public class SequenceMask extends DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilder
Modifier and Type | Field and Description |
---|---|
static DataType |
DEFAULT_DTYPE |
axis, bArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, tArguments
dimensions, extraArgs, inPlace, sameDiff, scalarValue
Constructor and Description |
---|
SequenceMask(SameDiff sameDiff,
SDVariable input,
DataType dataType) |
SequenceMask(SameDiff sameDiff,
SDVariable input,
int maxLen,
DataType dataType) |
SequenceMask(SameDiff sameDiff,
SDVariable input,
SDVariable maxLen,
DataType dataType) |
Modifier and Type | Method and Description |
---|---|
List<DataType> |
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.
|
List<SDVariable> |
doDiff(List<SDVariable> grad)
The actual implementation for automatic differentiation.
|
void |
initFromTensorFlow(NodeDef nodeDef,
SameDiff initWith,
Map<String,AttrValue> attributesForNode,
GraphDef graph)
Initialize the function from the given
NodeDef |
Map<String,Map<String,PropertyMapping>> |
mappingsForFunction()
Returns the mappings for a given function (
for tensorflow and onnx import mapping properties
of this function).
|
String |
opName()
This method returns op opName as string
|
addBArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, clearArrays, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getTArgument, iArgs, initFromOnnx, inputArguments, numBArguments, numIArguments, numInputArguments, numOutputArguments, numTArguments, onnxName, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, removeIArgument, removeInputArgument, removeOutputArgument, removeTArgument, setInputArgument, setInputArguments, setOutputArgument, tArgs, tensorflowName, toString, wrapFilterNull, wrapOrNull
arg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, diff, dup, equals, f, getNumOutputs, getValue, hashCode, isConfigProperties, larg, onnxNames, outputVariable, outputVariablesNames, propertiesForFunction, rarg, replaceArg, setInstanceId, setPropertiesForFunction, setValueFor, tensorflowNames
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
isInplaceCall
public static final DataType DEFAULT_DTYPE
public SequenceMask(SameDiff sameDiff, SDVariable input, SDVariable maxLen, DataType dataType)
public SequenceMask(SameDiff sameDiff, SDVariable input, int maxLen, DataType dataType)
public SequenceMask(SameDiff sameDiff, SDVariable input, DataType dataType)
public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String,AttrValue> attributesForNode, GraphDef graph)
DifferentialFunction
NodeDef
initFromTensorFlow
in class DynamicCustomOp
public Map<String,Map<String,PropertyMapping>> mappingsForFunction()
DifferentialFunction
mappingsForFunction
in class DifferentialFunction
public String opName()
DynamicCustomOp
opName
in interface CustomOp
opName
in class DynamicCustomOp
public List<SDVariable> doDiff(List<SDVariable> grad)
DifferentialFunction
doDiff
in class DynamicCustomOp
public List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
DifferentialFunction
DifferentialFunction.calculateOutputShape()
, this method differs in that it does not
require the input arrays to be populated.
This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not
available.calculateOutputDataTypes
in class DifferentialFunction
dataTypes
- The data types of the inputsCopyright © 2019. All rights reserved.