public class SparseBaseLevel3 extends SparseBaseLevel implements Level3
Constructor and Description |
---|
SparseBaseLevel3() |
Modifier and Type | Method and Description |
---|---|
void |
gemm(char Order,
char TransA,
char TransB,
double alpha,
INDArray A,
INDArray B,
double beta,
INDArray C)
gemm performs a matrix-matrix operation
c := alpha*op(a)*op(b) + beta*c,
where c is an m-by-n matrix,
op(a) is an m-by-k matrix,
op(b) is a k-by-n matrix.
|
void |
gemm(INDArray A,
INDArray B,
INDArray C,
boolean transposeA,
boolean transposeB,
double alpha,
double beta)
A convenience method for matrix-matrix operations with transposes.
|
void |
symm(char Order,
char Side,
char Uplo,
double alpha,
INDArray A,
INDArray B,
double beta,
INDArray C)
her2k performs a rank-2k update of an n-by-n Hermitian matrix c, that is, one of the following operations:
c := alpha*a*conjg(b') + conjg(alpha)*b*conjg(a') + beta*c, for trans = 'N'or'n'
c := alpha*conjg(b')*a + conjg(alpha)*conjg(a')*b + beta*c, for trans = 'C'or'c'
where c is an n-by-n Hermitian matrix;
a and b are n-by-k matrices if trans = 'N'or'n',
a and b are k-by-n matrices if trans = 'C'or'c'.
|
void |
syr2k(char Order,
char Uplo,
char Trans,
double alpha,
INDArray A,
INDArray B,
double beta,
INDArray C)
yr2k performs a rank-2k update of an n-by-n symmetric matrix c, that is, one of the following operations:
c := alpha*a*b' + alpha*b*a' + beta*c for trans = 'N'or'n'
c := alpha*a'*b + alpha*b'*a + beta*c for trans = 'T'or't',
where c is an n-by-n symmetric matrix;
a and b are n-by-k matrices, if trans = 'N'or'n',
a and b are k-by-n matrices, if trans = 'T'or't'.
|
void |
syrk(char Order,
char Uplo,
char Trans,
double alpha,
INDArray A,
double beta,
INDArray C)
syrk performs a rank-n update of an n-by-n symmetric matrix c, that is, one of the following operations:
c := alpha*a*a' + beta*c for trans = 'N'or'n'
c := alpha*a'*a + beta*c for trans = 'T'or't','C'or'c',
where c is an n-by-n symmetric matrix;
a is an n-by-k matrix, if trans = 'N'or'n',
a is a k-by-n matrix, if trans = 'T'or't','C'or'c'.
|
void |
trmm(char Order,
char Side,
char Uplo,
char TransA,
char Diag,
double alpha,
INDArray A,
INDArray B,
INDArray C)
syr2k performs a rank-2k update of an n-by-n symmetric matrix c, that is, one of the following operations:
c := alpha*a*b' + alpha*b*a' + beta*c for trans = 'N'or'n'
c := alpha*a'*b + alpha*b'*a + beta*c for trans = 'T'or't',
where c is an n-by-n symmetric matrix;
a and b are n-by-k matrices, if trans = 'N'or'n',
a and b are k-by-n matrices, if trans = 'T'or't'.
|
void |
trsm(char Order,
char Side,
char Uplo,
char TransA,
char Diag,
double alpha,
INDArray A,
INDArray B)
?trsm solves one of the following matrix equations:
op(a)*x = alpha*b or x*op(a) = alpha*b,
where x and b are m-by-n general matrices, and a is triangular;
op(a) must be an m-by-m matrix, if side = 'L'or'l'
op(a) must be an n-by-n matrix, if side = 'R'or'r'.
|
public void gemm(char Order, char TransA, char TransB, double alpha, INDArray A, INDArray B, double beta, INDArray C)
Level3
public void gemm(INDArray A, INDArray B, INDArray C, boolean transposeA, boolean transposeB, double alpha, double beta)
Level3
public void symm(char Order, char Side, char Uplo, double alpha, INDArray A, INDArray B, double beta, INDArray C)
Level3
public void syrk(char Order, char Uplo, char Trans, double alpha, INDArray A, double beta, INDArray C)
Level3
public void syr2k(char Order, char Uplo, char Trans, double alpha, INDArray A, INDArray B, double beta, INDArray C)
Level3
public void trmm(char Order, char Side, char Uplo, char TransA, char Diag, double alpha, INDArray A, INDArray B, INDArray C)
Level3
public void trsm(char Order, char Side, char Uplo, char TransA, char Diag, double alpha, INDArray A, INDArray B)
Level3
Copyright © 2018. All rights reserved.