Packages

  • package root
    Definition Classes
    root
  • package org
    Definition Classes
    root
  • package scalatest

    ScalaTest's main traits, classes, and other members, including members supporting ScalaTest's DSL for the Scala interpreter.

    ScalaTest's main traits, classes, and other members, including members supporting ScalaTest's DSL for the Scala interpreter.

    Definition Classes
    org
  • package prop

    Scalatest support for Property-based testing.

    Scalatest support for Property-based testing.

    Introduction to Property-based Testing

    In traditional unit testing, you write tests that describe precisely what the test will do: create these objects, wire them together, call these functions, assert on the results, and so on. It is clear and deterministic, but also limited, because it only covers the exact situations you think to test. In most cases, it is not feasible to test all of the possible combinations of data that might arise in real-world use.

    Property-based testing works the other way around. You describe properties -- rules that you expect your classes to live by -- and describe how to test those properties. The test system then generates relatively large amounts of synthetic data (with an emphasis on edge cases that tend to make things break), so that you can see if the properties hold true in these situations.

    As a result, property-based testing is scientific in the purest sense: you are stating a hypothesis about how things should work (the property), and the system is trying to falsify that hypothesis. If the tests pass, that doesn't prove the property holds, but it at least gives you some confidence that you are probably correct.

    Property-based testing is deliberately a bit random: while the edge cases get tried upfront, the system also usually generates a number of random values to try out. This makes things a bit non-deterministic -- each run will be tried with somewhat different data. To make it easier to debug, and to build regression tests, the system provides tools to re-run a failed test with precisely the same data.

    Background

    TODO: Bill should insert a brief section on QuickCheck, ScalaCheck, etc, and how this system is similar and different.

    Using Property Checks

    In order to use the tools described here, you should import this package:

    import org.scalatest._
    import org.scalatest.prop._

    This library is designed to work well with the types defined in Scalactic, and some functions take types such as PosZInt as parameters. So it can also be helpful to import those with:

    import org.scalactic.anyvals._

    In order to call forAll, the function that actually performs property checks, you will need to either extend or import GeneratorDrivenPropertyChecks, like this:

    class DocExamples extends FlatSpec with Matchers with GeneratorDrivenPropertyChecks {

    There's nothing special about FlatSpec, though -- you may use any of ScalaTest's styles with property checks. GeneratorDrivenPropertyChecks extends CommonGenerators, so it also provides access to the many utilities found there.

    What Does a Property Look Like?

    Let's check a simple property of Strings -- that if you concatenate a String to itself, its length will be doubled:

    "Strings" should "have the correct length when doubled" in {
      forAll { (s: String) =>
        val s2 = s * 2
        s2.length should equal (s.length * 2)
      }
    }

    (Note that the examples here are all using the FlatSpec style, but will work the same way with any of ScalaTest's styles.)

    As the name of the tests suggests, the property we are testing is the length of a String that has been doubled.

    The test begins with forAll. This is usually the way you'll want to begin property checks, and that line can be read as, "For all Strings, the following should be true".

    The test harness will generate a number of Strings, with various contents and lengths. For each one, we compute s * 2. (* is a function on String, which appends the String to itself as many times as you specify.) And then we check that the length of the doubled String is twice the length of the original one.

    Using Specific Generators

    Let's try a more general version of this test, multiplying arbitrary Strings by arbitrary multipliers:

    "Strings" should "have the correct length when multiplied" in {
      forAll { (s: String, n: PosZInt) =>
        val s2 = s * n.value
        s2.length should equal (s.length * n.value)
      }
    }

    Again, you can read the first line of the test as "For all Strings, and all non-negative Integers, the following should be true". (PosZInt is a type defined in Scalactic, which can be any positive integer, including zero. It is appropriate to use here, since multiplying a String by a negative number doesn't make sense.)

    This intuitively makes sense, but when we try to run it, we get a JVM Out of Memory error! Why? Because the test system tries to test with the "edge cases" first, and one of the more important edge cases is Int.MaxValue. It is trying to multiply a String by that, which is far larger than the memory of even a big computer, and crashing.

    So we want to constrain our test to sane values of n, so that it doesn't crash. We can do this by using more specific Generators.

    When we write a forAll test like the above, ScalaTest has to generate the values to be tested -- the semi-random Strings, Ints and other types that you are testing. It does this by calling on an implicit Generator for the desired type. The Generator generates values to test, starting with the edge cases and then moving on to randomly-selected values.

    ScalaTest has built-in Generators for many major types, including String and PosZInt, but these Generators are generic: they will try any value, including values that can break your test, as shown above. But it also provides tools to let you be more specific.

    Here is the fixed version of the above test:

    "Strings" should "have the correct length when multiplied" in {
      forAll(strings, posZIntsBetween(0, 1000))
      { (s: String, n: PosZInt) =>
        val s2 = s * n.value
        s2.length should equal (s.length * n.value)
      }
    }

    This is using a variant of forAll, which lets you specify the Generators to use instead of just picking the implicit one. CommonGenerators.strings is the built-in Generator for Strings, the same one you were getting implicitly. (The other built-ins can be found in CommonGenerators. They are mixed into GeneratorDrivenPropertyChecks, so they are readily available.)

    But CommonGenerators.posZIntsBetween is a function that creates a Generator that selects from the given values. In this case, it will create a Generator that only creates numbers from 0 to 1000 -- small enough to not blow up our computer's memory. If you try this test, this runs correctly.

    The moral of the story is that, while using the built-in Generators is very convenient, and works most of the time, you should think about the data you are trying to test, and pick or create a more-specific Generator when the test calls for it.

    CommonGenerators contains many functions that are helpful in common cases. In particular:

    • xxsBetween (where xxs might be Int, Long, Float or most other significant numeric types) gives you a value of the desired type in the given range, as in the posZIntsBetween() example above.
    • CommonGenerators.specificValue and CommonGenerators.specificValues create Generators that produce either one specific value every time, or one of several values randomly. This is useful for enumerations and types that behave like enumerations.
    • CommonGenerators.evenly and CommonGenerators.frequency create higher-level Generators that call other Generators, either more or less equally or with a distribution you define.

