig)
inputs
- the inputs to conv2ddeconv2DConfig
- the configurationpublic SDVariable conv3d(SDVariable[] inputs, Conv3DConfig conv3DConfig)
inputs
- the inputs to conv3dconv3DConfig
- the configurationpublic SDVariable batchNorm(SDVariable input, SDVariable mean, SDVariable variance, SDVariable gamma, SDVariable beta, boolean applyGamma, boolean applyBeta, double epsilon)
public SDVariable[] moments(SDVariable input, int... axes)
public SDVariable[] normalizeMoments(SDVariable counts, SDVariable means, SDVariable variances, double shift)
public SDVariable tile(SDVariable iX, int[] repeat)
public SDVariable dropout(SDVariable input, double p)
public SDVariable sum(SDVariable i_x, int... dimensions)
public SDVariable prod(SDVariable i_x, int... dimensions)
public SDVariable mean(SDVariable i_x, int... dimensions)
public SDVariable std(SDVariable i_x, boolean biasCorrected, int... dimensions)
public SDVariable variance(SDVariable i_x, boolean biasCorrected, int... dimensions)
public SDVariable countNonZero(SDVariable input)
public SDVariable countZero(SDVariable input)
public SDVariable zeroFraction(SDVariable input)
public SDVariable max(SDVariable i_x, int... dimensions)
public SDVariable max(SDVariable first, SDVariable second)
public SDVariable min(SDVariable i_x, int... dimensions)
public SDVariable min(SDVariable first, SDVariable second)
public SDVariable argmax(SDVariable in, int... dimensions)
public SDVariable argmin(SDVariable in, int... dimensions)
public SDVariable cumsum(SDVariable in, boolean exclusive, boolean reverse, int... dimensions)
public SDVariable cumprod(SDVariable in, boolean exclusive, boolean reverse, int... dimensions)
public SDVariable biasAdd(SDVariable input, SDVariable bias)
public SDVariable norm1(SDVariable i_x, int... dimensions)
public SDVariable norm2(SDVariable i_x, int... dimensions)
public SDVariable normmax(SDVariable i_x, int... dimensions)
public SDVariable reductionBroadcastableWithOrigShape(int origRank, int[] reduceDims, SDVariable toExpand)
Example: if doing [a,b,c].sum(1), result is [a,c]. To 'undo' this in a way that can be auto-broadcast, we want to expand as required - i.e., [a,c] -> [a,1,c] which can be auto-broadcast with the original [a,b,c]. This is typically only used with reduction operations backprop.
origRank
- Rank of the original array, before the reduction was executedreduceDims
- Dimensions that the original array was reduced fromtoExpand
- Array to add 1s to the shape to (such that it can bepublic SDVariable gradientBackwardsMarker(SDVariable iX)
public SDVariable abs(SDVariable iX)
public SDVariable neg(SDVariable iX)
public SDVariable cos(SDVariable iX)
public SDVariable sin(SDVariable iX)
public SDVariable tan(SDVariable iX)
public SDVariable permute(SDVariable iX, int... dimensions)
public SDVariable invertPermutation(SDVariable input, boolean inPlace)
public SDVariable transpose(SDVariable iX)
public SDVariable acos(SDVariable iX)
public SDVariable asin(SDVariable iX)
public SDVariable atan(SDVariable iX)
public SDVariable atan2(SDVariable y, SDVariable x)
public SDVariable cosh(SDVariable iX)
public SDVariable sinh(SDVariable iX)
public SDVariable tanh(SDVariable iX)
public SDVariable tanhDerivative(SDVariable iX, SDVariable wrt)
public SDVariable acosh(SDVariable iX)
public SDVariable asinh(SDVariable iX)
public SDVariable atanh(SDVariable iX)
public SDVariable exp(SDVariable iX)
public SDVariable expm1(SDVariable iX)
public SDVariable rsqrt(SDVariable iX)
public SDVariable log(SDVariable iX)
public SDVariable log1p(SDVariable iX)
public SDVariable isFinite(SDVariable ix)
public SDVariable isInfinite(SDVariable ix)
public SDVariable isNaN(SDVariable ix)
public SDVariable round(SDVariable ix)
public SDVariable or(SDVariable iX, SDVariable i_y)
public SDVariable and(SDVariable ix, SDVariable iy)
public SDVariable xor(SDVariable ix, SDVariable iy)
public SDVariable eq(SDVariable iX, SDVariable i_y)
