public class Variance extends BaseAccumulation
Modifier and Type | Field and Description |
---|---|
protected double |
bias |
protected boolean |
biasCorrected |
protected double |
mean |
finalResult, isComplex, keepDims, newFormat
extraArgs, extraArgz, n, numProcessed, passThrough, x, xVertexId, y, yVertexId, z, zVertexId
dimensions, inPlace, sameDiff, scalarValue
Constructor and Description |
---|
Variance() |
Variance(boolean biasCorrected) |
Variance(INDArray x) |
Variance(INDArray x,
boolean biasCorrected) |
Variance(INDArray x,
INDArray y) |
Variance(INDArray x,
INDArray y,
boolean biasCorrected) |
Variance(INDArray x,
INDArray y,
INDArray z,
long n) |
Variance(INDArray x,
INDArray y,
INDArray z,
long n,
boolean biasCorrected) |
Variance(INDArray x,
INDArray y,
long n) |
Variance(INDArray x,
INDArray y,
long n,
boolean biasCorrected) |
Variance(SameDiff sameDiff,
SDVariable i_v,
int[] dimensions,
boolean biasCorrected) |
Variance(SameDiff sameDiff,
SDVariable i_v,
SDVariable i_v2,
int[] dimensions,
boolean biasCorrected) |
Modifier and Type | Method and Description |
---|---|
List<SDVariable> |
doDiff(List<SDVariable> i_v1)
The actual implementation for automatic differentiation.
|
Op.Type |
getOpType() |
void |
init(INDArray x,
INDArray y,
INDArray z,
long n)
Initialize the operation based on the parameters
|
boolean |
isBiasCorrected() |
boolean |
isPassThrough()
Returns whether the op should be executed or not (through the executioner)
|
INDArray |
noOp()
Returns the no op version
of the input
Basically when a reduce can't happen (eg: sum(0) on a row vector)
you have a no op state for a given reduction.
|
String |
onnxName()
The opName of this function in onnx
|
String |
opName()
The name of the op
|
int |
opNum()
The number of the op (mainly for old legacy XYZ ops
like
Op ) |
void |
setBiasCorrected(boolean biasCorrected) |
String |
tensorflowName()
The opName of this function tensorflow
|
calculateOutputShape, getFinalResult, hasReductionIndices, initFromOnnx, initFromTensorFlow, isComplexAccumulation, isKeepDims, opType, setFinalResult, zeroDouble, zeroFloat, zeroHalf
equals, exec, exec, extraArgs, extraArgsBuff, extraArgsDataBuff, getOpType, hashCode, isExecSpecial, n, numProcessed, outputVariables, setN, setX, setY, setZ, toCustomOp, toString, x, y, z
arg, args, asProperties, attributeAdaptersForFunction, configFieldName, diff, dup, f, getValue, hasPlaceHolderInputs, isConfigProperties, larg, mappingsForFunction, onnxNames, outputVariables, propertiesForFunction, rarg, resolvePropertiesFromSameDiffBeforeExecution, setInstanceId, setValueFor, tensorflowNames
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
exec, exec, extraArgs, extraArgsBuff, extraArgsDataBuff, isExecSpecial, n, numProcessed, setExtraArgs, setN, setX, setY, setZ, toCustomOp, x, y, z
protected double mean
protected double bias
protected boolean biasCorrected
public Variance(SameDiff sameDiff, SDVariable i_v, int[] dimensions, boolean biasCorrected)
public Variance(SameDiff sameDiff, SDVariable i_v, SDVariable i_v2, int[] dimensions, boolean biasCorrected)
public Variance()
public Variance(boolean biasCorrected)
public Variance(INDArray x)
public Variance(INDArray x, boolean biasCorrected)
public INDArray noOp()
Accumulation
noOp
in interface Accumulation
noOp
in class BaseAccumulation
public int opNum()
DifferentialFunction
Op
)opNum
in interface Op
opNum
in class DifferentialFunction
public String opName()
DifferentialFunction
opName
in interface Op
opName
in class DifferentialFunction
public void init(INDArray x, INDArray y, INDArray z, long n)
Op
public boolean isPassThrough()
Op
isPassThrough
in interface Op
isPassThrough
in class BaseOp
public boolean isBiasCorrected()
public void setBiasCorrected(boolean biasCorrected)
public List<SDVariable> doDiff(List<SDVariable> i_v1)
DifferentialFunction
doDiff
in class DifferentialFunction
public String onnxName()
DifferentialFunction
onnxName
in class DifferentialFunction
public String tensorflowName()
DifferentialFunction
tensorflowName
in class DifferentialFunction
public Op.Type getOpType()
Copyright © 2018. All rights reserved.