public class SDMath extends SDOps
SameDiff.math()
Modifier and Type | Method and Description |
---|---|
SDVariable |
abs(SDVariable x)
Elementwise absolute value operation: out = abs(x)
|
SDVariable |
abs(String name,
SDVariable x)
Elementwise absolute value operation: out = abs(x)
|
SDVariable |
acos(SDVariable x)
Elementwise acos (arccosine, inverse cosine) operation: out = arccos(x)
|
SDVariable |
acos(String name,
SDVariable x)
Elementwise acos (arccosine, inverse cosine) operation: out = arccos(x)
|
SDVariable |
acosh(SDVariable x)
Elementwise acosh (inverse hyperbolic cosine) function: out = acosh(x)
|
SDVariable |
acosh(String name,
SDVariable x)
Elementwise acosh (inverse hyperbolic cosine) function: out = acosh(x)
|
SDVariable |
amax(SDVariable in,
int... dimensions)
Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))
|
SDVariable |
amax(String name,
SDVariable in,
int... dimensions)
Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))
|
SDVariable |
amean(SDVariable in,
int... dimensions)
Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))
|
SDVariable |
amean(String name,
SDVariable in,
int... dimensions)
Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))
|
SDVariable |
amin(SDVariable in,
int... dimensions)
Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))
|
SDVariable |
amin(String name,
SDVariable in,
int... dimensions)
Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))
|
SDVariable |
and(SDVariable x,
SDVariable y)
Boolean AND operation: elementwise (x != 0) && (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs. Note: supports broadcasting if x and y have different shapes and are broadcastable. Returns an array with values 1 where condition is satisfied, or value 0 otherwise. |
SDVariable |
and(String name,
SDVariable x,
SDVariable y)
Boolean AND operation: elementwise (x != 0) && (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs. Note: supports broadcasting if x and y have different shapes and are broadcastable. Returns an array with values 1 where condition is satisfied, or value 0 otherwise. |
SDVariable |
asin(SDVariable x)
Elementwise asin (arcsin, inverse sine) operation: out = arcsin(x)
|
SDVariable |
asin(String name,
SDVariable x)
Elementwise asin (arcsin, inverse sine) operation: out = arcsin(x)
|
SDVariable |
asinh(SDVariable x)
Elementwise asinh (inverse hyperbolic sine) function: out = asinh(x)
|
SDVariable |
asinh(String name,
SDVariable x)
Elementwise asinh (inverse hyperbolic sine) function: out = asinh(x)
|
SDVariable |
asum(SDVariable in,
int... dimensions)
Absolute sum array reduction operation, optionally along specified dimensions: out = sum(abs(x))
|
SDVariable |
asum(String name,
SDVariable in,
int... dimensions)
Absolute sum array reduction operation, optionally along specified dimensions: out = sum(abs(x))
|
SDVariable |
atan(SDVariable x)
Elementwise atan (arctangent, inverse tangent) operation: out = arctangent(x)
|
SDVariable |
atan(String name,
SDVariable x)
Elementwise atan (arctangent, inverse tangent) operation: out = arctangent(x)
|
SDVariable |
atan2(SDVariable y,
SDVariable x)
Elementwise atan (arctangent, inverse tangent) operation: out = atan2(x,y).
|
SDVariable |
atan2(String name,
SDVariable y,
SDVariable x)
Elementwise atan (arctangent, inverse tangent) operation: out = atan2(x,y).
|
SDVariable |
atanh(SDVariable x)
Elementwise atanh (inverse hyperbolic tangent) function: out = atanh(x)
|
SDVariable |
atanh(String name,
SDVariable x)
Elementwise atanh (inverse hyperbolic tangent) function: out = atanh(x)
|
SDVariable |
bitRotl(String name,
SDVariable x,
SDVariable shift)
Roll integer bits to the left, i.e.
|
SDVariable |
bitRotr(String name,
SDVariable x,
SDVariable shift)
Roll integer bits to the right, i.e.
|
SDVariable |
bitShift(String name,
SDVariable x,
SDVariable shift)
Shift integer bits to the left, i.e.
|
SDVariable |
bitShiftRight(String name,
SDVariable x,
SDVariable shift)
Shift integer bits to the right, i.e.
|
SDVariable |
ceil(SDVariable x)
Element-wise ceiling function: out = ceil(x).
|
SDVariable |
ceil(String name,
SDVariable x)
Element-wise ceiling function: out = ceil(x).
|
SDVariable |
clipByNorm(SDVariable x,
double clipValue)
Clipping by L2 norm
if l2Norm(x) < clipValue, then input is returned unmodifed Otherwise, out[i] = in[i] * clipValue / l2Norm(in) |
SDVariable |
clipByNorm(SDVariable x,
double clipValue,
int... dimensions)
Clipping by L2 norm, optionally along dimension(s)
if l2Norm(x,dimension) < clipValue, then input is returned unmodifed Otherwise, out[i] = in[i] * clipValue / l2Norm(in, dimensions) where each value is clipped according to the corresponding l2Norm along the specified dimensions |
SDVariable |
clipByNorm(String name,
SDVariable x,
double clipValue)
Clipping by L2 norm
if l2Norm(x) < clipValue, then input is returned unmodifed Otherwise, out[i] = in[i] * clipValue / l2Norm(in) |
SDVariable |
clipByNorm(String name,
SDVariable x,
double clipValue,
int... dimensions)
Clipping by L2 norm, optionally along dimension(s)
if l2Norm(x,dimension) < clipValue, then input is returned unmodifed Otherwise, out[i] = in[i] * clipValue / l2Norm(in, dimensions) where each value is clipped according to the corresponding l2Norm along the specified dimensions |
SDVariable |
clipByValue(SDVariable x,
double clipValueMin,
double clipValueMax)
Element-wise clipping function:
out[i] = in[i] if in[i] >= clipValueMin and in[i] <= clipValueMax out[i] = clipValueMin if in[i] < clipValueMin out[i] = clipValueMax if in[i] > clipValueMax |
SDVariable |
clipByValue(String name,
SDVariable x,
double clipValueMin,
double clipValueMax)
Element-wise clipping function:
out[i] = in[i] if in[i] >= clipValueMin and in[i] <= clipValueMax out[i] = clipValueMin if in[i] < clipValueMin out[i] = clipValueMax if in[i] > clipValueMax |
SDVariable |
confusionMatrix(SDVariable labels,
SDVariable predictions) |
SDVariable |
confusionMatrix(SDVariable labels,
SDVariable pred,
Integer numClasses) |
SDVariable |
confusionMatrix(SDVariable labels,
SDVariable pred,
Integer numClasses,
SDVariable weights) |
SDVariable |
confusionMatrix(SDVariable labels,
SDVariable pred,
SDVariable weights) |
SDVariable |
confusionMatrix(String name,
SDVariable labels,
SDVariable pred) |
SDVariable |
confusionMatrix(String name,
SDVariable labels,
SDVariable pred,
DataType dataType)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.
|
SDVariable |
confusionMatrix(String name,
SDVariable labels,
SDVariable pred,
Integer numClasses)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.