public SDVariable neq(SDVariable iX, double i_y)
public SDVariable neqi(SDVariable iX, double i_y)
public SDVariable neqi(SDVariable iX, SDVariable i_y)
public SDVariable neq(SDVariable iX, SDVariable i_y)
public SDVariable pow(SDVariable iX, double i_y)
public SDVariable sqrt(SDVariable iX)
public SDVariable square(SDVariable iX)
public SDVariable cube(SDVariable iX)
public SDVariable cubeDerivative(SDVariable iX)
public SDVariable floor(SDVariable iX)
public SDVariable floorDiv(SDVariable x, SDVariable y)
public List<SDVariable> floorDivBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable floorMod(SDVariable x, SDVariable y)
public List<SDVariable> floorModBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable ceil(SDVariable x)
public SDVariable clipByValue(SDVariable x, double clipValueMin, double clipValueMax)
public SDVariable clipByNorm(SDVariable x, double clipValue)
public SDVariable relu(SDVariable iX, double cutoff)
public SDVariable relu6(SDVariable iX, double cutoff)
public SDVariable softmax(SDVariable iX)
public SDVariable hardTanh(SDVariable iX)
public SDVariable hardTanhDerivative(SDVariable iX)
public SDVariable sigmoid(SDVariable iX)
public SDVariable sigmoidDerivative(SDVariable iX, SDVariable wrt)
public SDVariable logSigmoid(SDVariable iX)
public SDVariable logSigmoidDerivative(SDVariable iX, SDVariable wrt)
public SDVariable powDerivative(SDVariable iX, double pow)
public SDVariable swish(SDVariable iX)
public SDVariable swishDerivative(SDVariable iX)
public SDVariable sign(SDVariable iX)
public SDVariable expandDims(SDVariable iX, int axis)
public SDVariable squeeze(SDVariable iX, int... axis)
public SDVariable confusionMatrix(SDVariable labels, SDVariable pred)
public SDVariable confusionMatrix(SDVariable labels, SDVariable pred, Integer numClasses)
public SDVariable confusionMatrix(SDVariable labels, SDVariable pred, SDVariable weights)
public SDVariable confusionMatrix(SDVariable labels, SDVariable pred, Integer numClasses, SDVariable weights)
public SDVariable broadcast(SDVariable iX, int... shape)
public SDVariable onehot(SDVariable indices, int depth, int axis, double on, double off)
public SDVariable onehot(SDVariable indices, int depth)
public SDVariable reciprocal(SDVariable a)
public SDVariable repeat(SDVariable iX, int axis)
public SDVariable stack(SDVariable[] values, int axis)
public SDVariable parallel_stack(SDVariable[] values)
public SDVariable[] unstack(SDVariable value, int axis)
public SDVariable assign(SDVariable x, SDVariable y)
public SDVariable softsign(SDVariable iX)
public SDVariable softsignDerivative(SDVariable iX)
public SDVariable softplus(SDVariable iX)
public SDVariable elu(SDVariable iX)
public SDVariable eluDerivative(SDVariable iX)
public SDVariable leakyRelu(SDVariable iX, double cutoff)
public SDVariable leakyReluDerivative(SDVariable iX, double cutoff)
public SDVariable reshape(SDVariable iX, int[] shape)
public SDVariable reverse(SDVariable x, int... dimensions)
public SDVariable reverseSequence(SDVariable x, SDVariable seq_lengths, int seq_dim, int batch_dim)
public SDVariable reverseSequence(SDVariable x, SDVariable seq_lengths)
public SDVariable sequenceMask(SDVariable lengths, SDVariable maxLen)
public SDVariable sequenceMask(SDVariable lengths, int maxLen)
public SDVariable sequenceMask(SDVariable lengths)
public SDVariable rollAxis(SDVariable iX, int axis)
public SDVariable concat(int dimension, SDVariable... inputs)
public SDVariable fill(SDVariable shape, double value)
public SDVariable cosineSimilarity(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable cosineDistance(SDVariable ix, SDVariable iy, int... dimensions)
public SDVariable euclideanDistance(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable manhattanDistance(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable hammingDistance(SDVariable ix, SDVariable iy, int... dimensions)