    Testing Your Own Types

    Testing the built-in types isn't very interesting, though. Usually, you have your own types that you want to check the properties of. So let's build up an example piece by piece.

    Say you have this simple type:

    sealed trait Shape {
      def area: Double
    }
    case class Rectangle(width: Int, height: Int) extends Shape {
      require(width > 0)
      require(height > 0)
      def area: Double = width * height
    }

    Let's confirm a nice straightforward property that is surely true: that the area is greater than zero:

    "Rectangles" should "have a positive area" in {
       forAll { (w: PosInt, h: PosInt) =>
         val rect = Rectangle(w, h)
         rect.area should be > 0.0
       }
     }

    Note that, even though our class takes ordinary Ints as parameters (and checks the values at runtime), it is actually easier to generate the legal values using Scalactic's PosInt type.

    This should work, right? Actually, it doesn't -- if we run it a few times, we quickly hit an error!

    [info] Rectangles
    [info] - should have a positive area *** FAILED ***
    [info]   GeneratorDrivenPropertyCheckFailedException was thrown during property evaluation.
    [info]    (DocExamples.scala:42)
    [info]     Falsified after 2 successful property evaluations.
    [info]     Location: (DocExamples.scala:42)
    [info]     Occurred when passed generated values (
    [info]       None = PosInt(399455539),
    [info]       None = PosInt(703518968)
    [info]     )
    [info]     Init Seed: 1568878346200

    TODO: fix the above error to reflect the better errors we should get when we merge in the code being forward-ported from 3.0.5.

    Looking at it, we can see that the numbers being used are pretty large. What happens when we multiply them together?

    scala> 399455539 * 703518968
    res0: Int = -2046258840

    We're hitting an Int overflow problem here: the numbers are too big to multiply together and still get an Int. So we have to fix our area function:

    case class Rectangle(width: Int, height: Int) extends Shape {
      require(width > 0)
      require(height > 0)
      def area: Double = width.toLong * height.toLong
    }

    Now, when we run our property check, it consistently passes. Excellent -- we've caught a bug, because ScalaTest tried sufficiently large numbers.

    Composing Your Own Generators

    Doing things as shown above works, but having to generate the parameters and construct a Rectangle every time is a nuisance. What we really want is to create our own Generator that just hands us Rectangles, the same way we can do for PosInt. Fortunately, this is easy.

    Generators can be composed in for comprehensions. So we can create our own Generator for Rectangle like this:

    implicit val rectGenerator = for {
      w <- posInts
      h <- posInts
    }
      yield Rectangle(w, h)

    Taking that line by line:

    w <- posInts

    CommonGenerators.posInts is the built-in Generator for positive Ints. So this line puts a randomly-generated positive Int in w, and

    h <- posInts

    this line puts another one in h. Finally, this line:

    yield Rectangle(w, h)

    combines w and h to make a Rectangle.

    That's pretty much all you need in order to build any normal case class -- just build it out of the Generators for the type of each field. (And if the fields are complex data structures themselves, build Generators for them the same way, until you are just using primitives.)

    Now, our property check becomes simpler:

    "Generated Rectangles" should "have a positive area" in {
       forAll { (rect: Rectangle) =>
         rect.area should be > 0.0
       }
     }

    That's about as close to plain English as we can reasonably hope for!

    Filtering Values with whenever()

    Sometimes, not all of your generated values make sense for the property you want to check -- you know (via external information) that some of these values will never come up. In cases like this, you can create a custom Generator that only creates the values you do want, but it's often easier to just use Whenever.whenever. (Whenever is mixed into GeneratorDrivenPropertyChecks, so this is available when you need it.)

    The Whenever.whenever function can be used inside of GeneratorDrivenPropertyChecks.forAll. It says that only the filtered values should be used, and anything else should be discarded. For example, look at this property:

    "Fractions" should "get smaller when squared" in {
      forAll { (n: Float) =>
        whenever(n > 0 && n < 1) {
          (n * n) should be < n
        }
      }
    }

    We are testing a property of numbers less than 1, so we filter away everything that is not the numbers we want. This property check succeeds, because we've screened out the values that would make it fail.

    Discard Limits

    You shouldn't push Whenever.whenever too far, though. This system is all about trying random data, but if too much of the random data simply isn't usable, you can't get valid answers, and the system tracks that.

    For example, consider this apparently-reasonable test:

    "Space Chars" should "not also be letters" in {
      forAll { (c: Char) =>
        whenever (c.isSpaceChar) {
          assert(!c.isLetter)
        }
      }
    }

    Although the property is true, this test will fail with an error like this:

    [info] Lowercase Chars
    [info] - should upper-case correctly *** FAILED ***
    [info]   Gave up after 0 successful property evaluations. 49 evaluations were discarded.
    [info]   Init Seed: 1568855247784

    Because the vast majority of Chars are not spaces, nearly all of the generated values are being discarded. As a result, the system gives up after a while. In cases like this, you usually should write a custom Generator instead.

    The proportion of how many discards to permit, relative to the number of successful checks, is configuration-controllable. See GeneratorDrivenPropertyChecks for more details.

    Randomization

    The point of Generator is to create pseudo-random values for checking properties. But it turns out to be very inconvenient if those values are actually random -- that would mean that, when a property check fails occasionally, you have no good way to invoke that specific set of circumstances again for debugging. We want "randomness", but we also want it to be deterministic, and reproducible when you need it.

    To support this, all "randomness" in ScalaTest's property checking system uses the Randomizer class. You start by creating a Randomizer using an initial seed value, and call that to get your "random" value. Each call to a Randomizer function returns a new Randomizer, which you should use to fetch the next value.

    GeneratorDrivenPropertyChecks.forAll uses Randomizer under the hood: each time you run a forAll-based test, it will automatically create a new Randomizer, which by default is seeded based on the current system time. You can override this, as discussed below.

    Since Randomizer is actually deterministic (the "random" values are unobvious, but will always be the same given the same initial seed), this means that re-running a test with the same seed will produce the same values.

    If you need random data for your own Generators and property checks, you should use Randomizer in the same way; that way, your tests will also be re-runnable, when needed for debugging.