For example, if labels = [0, 1, 1], predicted = [0, 2, 1], and numClasses=4 then output is: [1, 0, 0, 0] [0, 1, 1, 0] [0, 0, 0, 0] [0, 0, 0, 0] |
SDVariable |
confusionMatrix(String name,
SDVariable labels,
SDVariable pred,
Integer numClasses,
SDVariable weights)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.
For example, if labels = [0, 1, 1], predicted = [0, 2, 1], numClasses = 4, and weights = [1, 2, 3] [1, 0, 0, 0] [0, 3, 2, 0] [0, 0, 0, 0] [0, 0, 0, 0] |
SDVariable |
confusionMatrix(String name,
SDVariable labels,
SDVariable pred,
SDVariable weights)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.
|
SDVariable |
cos(SDVariable x)
Elementwise cosine operation: out = cos(x)
|
SDVariable |
cos(String name,
SDVariable x)
Elementwise cosine operation: out = cos(x)
|
SDVariable |
cosh(SDVariable x)
Elementwise cosh (hyperbolic cosine) operation: out = cosh(x)
|
SDVariable |
cosh(String name,
SDVariable x)
Elementwise cosh (hyperbolic cosine) operation: out = cosh(x)
|
SDVariable |
cosineDistance(SDVariable x,
SDVariable y,
int... dimensions) |
SDVariable |
cosineDistance(String name,
SDVariable x,
SDVariable y,
int... dimensions)
Cosine distance reduction operation.
|
SDVariable |
cosineSimilarity(SDVariable x,
SDVariable y,
int... dimensions) |
SDVariable |
cosineSimilarity(String name,
SDVariable x,
SDVariable y,
int... dimensions)
Cosine similarity pairwise reduction operation.
|
SDVariable |
countNonZero(SDVariable input,
int... dimensions)
Count non zero array reduction operation, optionally along specified dimensions: out = count(x != 0)
|
SDVariable |
countNonZero(String name,
SDVariable input,
int... dimensions)
Count non zero array reduction operation, optionally along specified dimensions: out = count(x != 0)
|
SDVariable |
countZero(SDVariable input,
int... dimensions)
Count zero array reduction operation, optionally along specified dimensions: out = count(x == 0)
|
SDVariable |
countZero(String name,
SDVariable input,
int... dimensions)
Count zero array reduction operation, optionally along specified dimensions: out = count(x == 0)
|
SDVariable |
cross(SDVariable a,
SDVariable b) |
SDVariable |
cross(String name,
SDVariable a,
SDVariable b)
Returns the pair-wise cross product of equal size arrays a and b: a x b = ||a||x||b|| sin(theta).
|
SDVariable |
cube(SDVariable x)
Element-wise cube function: out = x^3
|
SDVariable |
cube(String name,
SDVariable x)
Element-wise cube function: out = x^3
|
SDVariable |
diag(SDVariable x) |
SDVariable |
diag(String name,
SDVariable x)
Returns an output variable with diagonal values equal to the specified values; off-diagonal values will be set to 0
For example, if input = [1,2,3], then output is given by: [ 1, 0, 0] [ 0, 2, 0] [ 0, 0, 3] Higher input ranks are also supported: if input has shape [a,...,R-1] then output[i,...,k,i,...,k] = input[i,...,k]. |
SDVariable |
diagPart(SDVariable x) |
SDVariable |
diagPart(String name,
SDVariable x)
Extract the diagonal part from the input array.
If input is [ 1, 0, 0] [ 0, 2, 0] [ 0, 0, 3] then output is [1, 2, 3]. Supports higher dimensions: in general, out[i,...,k] = in[i,...,k,i,...,k] |
SDVariable |
entropy(SDVariable in,
int... dimensions)
Entropy reduction: -sum(x * log(x))
|
SDVariable |
entropy(String name,
SDVariable in,
int... dimensions)
Entropy reduction: -sum(x * log(x))
|
SDVariable |
erf(SDVariable x)
Element-wise Gaussian error function - out = erf(in)
|
SDVariable |
erf(String name,
SDVariable x)
Element-wise Gaussian error function - out = erf(in)
|
SDVariable |
erfc(SDVariable x)
Element-wise complementary Gaussian error function - out = erfc(in) = 1 - erf(in)
|
SDVariable |
erfc(String name,
SDVariable x)
Element-wise complementary Gaussian error function - out = erfc(in) = 1 - erf(in)
|
SDVariable |
euclideanDistance(SDVariable x,
SDVariable y,
int... dimensions) |
SDVariable |
euclideanDistance(String name,
SDVariable x,
SDVariable y,
int... dimensions)
Euclidean distance (l2 norm, l2 distance) reduction operation.
|
SDVariable |
exp(SDVariable x)
Elementwise exponent function: out = exp(x) = 2.71828...^x
|
SDVariable |
exp(String name,
SDVariable x)
Elementwise exponent function: out = exp(x) = 2.71828...^x
|
SDVariable |
expm1(SDVariable x)
Elementwise 1.0 - exponent function: out = 1.0 - exp(x) = 1.0 - 2.71828...^x
|
SDVariable |
expm1(String name,
SDVariable x)
Elementwise 1.0 - exponent function: out = 1.0 - exp(x) = 1.0 - 2.71828...^x
|
SDVariable |
eye(int rows)
Generate a square identity matrix with the specified number of rows.
|
SDVariable |
eye(int rows,
int cols) |
SDVariable |
eye(int rows,
int cols,
DataType dataType,
int... batchDimension)
|
SDVariable |
eye(SDVariable rows)
As per
eye(int) but with the number of rows specified as a scalar SDVariable |
SDVariable |
eye(SDVariable rows,
SDVariable cols)
As per
eye(int, int) bit with the number of rows/columns specified as scalar SDVariables |
SDVariable |
eye(SDVariable rows,
SDVariable cols,
SDVariable batchDimension)
As per
eye(int, int, DataType, int...) bit with the number of rows/columns specified as scalar SDVariables,
and the batch dimension specified as a 1D SDVariable |
SDVariable |
eye(String name,
int rows)
Generate an identity matrix with the specified number of rows and columns.