public SDVariable jaccardDistance(SDVariable ix, SDVariable iy, int... dimensions)
public SDVariable weightedCrossEntropyWithLogits(SDVariable targets, SDVariable inputs, SDVariable weights)
public SDVariable sigmoidCrossEntropyWithLogits(SDVariable logits, SDVariable weights, SDVariable labels, int reductionMode, double labelSmoothing)
public SDVariable softmaxCrossEntropyWithLogits(SDVariable logits, SDVariable weights, SDVariable labels, int reductionMode, double labelSmoothing)
public SDVariable lossBinaryXENT(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossCosineSimilarity(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossHinge(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossKLD(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossL1(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossL2(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossMAE(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossMAPE(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossMSE(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossMCXENT(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossMSLE(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossNegativeLogLikelihood(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossPoisson(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable lossSquaredHinge(SDVariable iX, SDVariable i_y, int... dimensions)
public SDVariable xwPlusB(SDVariable input, SDVariable weights, SDVariable bias)
public SDVariable reluLayer(SDVariable input, SDVariable weights, SDVariable bias)
public SDVariable mmul(SDVariable x, SDVariable y, MMulTranspose mMulTranspose)
public SDVariable mmul(SDVariable x, SDVariable y)
public SDVariable tensorMmul(SDVariable x, SDVariable y, int[][] dimensions)
public SDVariable softmaxDerivative(SDVariable functionInput, SDVariable wrt)
public SDVariable logSoftmax(SDVariable i_v)
public SDVariable logSoftmaxDerivative(SDVariable arg, SDVariable wrt)
public SDVariable selu(SDVariable arg)
public SDVariable seluDerivative(SDVariable arg)
public SDVariable rsub(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> rsubBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable rdiv(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> rdivBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable rdivi(SDVariable differentialFunction, SDVariable i_v)
public SDVariable rsubi(SDVariable differentialFunction, SDVariable i_v)
public SDVariable add(SDVariable differentialFunction, SDVariable i_v)
public SDVariable mergeadd(SDVariable[] differentialFunctions)
public SDVariable diag(SDVariable sdVariable)
public SDVariable diagPart(SDVariable sdVariable)
public SDVariable batchToSpace(SDVariable differentialFunction, int[] blocks, int[][] crops)
public SDVariable spaceToBatch(SDVariable differentialFunction, int[] blocks, int[][] padding)
public SDVariable depthToSpace(SDVariable differentialFunction, int blocksSize, String dataFormat)
public SDVariable spaceToDepth(SDVariable differentialFunction, int blocksSize, String dataFormat)
public SDVariable[] dynamicPartition(SDVariable differentialFunction, SDVariable partitions, int numPartitions)
public SDVariable dynamicStitch(SDVariable[] indices, SDVariable[] differentialFunctions)
public SDVariable dilation2D(SDVariable df, SDVariable weights, int[] strides, int[] rates, boolean isSameMode)
public SDVariable shape(SDVariable df)
public SDVariable gather(SDVariable df, int axis, int[] broadcast)
public SDVariable gatherNd(SDVariable df, SDVariable indices)
public SDVariable cross(SDVariable a, SDVariable b)
public SDVariable erf(SDVariable differentialFunction)
public SDVariable erfc(SDVariable differentialFunction)
public SDVariable addi(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> addBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable sub(SDVariable differentialFunction, SDVariable i_v)
