public abstract class BaseBroadcastOp extends BaseOp implements BroadcastOp
Modifier and Type | Field and Description |
---|---|
protected int[] |
dimension |
extraArgs, extraArgz, n, numProcessed, passThrough, x, xVertexId, y, yVertexId, z, zVertexId
dimensions, inPlace, sameDiff, scalarValue
Constructor and Description |
---|
BaseBroadcastOp(INDArray x,
INDArray y,
INDArray z,
int... dimension) |
BaseBroadcastOp(SameDiff sameDiff) |
BaseBroadcastOp(SameDiff sameDiff,
SDVariable i_v,
int[] dimension,
boolean inPlace) |
BaseBroadcastOp(SameDiff sameDiff,
SDVariable i_v,
int[] shape,
boolean inPlace,
int[] dimension,
Object[] extraArgs) |
BaseBroadcastOp(SameDiff sameDiff,
SDVariable i_v,
int[] dimension,
Object[] extraArgs) |
BaseBroadcastOp(SameDiff sameDiff,
SDVariable i_v1,
SDVariable i_v2,
boolean inPlace,
int[] dimension) |
BaseBroadcastOp(SameDiff sameDiff,
SDVariable i_v1,
SDVariable i_v2,
int[] dimension) |
BaseBroadcastOp(SameDiff sameDiff,
SDVariable i_v1,
SDVariable i_v2,
int[] dimension,
Object[] extraArgs) |
Modifier and Type | Method and Description |
---|---|
List<int[]> |
calculateOutputShape()
Calculate the output shape for this op
|
int[] |
getDimension()
Dimension to do the vector op along.
|
void |
initFromOnnx(OnnxProto3.NodeProto node,
SameDiff initWith,
Map<String,OnnxProto3.AttributeProto> attributesForNode,
OnnxProto3.GraphProto graph)
Iniitialize the function from the given
OnnxProto3.NodeProto |
void |
initFromTensorFlow(NodeDef nodeDef,
SameDiff initWith,
Map<String,AttrValue> attributesForNode,
GraphDef graph)
Initialize the function from the given
NodeDef |
Op.Type |
opType()
The type of the op
|
void |
setDimension(int... dimension)
Set the dimension for the vector op.
|
equals, exec, exec, extraArgs, extraArgsBuff, extraArgsDataBuff, getOpType, hashCode, init, isExecSpecial, isPassThrough, n, numProcessed, outputVariables, setN, setX, setY, setZ, toCustomOp, toString, x, y, z
arg, args, asProperties, attributeAdaptersForFunction, configFieldName, diff, doDiff, dup, f, getValue, hasPlaceHolderInputs, isConfigProperties, larg, mappingsForFunction, onnxName, onnxNames, opName, opNum, outputVariables, propertiesForFunction, rarg, resolvePropertiesFromSameDiffBeforeExecution, setInstanceId, setValueFor, tensorflowName, tensorflowNames
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
exec, exec, extraArgs, extraArgsBuff, extraArgsDataBuff, init, isExecSpecial, isPassThrough, n, numProcessed, opName, opNum, setExtraArgs, setN, setX, setY, setZ, toCustomOp, x, y, z
public BaseBroadcastOp(SameDiff sameDiff, SDVariable i_v1, SDVariable i_v2, int[] dimension)
public BaseBroadcastOp(SameDiff sameDiff, SDVariable i_v1, SDVariable i_v2, boolean inPlace, int[] dimension)
public BaseBroadcastOp(SameDiff sameDiff)
public BaseBroadcastOp(SameDiff sameDiff, SDVariable i_v1, SDVariable i_v2, int[] dimension, Object[] extraArgs)
public BaseBroadcastOp(SameDiff sameDiff, SDVariable i_v, int[] dimension, boolean inPlace)
public BaseBroadcastOp(SameDiff sameDiff, SDVariable i_v, int[] shape, boolean inPlace, int[] dimension, Object[] extraArgs)
public BaseBroadcastOp(SameDiff sameDiff, SDVariable i_v, int[] dimension, Object[] extraArgs)
public Op.Type opType()
DifferentialFunction
opType
in class DifferentialFunction
public List<int[]> calculateOutputShape()
calculateOutputShape
in class DifferentialFunction
public int[] getDimension()
BroadcastOp
getDimension
in interface BroadcastOp
public void setDimension(int... dimension)
BroadcastOp
setDimension
in interface BroadcastOp
public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String,AttrValue> attributesForNode, GraphDef graph)
DifferentialFunction
NodeDef
initFromTensorFlow
in class BaseOp
public void initFromOnnx(OnnxProto3.NodeProto node, SameDiff initWith, Map<String,OnnxProto3.AttributeProto> attributesForNode, OnnxProto3.GraphProto graph)
DifferentialFunction
OnnxProto3.NodeProto
initFromOnnx
in class BaseOp
Copyright © 2018. All rights reserved.