|
SDVariable |
eye(String name,
int rows,
int cols)
As per
eye(String, int, int, DataType) but with the default datatype, Eye.DEFAULT_DTYPE |
SDVariable |
eye(String name,
int rows,
int cols,
DataType dataType)
Generate an identity matrix with the specified number of rows and columns
Example:
|
SDVariable |
eye(String name,
int rows,
int cols,
DataType dataType,
int... batchDimension)
Generate an identity matrix with the specified number of rows and columns, with optional leading dims
Example: batchShape: [3,3] numRows: 2 numCols: 4 returns a tensor of shape (3, 3, 2, 4) that consists of 3 * 3 batches of (2,4)-shaped identity matrices: 1 0 0 0 0 1 0 0 |
SDVariable |
eye(String name,
SDVariable rows)
As per
eye(String, int) but with the number of rows specified as a scalar SDVariable |
SDVariable |
eye(String name,
SDVariable rows,
SDVariable cols)
As per
eye(String, int, int) bit with the number of rows/columns specified as scalar SDVariables |
SDVariable |
eye(String name,
SDVariable rows,
SDVariable cols,
SDVariable batchDimension)
As per
#eye(String, int, int, int...) bit with the number of rows/columns specified as scalar SDVariables,
and the batch dimension specified as a 1D SDVariable |
SDVariable |
firstIndex(SDVariable in,
Condition condition,
boolean keepDims,
int... dimensions) |
SDVariable |
firstIndex(SDVariable in,
Condition condition,
int... dimensions) |
SDVariable |
firstIndex(String name,
SDVariable in,
Condition condition,
boolean keepDims,
int... dimensions)
First index reduction operation.
Returns a variable that contains the index of the first element that matches the specified condition (for each slice along the specified dimensions) Note that if keepDims = true, the output variable has the same rank as the input variable, with the reduced dimensions having size 1. |
SDVariable |
firstIndex(String name,
SDVariable in,
Condition condition,
int... dimensions)
First index reduction operation.
Returns a variable that contains the index of the first element that matches the specified condition (for each slice along the specified dimensions) |
SDVariable |
floor(SDVariable x)
Element-wise floor function: out = floor(x).
|
SDVariable |
floor(String name,
SDVariable x)
Element-wise floor function: out = floor(x).
|
SDVariable |
hammingDistance(SDVariable x,
SDVariable y,
int... dimensions) |
SDVariable |
hammingDistance(String name,
SDVariable x,
SDVariable y,
int... dimensions)
Hamming distance reduction operation.
|
SDVariable |
iamax(SDVariable in,
boolean keepDims,
int... dimensions)
Index of the max absolute value: argmax(abs(in))
|
SDVariable |
iamax(SDVariable in,
int... dimensions)
Index of the max absolute value: argmax(abs(in))
|
SDVariable |
iamax(String name,
SDVariable in,
boolean keepDims,
int... dimensions)
Index of the max absolute value: argmax(abs(in))
|
SDVariable |
iamax(String name,
SDVariable in,
int... dimensions)
Index of the max absolute value: argmax(abs(in))
|
SDVariable |
iamin(SDVariable in,
boolean keepDims,
int... dimensions)
Index of the min absolute value: argmin(abs(in))
|
SDVariable |
iamin(SDVariable in,
int... dimensions)
Index of the min absolute value: argmin(abs(in))
|
SDVariable |
iamin(String name,
SDVariable in,
boolean keepDims,
int... dimensions)
Index of the min absolute value: argmin(abs(in))
|
SDVariable |
iamin(String name,
SDVariable in,
int... dimensions)
Index of the min absolute value: argmin(abs(in))
|
SDVariable |
isFinite(SDVariable x)
Is finite operation: elementwise isFinite(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or value 0 otherwise |
SDVariable |
isFinite(String name,
SDVariable x)
Is finite operation: elementwise isFinite(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or value 0 otherwise |
SDVariable |
isInfinite(SDVariable x)
Is infinite operation: elementwise isInfinite(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or value 0 otherwise |
SDVariable |
isInfinite(String name,
SDVariable x)
Is infinite operation: elementwise isInfinite(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or value 0 otherwise |
SDVariable |
isMax(SDVariable x)
Is maximum operation: elementwise x == max(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or value 0 otherwise |
SDVariable |
isMax(String name,
SDVariable x)
Is maximum operation: elementwise x == max(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or value 0 otherwise |
SDVariable |
isNaN(SDVariable x)
Is Not a Number operation: elementwise isNaN(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or value 0 otherwise |
SDVariable |
isNaN(String name,
SDVariable x)
Is Not a Number operation: elementwise isNaN(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or value 0 otherwise |
SDVariable |
isNonDecreasing(SDVariable x)
Is the array non decreasing?
An array is non-decreasing if for every valid i, x[i] <= x[i+1]. |
SDVariable |
isNonDecreasing(String name,
SDVariable x)
Is the array non decreasing?
An array is non-decreasing if for every valid i, x[i] <= x[i+1]. |
SDVariable |
isStrictlyIncreasing(SDVariable x)
Is the array strictly increasing?
An array is strictly increasing if for every valid i, x[i] < x[i+1]. |
SDVariable |
isStrictlyIncreasing(String name,
SDVariable x)
Is the array strictly increasing?
An array is strictly increasing if for every valid i, x[i] < x[i+1]. |
SDVariable |
jaccardDistance(SDVariable x,
SDVariable y,
int... dimensions)
Jaccard similarity reduction operation.
|
SDVariable |
jaccardDistance(String name,
SDVariable x,
SDVariable y,
int... dimensions)
Jaccard similarity reduction operation.
|
SDVariable |
lastIndex(SDVariable in,
Condition condition,
boolean keepDims,
int... dimensions) |
SDVariable |
lastIndex(SDVariable in,
Condition condition,
int... dimensions) |
SDVariable |
lastIndex(String name,
SDVariable in,
Condition condition,
boolean keepDims,
int... dimensions)
Last index reduction operation.
Returns a variable that contains the index of the last element that matches the specified condition (for each slice along the specified dimensions) Note that if keepDims = true, the output variable has the same rank as the input variable, with the reduced dimensions having size 1. |
SDVariable |
lastIndex(String name,
SDVariable in,
Condition condition,
int... dimensions)
Last index reduction operation.