    Debugging, and Re-running a Failed Property Check

    In Testing Your Own Types above, we found to our surprise that the property check failed with this error:

    [info] Rectangles
    [info] - should have a positive area *** FAILED ***
    [info]   GeneratorDrivenPropertyCheckFailedException was thrown during property evaluation.
    [info]    (DocExamples.scala:42)
    [info]     Falsified after 2 successful property evaluations.
    [info]     Location: (DocExamples.scala:42)
    [info]     Occurred when passed generated values (
    [info]       None = PosInt(399455539),
    [info]       None = PosInt(703518968)
    [info]     )
    [info]     Init Seed: 1568878346200

    There must be a bug here -- but once we've fixed it, how can we make sure that we are re-testing exactly the same case that failed?

    This is where the pseudo-random nature of Randomizer comes in, and why it is so important to use it consistently. So long as all of our "random" data comes from that, then all we need to do is re-run with the same seed.

    That's why the Init Seed shown in the message above is crucial. We can re-use that seed -- and therefore get exactly the same "random" data -- by using the -S flag to ScalaTest.

    So you can run this command in sbt to re-run exactly the same property check:

    testOnly *DocExamples -- -z "have a positive area" -S 1568878346200

    Taking that apart:

    • testOnly *DocExamples says that we only want to run suites whose paths end with DocExamples
    • -z "have a positive area" says to only run tests whose names include that string.
    • -S 1568878346200 says to run all tests with a "random" seed of 1568878346200

    By combining these flags, you can re-run exactly the property check you need, with the right random seed to make sure you are re-creating the failed test. You should get exactly the same failure over and over until you fix the bug, and then you can confirm your fix with confidence.

    Configuration

    In general, forAll() works well out of the box. But you can tune several configuration parameters when needed. See GeneratorDrivenPropertyChecks for info on how to set configuration parameters for your test.

    Table-Driven Properties

    Sometimes, you want something in between traditional hard-coded unit tests and Generator-driven, randomized tests. Instead, you sometimes want to check your properties against a specific set of inputs.

    (This is particularly useful for regression tests, when you have found certain inputs that have caused problems in the past, and want to make sure that they get consistently re-tested.)

    ScalaTest supports these, by mixing in TableDrivenPropertyChecks. See the documentation for that class for the full details.

    Definition Classes
    scalatest
  • Chooser
  • Classification
  • CommonGenerators
  • Configuration
  • Generator
  • GeneratorDrivenPropertyChecks
  • HavingLength
  • HavingSize
  • PrettyFunction0
  • PropertyArgument
  • PropertyCheckResult
  • PropertyChecks
  • Randomizer
  • SizeParam
  • TableDrivenPropertyChecks
  • TableFor1
  • TableFor10
  • TableFor11
  • TableFor12
  • TableFor13
  • TableFor14
  • TableFor15
  • TableFor16
  • TableFor17
  • TableFor18
  • TableFor19
  • TableFor2
  • TableFor20
  • TableFor21
  • TableFor22
  • TableFor3
  • TableFor4
  • TableFor5
  • TableFor6
  • TableFor7
  • TableFor8
  • TableFor9
  • Tables
  • Whenever

class TableFor2[A, B] extends IndexedSeq[(A, B)] with IndexedSeqOps[(A, B), IndexedSeq, IndexedSeq[(A, B)]]

A table with 2 columns.

For an introduction to using tables, see the documentation for trait TableDrivenPropertyChecks.

This table is a sequence of Tuple2 objects, where each tuple represents one row of the table. The first element of each tuple comprise the first column of the table, the second element of each tuple comprise the second column, and so on. This table also carries with it a heading tuple that gives string names to the columns of the table.

A handy way to create a TableFor2 is via an apply factory method in the Table singleton object provided by the Tables trait. Here's an example:

val examples =
  Table(
    ("a", "b"),
    (  0,   0),
    (  1,   1),
    (  2,   2),
    (  3,   3),
    (  4,   4),
    (  5,   5),
    (  6,   6),
    (  7,   7),
    (  8,   8),
    (  9,   9)
  )

Because you supplied 2 members in each tuple, the type you'll get back will be a TableFor2.

The table provides an apply method that takes a function with a parameter list that matches the types and arity of the tuples contained in this table. The apply method will invoke the function with the members of each row tuple passed as arguments, in ascending order by index. (I.e., the zeroth tuple is checked first, then the tuple with index 1, then index 2, and so on until all the rows have been checked (or until a failure occurs). The function represents a property of the code under test that should succeed for every row of the table. If the function returns normally, that indicates the property check succeeded for that row. If the function completes abruptly with an exception, that indicates the property check failed and the apply method will complete abruptly with a TableDrivenPropertyCheckFailedException that wraps the exception thrown by the supplied property function.

The usual way you'd invoke the apply method that checks a property is via a forAll method provided by trait TableDrivenPropertyChecks. The forAll method takes a TableFor2 as its first argument, then in a curried argument list takes the property check function. It invokes apply on the TableFor2, passing in the property check function. Here's an example:

forAll (examples) { (a, b) =>
  a + b should equal (a * 2)
}

Because TableFor2 is a Seq[(A, B)], you can use it as a Seq. For example, here's how you could get a sequence of Outcomes for each row of the table, indicating whether a property check succeeded or failed on each row of the table:

for (row <- examples) yield {
  outcomeOf { row._1 should not equal (7) }
}

Note: the outcomeOf method, contained in the OutcomeOf trait, will execute the supplied code (a by-name parameter) and transform it to an Outcome. If no exception is thrown by the code, outcomeOf will result in a Succeeded, indicating the "property check" succeeded. If the supplied code completes abruptly in an exception that would normally cause a test to fail, outcomeOf will result in in a Failed instance containing that exception. For example, the previous for expression would give you:

Vector(Succeeded, Succeeded, Succeeded, Succeeded, Succeeded, Succeeded, Succeeded,
    Failed(org.scalatest.TestFailedException: 7 equaled 7), Succeeded, Succeeded)

This shows that all the property checks succeeded, except for the one at index 7.