public SDVariable squaredDifference(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> subBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable subi(SDVariable differentialFunction, SDVariable i_v)
public SDVariable mul(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> mulBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable muli(SDVariable differentialFunction, SDVariable i_v)
public SDVariable div(SDVariable differentialFunction, SDVariable i_v)
public SDVariable truncatedDiv(SDVariable differentialFunction, SDVariable i_v)
public List<SDVariable> divBp(SDVariable x, SDVariable y, SDVariable grad)
public SDVariable divi(SDVariable differentialFunction, SDVariable i_v)
public SDVariable rsub(SDVariable differentialFunction, double i_v)
public SDVariable rdiv(SDVariable differentialFunction, double i_v)
public SDVariable rdivi(SDVariable differentialFunction, double i_v)
public SDVariable rsubi(SDVariable differentialFunction, double i_v)
public SDVariable add(SDVariable differentialFunction, double i_v)
public SDVariable addi(SDVariable differentialFunction, double i_v)
public SDVariable sub(SDVariable differentialFunction, double i_v)
public SDVariable subi(SDVariable differentialFunction, double i_v)
public SDVariable mul(SDVariable differentialFunction, double i_v)
public SDVariable muli(SDVariable differentialFunction, double i_v)
public SDVariable div(SDVariable differentialFunction, double i_v)
public SDVariable divi(SDVariable differentialFunction, double i_v)
public SDVariable gt(SDVariable functionInput, SDVariable functionInput1)
public SDVariable lt(SDVariable functionInput, SDVariable functionInput1)
public SDVariable gti(SDVariable functionInput, SDVariable functionInput1)
public SDVariable lti(SDVariable functionInput, SDVariable functionInput1)
public SDVariable gte(SDVariable functionInput, SDVariable functionInput1)
public SDVariable lte(SDVariable functionInput, SDVariable functionInput1)
public SDVariable gtei(SDVariable functionInput, SDVariable functionInput1)
public SDVariable ltOrEqi(SDVariable functionInput, SDVariable functionInput1)
public SDVariable gt(SDVariable functionInput, double functionInput1)
public SDVariable lt(SDVariable functionInput, double functionInput1)
public SDVariable gti(SDVariable functionInput, double functionInput1)
public SDVariable lti(SDVariable functionInput, double functionInput1)
public SDVariable gte(SDVariable functionInput, double functionInput1)
public SDVariable lte(SDVariable functionInput, double functionInput1)
public SDVariable gtei(SDVariable functionInput, double functionInput1)
public SDVariable ltei(SDVariable functionInput, double functionInput1)
public SDVariable eq(SDVariable iX, double i_y)
public SDVariable eqi(SDVariable iX, double i_y)
public SDVariable isNonDecreasing(SDVariable iX)
public SDVariable isStrictlyIncreasing(SDVariable iX)
public SDVariable isNumericTensor(SDVariable iX)
public SDVariable slice(SDVariable input, int[] begin, int[] size)
public SDVariable stridedSlice(SDVariable input, int[] begin, int[] end, int[] strides)
public SDVariable stridedSlice(SDVariable in, int[] begin, int[] end, int[] strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
public SDVariable scatterAdd(SDVariable ref, SDVariable indices, SDVariable updates)
public SDVariable scatterSub(SDVariable ref, SDVariable indices, SDVariable updates)
public SDVariable scatterMul(SDVariable ref, SDVariable indices, SDVariable updates)
public SDVariable scatterDiv(SDVariable ref, SDVariable indices, SDVariable updates)
public int getInputLength(SDVariable func)
func
- public int getReductionLength(DifferentialFunction func)
public void validateDifferentialFunctionsameDiff(SDVariable function)
public void validateDifferentialFunctionGraph(SDVariable function)
public SDVariable doGradChoose(SDVariable func, SDVariable input)
func
- input
- public SDVariable doRepeat(SDVariable func, SDVariable input)
func
- input
- Copyright © 2018. All rights reserved.