Returns a variable that contains the index of the last element that matches the specified condition (for each slice along the specified dimensions) |
SDVariable[] |
listDiff(SDVariable x,
SDVariable y)
List diff operation computes the difference between two 1d arrays, and also returns the indices - i.e., the positions
where the output appears in the input X.
For inputs X and Y, listDiff returns everything in X but not in Y. For example, if X=[1,10,3,7,6] and Y=[10, 6]), then:
output 0 (difference) = {@code [1,3,7]}output 1 (indices) = {@code [0, 2, 3]} |
SDVariable |
log(SDVariable x)
Element-wise logarithm function (base e - natural logarithm): out = log(x)
|
SDVariable |
log(SDVariable in,
double base)
Element-wise logarithm function (with specified base): out = log_{base}(x)
|
SDVariable |
log(String name,
SDVariable x)
Element-wise logarithm function (base e - natural logarithm): out = log(x)
|
SDVariable |
log(String name,
SDVariable in,
double base)
Element-wise logarithm function (with specified base): out = log_{base}(x)
|
SDVariable |
log1p(SDVariable x)
Elementwise natural logarithm function: out = log_e (1 + x)
|
SDVariable |
log1p(String name,
SDVariable x)
Elementwise natural logarithm function: out = log_e (1 + x)
|
SDVariable |
logEntropy(SDVariable in,
int... dimensions)
Log entropy reduction: log(-sum(x * log(x)))
|
SDVariable |
logEntropy(String name,
SDVariable in,
int... dimensions)
Log entropy reduction: log(-sum(x * log(x)))
|
SDVariable |
logSumExp(SDVariable input,
int... dimensions)
Log-sum-exp reduction (optionally along dimension).
|
SDVariable |
logSumExp(String name,
SDVariable input,
boolean keepDims,
int... dimensions) |
SDVariable |
logSumExp(String name,
SDVariable input,
int... dimensions)
Log-sum-exp reduction (optionally along dimension).
|
SDVariable |
manhattanDistance(SDVariable x,
SDVariable y,
int... dimensions) |
SDVariable |
manhattanDistance(String name,
SDVariable x,
SDVariable y,
int... dimensions)
Manhattan distance (l1 norm, l1 distance) reduction operation.
|
SDVariable |
matrixDeterminant(SDVariable in) |
SDVariable |
matrixDeterminant(String name,
SDVariable in)
Matrix determinant op.
|
SDVariable |
matrixInverse(SDVariable in) |
SDVariable |
matrixInverse(String name,
SDVariable in)
Matrix inverse op.
|
SDVariable |
mergeAdd(SDVariable... x)
Merge add function: merges an arbitrary number of equal shaped arrays using elementwise addition:
out = sum_i in[i]
|
SDVariable |
mergeAdd(String name,
SDVariable... inputs)
Merge add function: merges an arbitrary number of equal shaped arrays using element-wise addition:
out = sum_i in[i]
|
SDVariable |
mergeAvg(SDVariable... inputs)
Merge average function: merges an arbitrary number of equal shaped arrays using element-wise mean operation:
out = mean_i in[i]
|
SDVariable |
mergeAvg(String name,
SDVariable... inputs)
Merge average function: merges an arbitrary number of equal shaped arrays using element-wise mean operation:
out = mean_i in[i]
|
SDVariable |
mergeMax(SDVariable... x)
Merge max function: merges an arbitrary number of equal shaped arrays using element-wise maximum operation:
out = max_i in[i]
|
SDVariable |
mergeMax(String name,
SDVariable... inputs)
Merge max function: merges an arbitrary number of equal shaped arrays using element-wise maximum operation:
out = max_i in[i]
|
SDVariable[] |
meshgrid(List<String> names,
boolean cartesian,
SDVariable... inputs) |
SDVariable[] |
meshgrid(List<String> names,
SDVariable... inputs)
Broadcast the 1D input variables onto an n-dimensional grid.
The resulting variable can be used for example for evaluating functions at all locations on a grid. Example: |
SDVariable[] |
meshgrid(SDVariable... inputs) |
SDVariable[] |
moments(SDVariable input,
int... axes) |
SDVariable[] |
moments(String[] name,
SDVariable input,
int... axes)
Calculate the mean and (population) variance for the input variable, for the specified axis
|
SDVariable |
neg(SDVariable x)
Elementwise negative operation: out = -x
|
SDVariable |
neg(String name,
SDVariable x)
Elementwise negative operation: out = -x
|
SDVariable[] |
normalizeMoments(SDVariable counts,
SDVariable means,
SDVariable variances,
double shift) |
SDVariable[] |
normalizeMoments(String[] name,
SDVariable counts,
SDVariable means,
SDVariable variances,
double shift)
Calculate the mean and variance from the sufficient statistics
|
SDVariable |
or(SDVariable x,
SDVariable y)
Boolean OR operation: elementwise (x != 0) || (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs. Note: supports broadcasting if x and y have different shapes and are broadcastable. Returns an array with values 1 where condition is satisfied, or value 0 otherwise. |
SDVariable |
or(String name,
SDVariable x,
SDVariable y)
Boolean OR operation: elementwise (x != 0) || (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs. Note: supports broadcasting if x and y have different shapes and are broadcastable. Returns an array with values 1 where condition is satisfied, or value 0 otherwise. |
SDVariable |
pow(SDVariable x,
double value)
Element-wise power function: out = x^value
|
SDVariable |
pow(SDVariable x,
SDVariable y)
Element-wise (broadcastable) power function: out = x[i]^y[i]
|
SDVariable |
pow(String name,
SDVariable x,
double value)
Element-wise power function: out = x^value
|
SDVariable |
pow(String name,
SDVariable x,
SDVariable y)
Element-wise (broadcastable) power function: out = x[i]^y[i]
|
SDVariable |
reciprocal(SDVariable a)
Element-wise reciprocal (inverse) function: out[i] = 1 / in[i]
|
SDVariable |
reciprocal(String name,
SDVariable a)
Element-wise reciprocal (inverse) function: out[i] = 1 / in[i]
|
SDVariable |
round(SDVariable x)
Elementwise round function: out = round(x).
|
SDVariable |
round(String name,
SDVariable x)
Element-wise round function: out = round(x).