Source
TableFor1.scala
Linear Supertypes
IndexedSeq[(A, B)], IndexedSeqOps[(A, B), IndexedSeq, IndexedSeq[(A, B)]], IndexedSeq[(A, B)], IndexedSeqOps[(A, B), [_]IndexedSeq[_], IndexedSeq[(A, B)]], Seq[(A, B)], SeqOps[(A, B), [_]IndexedSeq[_], IndexedSeq[(A, B)]], Seq[(A, B)], Equals, SeqOps[(A, B), [_]IndexedSeq[_], IndexedSeq[(A, B)]], PartialFunction[Int, (A, B)], (Int) => (A, B), Iterable[(A, B)], Iterable[(A, B)], IterableFactoryDefaults[(A, B), [x]IndexedSeq[x]], IterableOps[(A, B), [_]IndexedSeq[_], IndexedSeq[(A, B)]], IterableOnceOps[(A, B), [_]IndexedSeq[_], IndexedSeq[(A, B)]], IterableOnce[(A, B)], AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TableFor2
  2. IndexedSeq
  3. IndexedSeqOps
  4. IndexedSeq
  5. IndexedSeqOps
  6. Seq
  7. SeqOps
  8. Seq
  9. Equals
  10. SeqOps
  11. PartialFunction
  12. Function1
  13. Iterable
  14. Iterable
  15. IterableFactoryDefaults
  16. IterableOps
  17. IterableOnceOps
  18. IterableOnce
  19. AnyRef
  20. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TableFor2(heading: (String, String), rows: (A, B)*)

    heading

    a tuple containing string names of the columns in this table

    rows

    a variable length parameter list of Tuple2s containing the data of this table

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. def ++(others: Iterable[(A, B)]): TableFor2[A, B]
  4. final def ++[B >: (A, B)](suffix: IterableOnce[B]): IndexedSeq[B]
    Definition Classes
    IterableOps
    Annotations
    @inline()
  5. final def ++:[B >: (A, B)](prefix: IterableOnce[B]): IndexedSeq[B]
    Definition Classes
    SeqOps → IterableOps
    Annotations
    @inline()
  6. final def +:[B >: (A, B)](elem: B): IndexedSeq[B]
    Definition Classes
    SeqOps
    Annotations
    @inline()
  7. final def :+[B >: (A, B)](elem: B): IndexedSeq[B]
    Definition Classes
    SeqOps
    Annotations
    @inline()
  8. final def :++[B >: (A, B)](suffix: IterableOnce[B]): IndexedSeq[B]
    Definition Classes
    SeqOps
    Annotations
    @inline()
  9. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. final def addString(b: StringBuilder): StringBuilder
    Definition Classes
    IterableOnceOps
    Annotations
    @inline()
  11. final def addString(b: StringBuilder, sep: String): StringBuilder
    Definition Classes
    IterableOnceOps
    Annotations
    @inline()
  12. def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder
    Definition Classes
    IterableOnceOps
  13. def andThen[C](k: PartialFunction[(A, B), C]): PartialFunction[Int, C]
    Definition Classes
    PartialFunction
  14. def andThen[C](k: ((A, B)) => C): PartialFunction[Int, C]
    Definition Classes
    PartialFunction → Function1
  15. def appended[B >: (A, B)](elem: B): IndexedSeq[B]
    Definition Classes
    SeqOps
  16. def appendedAll[B >: (A, B)](suffix: IterableOnce[B]): IndexedSeq[B]
    Definition Classes
    SeqOps
  17. def apply[ASSERTION](fun: (A, B) => ASSERTION)(implicit asserting: TableAsserting[ASSERTION], prettifier: Prettifier, pos: Position): Result

    Applies the passed property check function to each row of this TableFor2.

    Applies the passed property check function to each row of this TableFor2.

    If the property checks for all rows succeed (the property check function returns normally when passed the data for each row), this apply method returns normally. If the property check function completes abruptly with an exception for any row, this apply method wraps that exception in a TableDrivenPropertyCheckFailedException and completes abruptly with that exception. Once the property check function throws an exception for a row, this apply method will complete abruptly immediately and subsequent rows will not be checked against the function.

    fun

    the property check function to apply to each row of this TableFor2

  18. def apply(idx: Int): (A, B)

    Selects a row of data by its index.

    Selects a row of data by its index.

