public class AMin extends BaseAccumulation
finalResult, isComplex, keepDims, newFormat
extraArgs, extraArgz, n, numProcessed, passThrough, x, xVertexId, y, yVertexId, z, zVertexId
dimensions, inPlace, sameDiff, scalarValue
Constructor and Description |
---|
AMin() |
AMin(INDArray x) |
AMin(INDArray x,
INDArray y) |
AMin(INDArray x,
INDArray y,
INDArray z,
long n) |
AMin(INDArray x,
INDArray y,
long n) |
AMin(SameDiff sameDiff,
SDVariable i_v,
int[] dimensions) |
AMin(SameDiff sameDiff,
SDVariable i_v,
SDVariable i_v2,
int[] dimensions) |
Modifier and Type | Method and Description |
---|---|
List<SDVariable> |
doDiff(List<SDVariable> f1)
The actual implementation for automatic differentiation.
|
Number |
getFinalResult()
Get the final result (may return null if getAndSetFinalResult has not
been called, or for accumulation ops on complex arrays)
|
Op.Type |
getOpType() |
String |
onnxName()
The opName of this function in onnx
|
String |
opName()
The name of the op
|
int |
opNum()
The number of the op (mainly for old legacy XYZ ops
like
Op ) |
Op.Type |
opType()
The type of the op
|
String |
tensorflowName()
The opName of this function tensorflow
|
double |
zeroDouble()
Initial value (used to initialize the accumulation op)
|
float |
zeroFloat()
Initial value (used to initialize the accumulation op)
|
float |
zeroHalf()
Initial value for half
|
calculateOutputShape, hasReductionIndices, initFromOnnx, initFromTensorFlow, isComplexAccumulation, isKeepDims, noOp, setFinalResult
equals, exec, exec, extraArgs, extraArgsBuff, extraArgsDataBuff, getOpType, hashCode, init, isExecSpecial, isPassThrough, n, numProcessed, outputVariables, setN, setX, setY, setZ, toCustomOp, toString, x, y, z
arg, args, asProperties, attributeAdaptersForFunction, configFieldName, diff, dup, f, getValue, hasPlaceHolderInputs, isConfigProperties, larg, mappingsForFunction, onnxNames, outputVariables, propertiesForFunction, rarg, resolvePropertiesFromSameDiffBeforeExecution, setInstanceId, setValueFor, tensorflowNames
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
exec, exec, extraArgs, extraArgsBuff, extraArgsDataBuff, init, isExecSpecial, isPassThrough, n, numProcessed, setExtraArgs, setN, setX, setY, setZ, toCustomOp, x, y, z
public AMin(SameDiff sameDiff, SDVariable i_v, int[] dimensions)
public AMin(SameDiff sameDiff, SDVariable i_v, SDVariable i_v2, int[] dimensions)
public AMin()
public AMin(INDArray x)
public int opNum()
DifferentialFunction
Op
)opNum
in interface Op
opNum
in class DifferentialFunction
public String opName()
DifferentialFunction
opName
in interface Op
opName
in class DifferentialFunction
public Number getFinalResult()
Accumulation
getFinalResult
in interface Accumulation
getFinalResult
in class BaseAccumulation
public double zeroDouble()
Accumulation
zeroDouble
in interface Accumulation
zeroDouble
in class BaseAccumulation
public float zeroFloat()
Accumulation
zeroFloat
in interface Accumulation
zeroFloat
in class BaseAccumulation
public float zeroHalf()
Accumulation
zeroHalf
in interface Accumulation
zeroHalf
in class BaseAccumulation
public List<SDVariable> doDiff(List<SDVariable> f1)
DifferentialFunction
doDiff
in class DifferentialFunction
public String onnxName()
DifferentialFunction
onnxName
in class DifferentialFunction
public String tensorflowName()
DifferentialFunction
tensorflowName
in class DifferentialFunction
public Op.Type opType()
DifferentialFunction
opType
in class BaseAccumulation
public Op.Type getOpType()
Copyright © 2018. All rights reserved.