|
SDVariable |
rsqrt(SDVariable x)
Element-wise reciprocal (inverse) of square root: out = 1.0 / sqrt(x)
|
SDVariable |
rsqrt(String name,
SDVariable x)
Element-wise reciprocal (inverse) of square root: out = 1.0 / sqrt(x)
|
SDVariable |
setDiag(SDVariable in,
SDVariable diag) |
SDVariable |
setDiag(String name,
SDVariable in,
SDVariable diag)
Set the diagonal value to the specified values
If input is [ a, b, c] [ d, e, f] [ g, h, i] and diag = [ 1, 2, 3] then output is [ 1, b, c] [ d, 2, f] [ g, h, 3] |
SDVariable |
shannonEntropy(SDVariable in,
int... dimensions)
Shannon Entropy reduction: -sum(x * log2(x))
|
SDVariable |
shannonEntropy(String name,
SDVariable in,
int... dimensions)
Shannon Entropy reduction: -sum(x * log2(x))
|
SDVariable |
sign(SDVariable x)
Element-wise sign (signum) function:
out = -1 if in < 0 out = 0 if in = 0 out = 1 if in > 0 |
SDVariable |
sign(String name,
SDVariable x)
Element-wise sign (signum) function:
out = -1 if in < 0 out = 0 if in = 0 out = 1 if in > 0 |
SDVariable |
sin(SDVariable x)
Elementwise sine operation: out = sin(x)
|
SDVariable |
sin(String name,
SDVariable x)
Elementwise sine operation: out = sin(x)
|
SDVariable |
sinh(SDVariable x)
Elementwise sinh (hyperbolic sine) operation: out = sinh(x)
|
SDVariable |
sinh(String name,
SDVariable x)
Elementwise sinh (hyperbolic sine) operation: out = sinh(x)
|
SDVariable |
sqrt(SDVariable x)
Element-wise square root function: out = sqrt(x)
|
SDVariable |
sqrt(String name,
SDVariable x)
Element-wise square root function: out = sqrt(x)
|
SDVariable |
square(SDVariable x)
Element-wise square function: out = x^2
|
SDVariable |
square(String name,
SDVariable x)
Element-wise square function: out = x^2
|
SDVariable |
standardize(SDVariable x,
int... dimensions)
Standardize input variable along given axis
|
SDVariable |
standardize(String name,
SDVariable x,
int... dimensions)
Standardize input variable along given axis
|
SDVariable |
step(SDVariable in,
double cutoff)
Elementwise step function:
out(x) = 1 if x >= cutoff out(x) = 0 otherwise |
SDVariable |
step(String name,
SDVariable in,
double cutoff)
Elementwise step function:
out(x) = 1 if x >= cutoff out(x) = 0 otherwise |
SDVariable |
tan(SDVariable x)
Elementwise tangent operation: out = tan(x)
|
SDVariable |
tan(String name,
SDVariable x)
Elementwise tangent operation: out = tan(x)
|
SDVariable |
tanh(SDVariable x)
Elementwise tanh (hyperbolic tangent) operation: out = tanh(x)
|
SDVariable |
tanh(String name,
SDVariable x)
Elementwise tanh (hyperbolic tangent) operation: out = tanh(x)
|
SDVariable |
trace(SDVariable in) |
SDVariable |
trace(String name,
SDVariable in)
Matrix trace operation
For rank 2 matrices, the output is a scalar vith the trace - i.e., sum of the main diagonal.
For higher rank inputs, output[a,b,c] = trace(in[a,b,c,:,:]) |
SDVariable |
xor(SDVariable x,
SDVariable y)
Boolean XOR (exclusive OR) operation: elementwise (x != 0) XOR (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs. Note: supports broadcasting if x and y have different shapes and are broadcastable. Returns an array with values 1 where condition is satisfied, or value 0 otherwise. |
SDVariable |
xor(String name,
SDVariable x,
SDVariable y)
Boolean XOR (exclusive OR) operation: elementwise (x != 0) XOR (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs. Note: supports broadcasting if x and y have different shapes and are broadcastable. Returns an array with values 1 where condition is satisfied, or value 0 otherwise. |
SDVariable |
zeroFraction(SDVariable input)
Full array zero fraction array reduction operation, optionally along specified dimensions: out = (count(x == 0) / length(x))
|
SDVariable |
zeroFraction(String name,
SDVariable input)
Full array zero fraction array reduction operation, optionally along specified dimensions: out = (count(x == 0) / length(x))
|
f, updateVariableNameAndReference
public SDMath(SameDiff sameDiff)
public SDVariable abs(SDVariable x)
x
- Input variablepublic SDVariable abs(String name, SDVariable x)
name
- Name of the output variablex
- Input variablepublic SDVariable acos(SDVariable x)
x
- Input variablepublic SDVariable acos(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable acosh(SDVariable x)
x
- Input variablepublic SDVariable acosh(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable amax(SDVariable in, int... dimensions)
in
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable amax(String name, SDVariable in, int... dimensions)
name
- Name of the output variablein
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable amean(SDVariable in, int... dimensions)
in
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable amean(String name, SDVariable in, int... dimensions)
name
- Name of the output variablein
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable amin(SDVariable in, int... dimensions)
in
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable amin(String name, SDVariable in, int... dimensions)
name
- Name of the output variablein
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable and(SDVariable x, SDVariable y)
x
- Input 1y
- Input 2public SDVariable and(String name, SDVariable x, SDVariable y)
name
- Name of the output variablex
- Input 1y
- Input 2public SDVariable asin(SDVariable x)
x
- Input variablepublic SDVariable asin(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable asinh(SDVariable x)
x
- Input variablepublic SDVariable asinh(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable asum(SDVariable in, int... dimensions)
in
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable asum(String name, SDVariable in, int... dimensions)
name
- Name of the output variablein
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable atan(SDVariable x)
x
- Input variablepublic SDVariable atan(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable atan2(SDVariable y, SDVariable x)
y
- Input Y variablex
- Input X variablepublic SDVariable atan2(String name, SDVariable y, SDVariable x)
name
- Name of the output variabley
- Input Y variablex
- Input X variablepublic SDVariable atanh(SDVariable x)
x
- Input variablepublic SDVariable atanh(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable ceil(SDVariable x)
x
- Input variablepublic SDVariable ceil(String name, SDVariable x)
name
- Name of the output variablex
- Input variablepublic SDVariable clipByNorm(SDVariable x, double clipValue)
x
- Input variableclipValue
- Clipping value (maximum l2 norm)public SDVariable clipByNorm(String name, SDVariable x, double clipValue)
name
- Name of the output variablex
- Input variableclipValue
- Clipping value (maximum l2 norm)public SDVariable clipByNorm(SDVariable x, double clipValue, int... dimensions)
x
- Input variableclipValue
- Clipping value (maximum l2 norm)dimensions