    Definition Classes
    TableFor2 → SeqOps → Function1
  19. def applyOrElse[A1 <: Int, B1 >: (A, B)](x: A1, default: (A1) => B1): B1
    Definition Classes
    PartialFunction
  20. def applyPreferredMaxLength: Int
    Attributes
    protected
    Definition Classes
    IndexedSeq
  21. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  22. def canEqual(that: Any): Boolean
    Definition Classes
    IndexedSeq → Seq → Equals
  23. def className: String
    Attributes
    protected[this]
    Definition Classes
    Iterable
  24. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native()
  25. final def coll: TableFor2.this.type
    Attributes
    protected
    Definition Classes
    Iterable → IterableOps
  26. def collect[B](pf: PartialFunction[(A, B), B]): IndexedSeq[B]
    Definition Classes
    IterableOps → IterableOnceOps
  27. def collectFirst[B](pf: PartialFunction[(A, B), B]): Option[B]
    Definition Classes
    IterableOnceOps
  28. def combinations(n: Int): Iterator[IndexedSeq[(A, B)]]
    Definition Classes
    SeqOps
  29. def compose[R](k: PartialFunction[R, Int]): PartialFunction[R, (A, B)]
    Definition Classes
    PartialFunction
  30. def compose[A](g: (A) => Int): (A) => (A, B)
    Definition Classes
    Function1
    Annotations
    @unspecialized()
  31. final def concat[B >: (A, B)](suffix: IterableOnce[B]): IndexedSeq[B]
    Definition Classes
    SeqOps → IterableOps
    Annotations
    @inline()
  32. def contains[A1 >: (A, B)](elem: A1): Boolean
    Definition Classes
    SeqOps
  33. def containsSlice[B](that: Seq[B]): Boolean
    Definition Classes
    SeqOps
  34. def copyToArray[B >: (A, B)](xs: Array[B], start: Int, len: Int): Int
    Definition Classes
    IterableOnceOps
  35. def copyToArray[B >: (A, B)](xs: Array[B], start: Int): Int
    Definition Classes
    IterableOnceOps
  36. def copyToArray[B >: (A, B)](xs: Array[B]): Int
    Definition Classes
    IterableOnceOps
  37. def corresponds[B](that: Seq[B])(p: ((A, B), B) => Boolean): Boolean
    Definition Classes
    SeqOps
  38. def corresponds[B](that: IterableOnce[B])(p: ((A, B), B) => Boolean): Boolean
    Definition Classes
    IterableOnceOps
  39. def count(p: ((A, B)) => Boolean): Int
    Definition Classes
    IterableOnceOps
  40. def diff[B >: (A, B)](that: Seq[B]): IndexedSeq[(A, B)]
    Definition Classes
    SeqOps
  41. def distinct: IndexedSeq[(A, B)]
    Definition Classes
    SeqOps
  42. def distinctBy[B](f: ((A, B)) => B): IndexedSeq[(A, B)]
    Definition Classes
    SeqOps
  43. def drop(n: Int): IndexedSeq[(A, B)]
    Definition Classes
    IndexedSeqOps → IterableOps → IterableOnceOps
  44. def dropRight(n: Int): IndexedSeq[(A, B)]
    Definition Classes
    IndexedSeqOps → IterableOps
  45. def dropWhile(p: ((A, B)) => Boolean): IndexedSeq[(A, B)]
    Definition Classes
    IterableOps → IterableOnceOps
  46. def elementWise: ElementWiseExtractor[Int, (A, B)]
    Definition Classes
    PartialFunction
  47. def empty: IndexedSeq[(A, B)]
    Definition Classes
    IterableFactoryDefaults → IterableOps
  48. def endsWith[B >: (A, B)](that: Iterable[B]): Boolean
    Definition Classes
    SeqOps
  49. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  50. def equals(o: Any): Boolean
    Definition Classes
    Seq → Equals → AnyRef → Any
  51. def exists[ASSERTION](fun: (A, B) => ASSERTION)(implicit asserting: TableAsserting[ASSERTION], prettifier: Prettifier, pos: Position): Result
  52. def exists(p: ((A, B)) => Boolean): Boolean
    Definition Classes
    IterableOnceOps
  53. def filter(p: ((A, B)) => Boolean): TableFor2[A, B]
    Definition Classes
    TableFor2 → IterableOps → IterableOnceOps
  54. def filterNot(pred: ((A, B)) => Boolean): IndexedSeq[(A, B)]
    Definition Classes
    IterableOps → IterableOnceOps
  55. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  56. def find(p: ((A, B)) => Boolean): Option[(A, B)]
    Definition Classes
    IterableOnceOps
  57. def findLast(p: ((A, B)) => Boolean): Option[(A, B)]
    Definition Classes
    SeqOps
  58. def flatMap[B](f: ((A, B)) => IterableOnce[B]): IndexedSeq[B]
    Definition Classes
    IterableOps → IterableOnceOps
  59. def flatten[B](implicit asIterable: ((A, B)) => IterableOnce[B]): IndexedSeq[B]
    Definition Classes
    IterableOps → IterableOnceOps
  60. def fold[A1 >: (A, B)](z: A1)(op: (A1, A1) => A1): A1
    Definition Classes
    IterableOnceOps
  61. def foldLeft[B](z: B)(op: (B, (A, B)) => B): B
    Definition Classes
    IterableOnceOps
  62. def foldRight[B](z: B)(op: ((A, B), B) => B): B
    Definition Classes
    IterableOnceOps
  63. def forEvery[ASSERTION](fun: (A, B) => ASSERTION)(implicit asserting: TableAsserting[ASSERTION], prettifier: Prettifier, pos: Position): Result
  64. def forall(p: ((A, B)) => Boolean): Boolean
    Definition Classes
    IterableOnceOps
  65. def foreach[U](f: ((A, B)) => U): Unit
    Definition Classes
    IterableOnceOps
  66. def fromSpecific(coll: IterableOnce[(A, B)]): IndexedSeq[(A, B)]
    Attributes
    protected
    Definition Classes
    IterableFactoryDefaults → IterableOps
  67. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  68. def groupBy[K](f: ((A, B)) => K): Map[K, IndexedSeq[(A, B)]]
    Definition Classes
    IterableOps
  69. def groupMap[K, B](key: ((A, B)) => K)(f: ((A, B)) => B): Map[K, IndexedSeq[B]]
    Definition Classes
    IterableOps
  70. def groupMapReduce[K, B](key: ((A, B)) => K)(f: ((A, B)) => B)(reduce: (B, B) => B): Map[K, B]
    Definition Classes
    IterableOps
  71. def grouped(size: Int): Iterator[IndexedSeq[(A, B)]]
    Definition Classes
    IterableOps
  72. def hashCode(): Int
    Definition Classes
    Seq → AnyRef → Any
  73. def head: (A, B)
    Definition Classes
    IterableOps
  74. def headOption: Option[(A, B)]
    Definition Classes
    IterableOps
  75. val heading: (String, String)
  76. def indexOf[B >: (A, B)](elem: B): Int
    Definition Classes
    SeqOps
    Annotations
    @deprecatedOverriding("Override indexOf(elem, from) instead - indexOf(elem) calls indexOf(elem, 0)", "2.13.0")
  77. def indexOf[B >: (A, B)](elem: B, from: Int): Int
    Definition Classes
    SeqOps
  78. def indexOfSlice[B >: (A, B)](that: Seq[B]): Int
    Definition Classes
    SeqOps
    Annotations
    @deprecatedOverriding("Override indexOfSlice(that, from) instead - indexOfSlice(that) calls indexOfSlice(that, 0)", "2.13.0")
  79. def indexOfSlice[B >: (A, B)](that: Seq[B], from: Int): Int
    Definition Classes
    SeqOps
  80. def indexWhere(p: ((A, B)) => Boolean): Int
    Definition Classes
    SeqOps
    Annotations
    @deprecatedOverriding("Override indexWhere(p, from) instead - indexWhere(p) calls indexWhere(p, 0)", "2.13.0")
  81. def indexWhere(p: ((A, B)) => Boolean, from: Int): Int
    Definition Classes
    SeqOps
  82. def indices: Range
    Definition Classes
    SeqOps
  83. def init: IndexedSeq[(A, B)]
    Definition Classes
    IterableOps
  84. def inits: Iterator[IndexedSeq[(A, B)]]
    Definition Classes
    IterableOps
  85. def intersect[B >: (A, B)](that: Seq[B]): IndexedSeq[(A, B)]
    Definition Classes
    SeqOps
  86. def isDefinedAt(idx: Int): Boolean
    Definition Classes
    SeqOps
  87. def isEmpty: Boolean
    Definition Classes
    SeqOps → IterableOnceOps
  88. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  89. def isTraversableAgain: Boolean
    Definition Classes
    IterableOps → IterableOnceOps
  90. def iterableFactory: SeqFactory[IndexedSeq]
    Definition Classes
    IndexedSeq → IndexedSeq → Seq → Seq → Iterable → Iterable → IterableOps
  91. def iterator: Iterator[(A, B)]
    Definition Classes
    IndexedSeqOps → IterableOnce
  92. def knownSize: Int
    Definition Classes
    IndexedSeqOps → IterableOnce
  93. def last: (A, B)
    Definition Classes
    IndexedSeqOps → IterableOps
  94. def lastIndexOf[B >: (A, B)](elem: B, end: Int): Int
    Definition Classes
    SeqOps
  95. def lastIndexOfSlice[B >: (A, B)](that: Seq[B]): Int
    Definition Classes
    SeqOps
    Annotations
    @deprecatedOverriding("Override lastIndexOfSlice(that, end) instead - lastIndexOfSlice(that) calls lastIndexOfSlice(that, Int.MaxValue)", "2.13.0")
  96. def lastIndexOfSlice[B >: (A, B)](that: Seq[B], end: Int): Int
    Definition Classes
    SeqOps
  97. def lastIndexWhere(p: ((A, B)) => Boolean): Int
    Definition Classes
    SeqOps
    Annotations
    @deprecatedOverriding("Override lastIndexWhere(p, end) instead - lastIndexWhere(p) calls lastIndexWhere(p, Int.MaxValue)", "2.13.0")
  98. def lastIndexWhere(p: ((A, B)) => Boolean, end: Int): Int
    Definition Classes
    SeqOps
  99. def lastOption: Option[(A, B)]
    Definition Classes
    IterableOps
  100. def lazyZip[B](that: Iterable[B]): LazyZip2[(A, B), B, TableFor2.this.type]
    Definition Classes
    Iterable
  101. def length: Int