- If not specified, all dimensions are usedpublic SDVariable clipByNorm(String name, SDVariable x, double clipValue, int... dimensions)
name
- Output variable namex
- Input variableclipValue
- Clipping value (maximum l2 norm)dimensions
- If not specified, all dimensions are usedpublic SDVariable clipByValue(SDVariable x, double clipValueMin, double clipValueMax)
x
- Input variableclipValueMin
- Minimum value for clippingclipValueMax
- Maximum value for clippingpublic SDVariable clipByValue(String name, SDVariable x, double clipValueMin, double clipValueMax)
name
- Name of the output variablex
- Input variableclipValueMin
- Minimum value for clippingclipValueMax
- Maximum value for clippingpublic SDVariable confusionMatrix(SDVariable labels, SDVariable predictions)
public SDVariable confusionMatrix(String name, SDVariable labels, SDVariable pred)
public SDVariable confusionMatrix(String name, SDVariable labels, SDVariable pred, DataType dataType)
name
- Name of the output variablelabels
- Labels - 1D array of integer values representing label valuespred
- Predictions - 1D array of integer values representing predictions. Same length as labelspublic SDVariable confusionMatrix(SDVariable labels, SDVariable pred, Integer numClasses)
public SDVariable confusionMatrix(String name, SDVariable labels, SDVariable pred, Integer numClasses)
name
- Name of the output variablelabels
- Labels - 1D array of integer values representing label valuespred
- Predictions - 1D array of integer values representing predictions. Same length as labelsnumClasses
- Number of classespublic SDVariable confusionMatrix(SDVariable labels, SDVariable pred, SDVariable weights)
public SDVariable confusionMatrix(String name, SDVariable labels, SDVariable pred, SDVariable weights)
name
- Name of the output variablelabels
- Labels - 1D array of integer values representing label valuespred
- Predictions - 1D array of integer values representing predictions. Same length as labelsweights
- Weights - 1D array of values (may be real/decimal) representing the weight/contribution of
each prediction. Must be same length as both labels and predictions arrayspublic SDVariable confusionMatrix(SDVariable labels, SDVariable pred, Integer numClasses, SDVariable weights)
public SDVariable confusionMatrix(String name, SDVariable labels, SDVariable pred, Integer numClasses, SDVariable weights)
name
- Name of the output variablelabels
- Labels - 1D array of integer values representing label valuespred
- Predictions - 1D array of integer values representing predictions. Same length as labelsweights
- Weights - 1D array of values (may be real/decimal) representing the weight/contribution of
each prediction. Must be same length as both labels and predictions arrayspublic SDVariable cos(SDVariable x)
x
- Input variablepublic SDVariable cos(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable cosh(SDVariable x)
x
- Input variablepublic SDVariable cosh(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable cosineDistance(SDVariable x, SDVariable y, int... dimensions)
public SDVariable cosineDistance(String name, SDVariable x, SDVariable y, int... dimensions)
cosineSimilarity(String, SDVariable, SDVariable, int...)
name
- Name of the output variablex
- Input variable xy
- Input variable ydimensions
- Dimensions to calculate cosine similarity overpublic SDVariable cosineSimilarity(SDVariable x, SDVariable y, int... dimensions)
public SDVariable cosineSimilarity(String name, SDVariable x, SDVariable y, int... dimensions)
x
- Input variable xy
- Input variable ydimensions
- Dimensions to calculate cosine similarity overpublic SDVariable countNonZero(SDVariable input, int... dimensions)
input
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable countNonZero(String name, SDVariable input, int... dimensions)
name
- Name of the output variableinput
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable countZero(SDVariable input, int... dimensions)
input
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable countZero(String name, SDVariable input, int... dimensions)
name
- Name of the output variableinput
- Input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable cross(SDVariable a, SDVariable b)
cross(String, SDVariable, SDVariable)
public SDVariable cross(String name, SDVariable a, SDVariable b)
a
- First inputb
- Second inputpublic SDVariable cube(SDVariable x)
x
- Input variablepublic SDVariable cube(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable diag(SDVariable x)
diag(String, SDVariable)
public SDVariable diag(String name, SDVariable x)
name
- Name of the output variablex
- Input variablepublic SDVariable diagPart(SDVariable x)
diagPart(String, SDVariable)
public SDVariable diagPart(String name, SDVariable x)
x
- Input variablediag(String, SDVariable)
public SDVariable entropy(SDVariable in, int... dimensions)
in
- Input variabledimensions
- Dimensions to reduce on (null/empty for full array)public SDVariable entropy(String name, SDVariable in, int... dimensions)
name
- Name of the output variablein
- Input variabledimensions
- Dimensions to reduce on (null/empty for full array)public SDVariable erf(SDVariable x)
x
- Input variablepublic SDVariable erf(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable erfc(SDVariable x)
x
- Input variablepublic SDVariable erfc(String name, SDVariable x)
name
- Name of the output variablex
- Input variablepublic SDVariable euclideanDistance(SDVariable x, SDVariable y, int... dimensions)
public SDVariable euclideanDistance(String name, SDVariable x, SDVariable y, int... dimensions)
x
- Input variable xy
- Input variable ydimensions
- Dimensions to calculate cosine similarity overpublic SDVariable exp(SDVariable x)
x
- Input variablepublic SDVariable exp(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable expm1(SDVariable x)
x
- Input variablepublic SDVariable expm1(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable eye(int rows)
rows
- Number of rows (and columns)public SDVariable eye(String name, int rows)
rows
- Number of rowspublic SDVariable eye(int rows, int cols)
eye(String, int, int)
public SDVariable eye(String name, int rows, int cols)
eye(String, int, int, DataType)
but with the default datatype, Eye.DEFAULT_DTYPE
public SDVariable eye(String name, int rows, int cols, DataType dataType)
SDVariable eye = eye(3,2)
eye:
[ 1, 0]
[ 0, 1]
[ 0, 0]
name
- Name of the new SDVariablerows
- Number of rowscols
- Number of columnspublic SDVariable eye(int rows, int cols, DataType dataType, int... batchDimension)
public SDVariable eye(String name, int rows, int cols, DataType dataType, int... batchDimension)
rows
- Number of rowscols
- Number of columnsbatchDimension
- Batch dimensions. May be nullpublic SDVariable eye(SDVariable rows, SDVariable cols, SDVariable batchDimension)
eye(int, int, DataType, int...)
bit with the number of rows/columns specified as scalar SDVariables,
and the batch dimension specified as a 1D SDVariablepublic SDVariable eye(String name, SDVariable rows, SDVariable cols, SDVariable batchDimension)
#eye(String, int, int, int...)
bit with the number of rows/columns specified as scalar SDVariables,
and the batch dimension specified as a 1D SDVariablepublic SDVariable eye(String name, SDVariable rows, SDVariable cols)
eye(String, int, int)
bit with the number of rows/columns specified as scalar SDVariablespublic SDVariable eye(SDVariable rows, SDVariable cols)
eye(int, int)
bit with the number of rows/columns specified as scalar SDVariablespublic SDVariable eye(String name, SDVariable rows)
eye(String, int)
but with the number of rows specified as a scalar SDVariablepublic SDVariable eye(SDVariable rows)
eye(int)
but with the number of rows specified as a scalar SDVariablepublic SDVariable firstIndex(SDVariable in, Condition condition, int... dimensions)
public SDVariable firstIndex(String name, SDVariable in, Condition condition, int... dimensions)
name
- Name of the output variablein
- Input variablecondition
- Condition to check on input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable firstIndex(String name, SDVariable in, Condition condition, boolean keepDims, int... dimensions)
name
- Name of the output variablein
- Input variablecondition
- Condition to check on input variablekeepDims
- If true: keep the dimensions that are reduced on (as length 1). False: remove the reduction dimensionsdimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable firstIndex(SDVariable in, Condition condition, boolean keepDims, int... dimensions)
public SDVariable floor(SDVariable x)
x
- Input variablepublic SDVariable floor(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable hammingDistance(SDVariable x, SDVariable y, int... dimensions)
public SDVariable hammingDistance(String name, SDVariable x, SDVariable y, int... dimensions)
name
- Name of the output variablex
- Input variable xy
- Input variable ydimensions
- Dimensions to calculate cosine similarity overpublic SDVariable iamax(SDVariable in, int... dimensions)
SDBaseOps.argmax(SDVariable, int...)
public SDVariable iamax(String name, SDVariable in, int... dimensions)
public SDVariable iamax(String name, SDVariable in, boolean keepDims, int... dimensions)
public SDVariable iamax(SDVariable in, boolean keepDims, int... dimensions)
public SDVariable iamin(SDVariable in, int... dimensions)
public SDVariable iamin(String name, SDVariable in, int... dimensions)
public SDVariable iamin(String name, SDVariable in, boolean keepDims, int... dimensions)
public SDVariable iamin(SDVariable in, boolean keepDims, int... dimensions)
public SDVariable isFinite(SDVariable x)
x
- Input arraypublic SDVariable isFinite(String name, SDVariable x)
name
- Output variable namex
- Input arraypublic SDVariable isInfinite(SDVariable x)
x
- Input arraypublic SDVariable isInfinite(String name, SDVariable x)
name
- Output variable namex
- Input arraypublic SDVariable isMax(SDVariable x)
x
- Input arraypublic SDVariable isMax(String name, SDVariable x)
name
- Name of the output variablex
- Input arraypublic SDVariable isNaN(SDVariable x)
x
- Input arraypublic SDVariable isNaN(String name, SDVariable x)
name
- Output variable namex
- Input arraypublic SDVariable isNonDecreasing(SDVariable x)
x
- Input variablepublic SDVariable isNonDecreasing(String name, SDVariable x)
name
- Output namex
- Input variablepublic SDVariable isStrictlyIncreasing(SDVariable x)
x
- Input variablepublic SDVariable isStrictlyIncreasing(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable jaccardDistance(SDVariable x, SDVariable y, int... dimensions)
x
- Input variable xy
- Input variable ydimensions
- Dimensions to calculate Jaccard similarity overpublic SDVariable jaccardDistance(String name, SDVariable x, SDVariable y, int... dimensions)
name
- Name of the output variablex
- Input variable xy
- Input variable ydimensions
- Dimensions to calculate Jaccard similarity overpublic SDVariable lastIndex(SDVariable in, Condition condition, int... dimensions)
public SDVariable lastIndex(String name, SDVariable in, Condition condition, int... dimensions)
name
- Name of the output variablein
- Input variablecondition
- Condition to check on input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable lastIndex(String name, SDVariable in, Condition condition, boolean keepDims, int... dimensions)
name
- Name of the output variablein
- Input variablecondition
- Condition to check on input variabledimensions
- Dimensions to reduce over. If dimensions are not specified, full array reduction is performedpublic SDVariable lastIndex(SDVariable in, Condition condition, boolean keepDims, int... dimensions)
public SDVariable[] listDiff(SDVariable x, SDVariable y)
X=[1,10,3,7,6]
and Y=[10, 6]), then:
output 0 (difference) = {@code [1,3,7]}x
- Input 1 - input valuesy
- Input 2 - values to removepublic SDVariable log(SDVariable x)
x
- Input variablepublic SDVariable log(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable log(SDVariable in, double base)
in
- Input variablebase
- Logarithm basepublic SDVariable log(String name, SDVariable in, double base)
name
- Name of the output variablein
- Input variablebase
- Logarithm basepublic SDVariable log1p(SDVariable x)
x
- Input variablepublic SDVariable log1p(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable logEntropy(SDVariable in, int... dimensions)
in
- Input variabledimensions
- Dimensions to reduce on (null for full array)public SDVariable logEntropy(String name, SDVariable in, int... dimensions)
name
- Name of the output variablein
- Input variabledimensions
- Dimensions to reduce on (null for full array)public SDVariable logSumExp(SDVariable input, int... dimensions)
input
- Input variabledimensions
- Optional dimensions to reduce alongpublic SDVariable logSumExp(String name, SDVariable input, int... dimensions)
name
- Name of the output variableinput
- Input variabledimensions
- Optional dimensions to reduce alongpublic SDVariable logSumExp(String name, SDVariable input, boolean keepDims, int... dimensions)
public SDVariable manhattanDistance(SDVariable x, SDVariable y, int... dimensions)
public SDVariable manhattanDistance(String name, SDVariable x, SDVariable y, int... dimensions)
name
- Name of the output variablex
- Input variable xy
- Input variable ydimensions
- Dimensions to calculate cosine similarity overpublic SDVariable matrixDeterminant(SDVariable in)
matrixDeterminant(String, SDVariable)
public SDVariable matrixDeterminant(String name, SDVariable in)
name
- Name of the output variablein
- Inputpublic SDVariable matrixInverse(SDVariable in)
matrixInverse(String, SDVariable)
public SDVariable matrixInverse(String name, SDVariable in)
name
- Name of the output variablein
- Inputpublic SDVariable mergeAdd(SDVariable... x)
x
- Input variablespublic SDVariable mergeAdd(String name, SDVariable... inputs)
name
- Name of the output variableinputs
- Input variablespublic SDVariable mergeAvg(SDVariable... inputs)
inputs
- Input variablespublic SDVariable mergeAvg(String name, SDVariable... inputs)
name
- Name of the output variableinputs
- Input variablespublic SDVariable mergeMax(SDVariable... x)
x
- Input variablespublic SDVariable mergeMax(String name, SDVariable... inputs)
inputs
- Input variablespublic SDVariable[] meshgrid(SDVariable... inputs)
meshgrid(List, SDVariable...)