    The number of rows of data in the table.

    The number of rows of data in the table. (This does not include the heading tuple)

    Definition Classes
    TableFor2 → SeqOps
  102. final def lengthCompare(that: Iterable[_]): Int
    Definition Classes
    IndexedSeqOps → SeqOps
  103. final def lengthCompare(len: Int): Int
    Definition Classes
    IndexedSeqOps → SeqOps
  104. final def lengthIs: SizeCompareOps
    Definition Classes
    SeqOps
    Annotations
    @inline()
  105. def lift: (Int) => Option[(A, B)]
    Definition Classes
    PartialFunction
  106. def map[B](f: ((A, B)) => B): IndexedSeq[B]
    Definition Classes
    IndexedSeqOps → IterableOps → IterableOnceOps
  107. def max[B >: (A, B)](implicit ord: Ordering[B]): (A, B)
    Definition Classes
    IterableOnceOps
  108. def maxBy[B](f: ((A, B)) => B)(implicit cmp: Ordering[B]): (A, B)
    Definition Classes
    IterableOnceOps
  109. def maxByOption[B](f: ((A, B)) => B)(implicit cmp: Ordering[B]): Option[(A, B)]
    Definition Classes
    IterableOnceOps
  110. def maxOption[B >: (A, B)](implicit ord: Ordering[B]): Option[(A, B)]
    Definition Classes
    IterableOnceOps
  111. def min[B >: (A, B)](implicit ord: Ordering[B]): (A, B)
    Definition Classes
    IterableOnceOps
  112. def minBy[B](f: ((A, B)) => B)(implicit cmp: Ordering[B]): (A, B)
    Definition Classes
    IterableOnceOps
  113. def minByOption[B](f: ((A, B)) => B)(implicit cmp: Ordering[B]): Option[(A, B)]
    Definition Classes
    IterableOnceOps
  114. def minOption[B >: (A, B)](implicit ord: Ordering[B]): Option[(A, B)]
    Definition Classes
    IterableOnceOps
  115. final def mkString: String
    Definition Classes
    IterableOnceOps
    Annotations
    @inline()
  116. final def mkString(sep: String): String
    Definition Classes
    IterableOnceOps
    Annotations
    @inline()
  117. final def mkString(start: String, sep: String, end: String): String
    Definition Classes
    IterableOnceOps
  118. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  119. def newSpecificBuilder: Builder[(A, B), IndexedSeq[(A, B)]]
    Attributes
    protected
    Definition Classes
    IterableFactoryDefaults → IterableOps
  120. def nonEmpty: Boolean
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecatedOverriding("nonEmpty is defined as !isEmpty; override isEmpty instead", "2.13.0")
  121. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  122. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  123. def occCounts[B](sq: Seq[B]): Map[B, Int]
    Attributes
    protected[scala.collection]
    Definition Classes
    SeqOps
  124. def orElse[A1 <: Int, B1 >: (A, B)](that: PartialFunction[A1, B1]): PartialFunction[A1, B1]
    Definition Classes
    PartialFunction
  125. def padTo[B >: (A, B)](len: Int, elem: B): IndexedSeq[B]
    Definition Classes
    SeqOps
  126. def partition(p: ((A, B)) => Boolean): (IndexedSeq[(A, B)], IndexedSeq[(A, B)])
    Definition Classes
    IterableOps
  127. def partitionMap[A1, A2](f: ((A, B)) => Either[A1, A2]): (IndexedSeq[A1], IndexedSeq[A2])
    Definition Classes
    IterableOps
  128. def patch[B >: (A, B)](from: Int, other: IterableOnce[B], replaced: Int): IndexedSeq[B]
    Definition Classes
    SeqOps
  129. def permutations: Iterator[IndexedSeq[(A, B)]]
    Definition Classes
    SeqOps
  130. def prepended[B >: (A, B)](elem: B): IndexedSeq[B]
    Definition Classes
    IndexedSeqOps → SeqOps
  131. def prependedAll[B >: (A, B)](prefix: IterableOnce[B]): IndexedSeq[B]
    Definition Classes
    SeqOps
  132. def product[B >: (A, B)](implicit num: Numeric[B]): B
    Definition Classes
    IterableOnceOps
  133. def reduce[B >: (A, B)](op: (B, B) => B): B
    Definition Classes
    IterableOnceOps
  134. def reduceLeft[B >: (A, B)](op: (B, (A, B)) => B): B
    Definition Classes
    IterableOnceOps
  135. def reduceLeftOption[B >: (A, B)](op: (B, (A, B)) => B): Option[B]
    Definition Classes
    IterableOnceOps
  136. def reduceOption[B >: (A, B)](op: (B, B) => B): Option[B]
    Definition Classes
    IterableOnceOps
  137. def reduceRight[B >: (A, B)](op: ((A, B), B) => B): B
    Definition Classes
    IterableOnceOps
  138. def reduceRightOption[B >: (A, B)](op: ((A, B), B) => B): Option[B]
    Definition Classes
    IterableOnceOps
  139. def reverse: IndexedSeq[(A, B)]
    Definition Classes
    IndexedSeqOps → SeqOps
  140. def reverseIterator: Iterator[(A, B)]
    Definition Classes
    IndexedSeqOps → SeqOps
  141. def reversed: Iterable[(A, B)]
    Attributes
    protected
    Definition Classes