public SDVariable[] meshgrid(List<String> names, SDVariable... inputs)
input1 = [1, 2, 3]
input2 = [4, 5, 6]
SDVariable[] out = meshgrid(input1, input2)
out[0]:
[ 1, 2, 3]
[ 1, 2, 3]
[ 1, 2, 3]
out[1]:
[ 4, 4, 4]
[ 5, 5, 5]
[ 6, 6, 6]
names
- List of names for the output variables. Must have exactly N names for N input arraysinputs
- N x 1D input variablespublic SDVariable[] meshgrid(List<String> names, boolean cartesian, SDVariable... inputs)
meshgrid(List, SDVariable...)
public SDVariable[] moments(SDVariable input, int... axes)
moments(String[], SDVariable, int...)
public SDVariable[] moments(String[] name, SDVariable input, int... axes)
name
- Name of the output variables. Can be null; if non-null, must be length 2input
- Input to calculate moments foraxes
- Dimensions to perform calculation overpublic SDVariable neg(SDVariable x)
x
- Input variablepublic SDVariable neg(String name, SDVariable x)
name
- Name of the output variablex
- Input variablepublic SDVariable[] normalizeMoments(SDVariable counts, SDVariable means, SDVariable variances, double shift)
public SDVariable[] normalizeMoments(String[] name, SDVariable counts, SDVariable means, SDVariable variances, double shift)
name
- Name of the output variables. Can be null; if non-null, must be length 2counts
- Rank 0 (scalar) value with the total number of values used to calculate the sufficient statisticsmeans
- Mean-value sufficient statistics: this is the SUM of all data valuesvariances
- Variaance sufficient statistics: this is the squared sum of all data valuesshift
- Shift value, possibly 0, used when calculating the sufficient statistics (for numerical stability)public SDVariable or(SDVariable x, SDVariable y)
x
- Input 1y
- Input 2public SDVariable or(String name, SDVariable x, SDVariable y)
name
- Name of the output variablex
- Input 1y
- Input 2public SDVariable pow(SDVariable x, double value)
x
- Input variablevalue
- Power to raise each element topublic SDVariable pow(String name, SDVariable x, double value)
name
- Output variable namex
- Input variablevalue
- Power to raise each element topublic SDVariable pow(SDVariable x, SDVariable y)
x
- Input variabley
- Powerpublic SDVariable pow(String name, SDVariable x, SDVariable y)
name
- Output variable namex
- Input variabley
- Powerpublic SDVariable reciprocal(SDVariable a)
a
- Input variablepublic SDVariable reciprocal(String name, SDVariable a)
name
- Name of the output variablea
- Input variablepublic SDVariable round(SDVariable x)
x
- Input variablepublic SDVariable round(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable rsqrt(SDVariable x)
x
- Input variablepublic SDVariable rsqrt(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable setDiag(SDVariable in, SDVariable diag)
setDiag(String, SDVariable, SDVariable)
public SDVariable setDiag(String name, SDVariable in, SDVariable diag)
name
- Name of the output variablein
- Input variablediag
- Diagonalpublic SDVariable shannonEntropy(SDVariable in, int... dimensions)
in
- Input variabledimensions
- Dimensions to reduce on (null/empty for full array)public SDVariable shannonEntropy(String name, SDVariable in, int... dimensions)
name
- Name of the output variablein
- Input variabledimensions
- Dimensions to reduce on (null/empty for full array)public SDVariable sign(SDVariable x)
x
- Input variablepublic SDVariable sign(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable sin(SDVariable x)
x
- Input variablepublic SDVariable sin(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable sinh(SDVariable x)
x
- Input variablepublic SDVariable sinh(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable sqrt(SDVariable x)
x
- Input variablepublic SDVariable sqrt(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable square(SDVariable x)
x
- Input variablepublic SDVariable square(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable step(SDVariable in, double cutoff)
in
- Input variablecutoff
- Cutoff value for step functionpublic SDVariable step(String name, SDVariable in, double cutoff)
name
- Name of the output variablein
- Input variablecutoff
- Cutoff value for step functionpublic SDVariable standardize(SDVariable x, int... dimensions)
x
- Input variablestandardize(String, SDVariable, int...)
public SDVariable standardize(String name, SDVariable x, int... dimensions)
out = (x - mean) / stdev
with mean and stdev being calculated along the given dimension.
For example: given x as a mini batch of the shape [numExamples, exampleLength]:
name
- Name of the output variablex
- Input variablepublic SDVariable tan(SDVariable x)
x
- Input variablepublic SDVariable tan(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable tanh(SDVariable x)
x
- Input variablepublic SDVariable tanh(String name, SDVariable x)
name
- Output variable namex
- Input variablepublic SDVariable trace(SDVariable in)
trace(String, SDVariable)
public SDVariable trace(String name, SDVariable in)
name
- Name of the output variable. May be null.in
- Input variablepublic SDVariable xor(SDVariable x, SDVariable y)
x
- Input 1y
- Input 2public SDVariable xor(String name, SDVariable x, SDVariable y)
name
- Name of the output variablex
- Input 1y
- Input 2public SDVariable bitShift(String name, SDVariable x, SDVariable shift)
name
- Name of the output variablex
- Input 1public SDVariable bitShiftRight(String name, SDVariable x, SDVariable shift)
name
- Name of the output variablex
- Input 1public SDVariable bitRotl(String name, SDVariable x, SDVariable shift)
name
- Name of the output variablex
- Input 1public SDVariable bitRotr(String name, SDVariable x, SDVariable shift)
name
- Name of the output variablex
- Input 1public SDVariable zeroFraction(SDVariable input)
input
- Input variablepublic SDVariable zeroFraction(String name, SDVariable input)
name
- Name of the output variableinput
- Input variableCopyright © 2019. All rights reserved.