    IndexedSeqOps → IterableOnceOps
  142. def runWith[U](action: ((A, B)) => U): (Int) => Boolean
    Definition Classes
    PartialFunction
  143. def sameElements[B >: (A, B)](o: IterableOnce[B]): Boolean
    Definition Classes
    IndexedSeq → SeqOps
  144. def scan[B >: (A, B)](z: B)(op: (B, B) => B): IndexedSeq[B]
    Definition Classes
    IterableOps
  145. def scanLeft[B](z: B)(op: (B, (A, B)) => B): IndexedSeq[B]
    Definition Classes
    IterableOps → IterableOnceOps
  146. def scanRight[B](z: B)(op: ((A, B), B) => B): IndexedSeq[B]
    Definition Classes
    IterableOps
  147. def search[B >: (A, B)](elem: B, from: Int, to: Int)(implicit ord: Ordering[B]): SearchResult
    Definition Classes
    IndexedSeqOps → SeqOps
  148. def search[B >: (A, B)](elem: B)(implicit ord: Ordering[B]): SearchResult
    Definition Classes
    IndexedSeqOps → SeqOps
  149. def segmentLength(p: ((A, B)) => Boolean, from: Int): Int
    Definition Classes
    SeqOps
  150. final def segmentLength(p: ((A, B)) => Boolean): Int
    Definition Classes
    SeqOps
  151. final def size: Int
    Definition Classes
    SeqOps → IterableOnceOps
  152. final def sizeCompare(that: Iterable[_]): Int
    Definition Classes
    SeqOps → IterableOps
  153. final def sizeCompare(otherSize: Int): Int
    Definition Classes
    SeqOps → IterableOps
  154. final def sizeIs: SizeCompareOps
    Definition Classes
    IterableOps
    Annotations
    @inline()
  155. def slice(from: Int, until: Int): IndexedSeq[(A, B)]
    Definition Classes
    IndexedSeqOps → IndexedSeqOps → IterableOps → IterableOnceOps
  156. def sliding(size: Int, step: Int): Iterator[IndexedSeq[(A, B)]]
    Definition Classes
    IterableOps
  157. def sliding(size: Int): Iterator[IndexedSeq[(A, B)]]
    Definition Classes
    IterableOps
  158. def sortBy[B](f: ((A, B)) => B)(implicit ord: Ordering[B]): IndexedSeq[(A, B)]
    Definition Classes
    SeqOps
  159. def sortWith(lt: ((A, B), (A, B)) => Boolean): IndexedSeq[(A, B)]
    Definition Classes
    SeqOps
  160. def sorted[B >: (A, B)](implicit ord: Ordering[B]): IndexedSeq[(A, B)]
    Definition Classes
    SeqOps
  161. def span(p: ((A, B)) => Boolean): (IndexedSeq[(A, B)], IndexedSeq[(A, B)])
    Definition Classes
    IterableOps → IterableOnceOps
  162. def splitAt(n: Int): (IndexedSeq[(A, B)], IndexedSeq[(A, B)])
    Definition Classes
    IterableOps → IterableOnceOps
  163. def startsWith[B >: (A, B)](that: IterableOnce[B], offset: Int): Boolean
    Definition Classes
    SeqOps
  164. def stepper[S <: Stepper[_]](implicit shape: StepperShape[(A, B), S]): S with EfficientSplit
    Definition Classes
    IndexedSeqOps → IterableOnce
  165. def stringPrefix: String
    Attributes
    protected[this]
    Definition Classes
    IndexedSeq → Seq → Iterable
    Annotations
    @deprecatedOverriding("Compatibility override", "2.13.0")
  166. def sum[B >: (A, B)](implicit num: Numeric[B]): B
    Definition Classes
    IterableOnceOps
  167. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  168. def tail: IndexedSeq[(A, B)]
    Definition Classes
    IterableOps
  169. def tails: Iterator[IndexedSeq[(A, B)]]
    Definition Classes
    IterableOps
  170. def take(n: Int): IndexedSeq[(A, B)]
    Definition Classes
    IndexedSeqOps → IterableOps → IterableOnceOps
  171. def takeRight(n: Int): IndexedSeq[(A, B)]
    Definition Classes
    IndexedSeqOps → IterableOps
  172. def takeWhile(p: ((A, B)) => Boolean): IndexedSeq[(A, B)]
    Definition Classes
    IterableOps → IterableOnceOps
  173. def tapEach[U](f: ((A, B)) => U): IndexedSeq[(A, B)]
    Definition Classes
    IterableOps → IterableOnceOps
  174. def to[C1](factory: Factory[(A, B), C1]): C1
    Definition Classes
    IterableOnceOps
  175. def toArray[B >: (A, B)](implicit arg0: ClassTag[B]): Array[B]
    Definition Classes
    IterableOnceOps
  176. final def toBuffer[B >: (A, B)]: Buffer[B]
    Definition Classes
    IterableOnceOps
    Annotations
    @inline()
  177. final def toIndexedSeq: IndexedSeq[(A, B)]
    Definition Classes
    IndexedSeq → IterableOnceOps
  178. final def toIterable: TableFor2.this.type
    Definition Classes
    Iterable → IterableOps
  179. def toList: List[(A, B)]
    Definition Classes
    IterableOnceOps
  180. def toMap[K, V](implicit ev: <:<[(A, B), (K, V)]): Map[K, V]
    Definition Classes
    IterableOnceOps
  181. final def toSeq: TableFor2.this.type
    Definition Classes
    Seq → IterableOnceOps
  182. def toSet[B >: (A, B)]: Set[B]
    Definition Classes
    IterableOnceOps
  183. def toString(): String

    A string representation of this object, which includes the heading strings as well as the rows of data.

    A string representation of this object, which includes the heading strings as well as the rows of data.

    Definition Classes
    TableFor2 → Seq → Function1 → Iterable → AnyRef → Any
  184. def toVector: Vector[(A, B)]
    Definition Classes
    IterableOnceOps
  185. def transpose[B](implicit asIterable: ((A, B)) => Iterable[B]): IndexedSeq[IndexedSeq[B]]
    Definition Classes
    IterableOps
  186. def unapply(a: Int): Option[(A, B)]
    Definition Classes
    PartialFunction
  187. def unzip[A1, A2](implicit asPair: ((A, B)) => (A1, A2)): (IndexedSeq[A1], IndexedSeq[A2])
    Definition Classes
    IterableOps
  188. def unzip3[A1, A2, A3](implicit asTriple: ((A, B)) => (A1, A2, A3)): (IndexedSeq[A1], IndexedSeq[A2], IndexedSeq[A3])
    Definition Classes
    IterableOps
  189. def updated[B >: (A, B)](index: Int, elem: B): IndexedSeq[B]
    Definition Classes
    SeqOps
  190. def view: IndexedSeqView[(A, B)]
    Definition Classes
    IndexedSeqOps → SeqOps → IterableOps
  191. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  192. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  193. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  194. def withFilter(p: ((A, B)) => Boolean): WithFilter[(A, B), [_]IndexedSeq[_]]
    Definition Classes
    IterableOps
  195. def zip[B](that: IterableOnce[B]): IndexedSeq[((A, B), B)]
    Definition Classes
    IterableOps
  196. def zipAll[A1 >: (A, B), B](that: Iterable[B], thisElem: A1, thatElem: B): IndexedSeq[(A1, B)]
    Definition Classes
    IterableOps
  197. def zipWithIndex: IndexedSeq[((A, B), Int)]
    Definition Classes
    IterableOps → IterableOnceOps

Deprecated Value Members

  1. final def /:[B](z: B)(op: (B, (A, B)) => B): B
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use foldLeft instead of /:

  2. final def :\[B](z: B)(op: ((A, B), B) => B): B
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use foldRight instead of :\

  3. def aggregate[B](z: => B)(seqop: (B, (A, B)) => B, combop: (B, B) => B): B
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) aggregate is not relevant for sequential collections. Use foldLeft(z)(seqop) instead.

  4. def companion: IterableFactory[[_]IndexedSeq[_]]
    Definition Classes
    IterableOps
    Annotations
    @deprecated @deprecatedOverriding("Use iterableFactory instead", "2.13.0") @inline()
    Deprecated

    (Since version 2.13.0) Use iterableFactory instead

  5. final def copyToBuffer[B >: (A, B)](dest: Buffer[B]): Unit
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use dest ++= coll instead

  6. def hasDefiniteSize: Boolean
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Check .knownSize instead of .hasDefiniteSize for more actionable information (see scaladoc for details)

  7. final def prefixLength(p: ((A, B)) => Boolean): Int
    Definition Classes
    SeqOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use segmentLength instead of prefixLength

  8. final def repr: IndexedSeq[(A, B)]
    Definition Classes
    IterableOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use coll instead of repr in a collection implementation, use the collection value itself from the outside

  9. def reverseMap[B](f: ((A, B)) => B): IndexedSeq[B]
    Definition Classes
    SeqOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .reverseIterator.map(f).to(...) instead of .reverseMap(f)

  10. def seq: TableFor2.this.type
    Definition Classes
    Iterable
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Iterable.seq always returns the iterable itself

  11. final def toIterator: Iterator[(A, B)]
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator instead of .toIterator

  12. final def toStream: Stream[(A, B)]
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .to(LazyList) instead of .toStream

  13. final def toTraversable: Traversable[(A, B)]
    Definition Classes
    IterableOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use toIterable instead

  14. final def union[B >: (A, B)](that: Seq[B]): IndexedSeq[B]
    Definition Classes
    SeqOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use concat instead

  15. def view(from: Int, until: Int): IndexedSeqView[(A, B)]
    Definition Classes
    IndexedSeqOps → IterableOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .view.slice(from, until) instead of .view(from, until)

Inherited from IndexedSeq[(A, B)]

Inherited from IndexedSeqOps[(A, B), IndexedSeq, IndexedSeq[(A, B)]]

Inherited from IndexedSeq[(A, B)]

Inherited from IndexedSeqOps[(A, B), [_]IndexedSeq[_], IndexedSeq[(A, B)]]

Inherited from Seq[(A, B)]

Inherited from SeqOps[(A, B), [_]IndexedSeq[_], IndexedSeq[(A, B)]]

Inherited from Seq[(A, B)]

Inherited from Equals

Inherited from SeqOps[(A, B), [_]IndexedSeq[_], IndexedSeq[(A, B)]]

Inherited from PartialFunction[Int, (A, B)]

Inherited from (Int) => (A, B)

Inherited from Iterable[(A, B)]

Inherited from Iterable[(A, B)]

Inherited from IterableFactoryDefaults[(A, B), [x]IndexedSeq[x]]

Inherited from IterableOps[(A, B), [_]IndexedSeq[_], IndexedSeq[(A, B)]]

Inherited from IterableOnceOps[(A, B), [_]IndexedSeq[_], IndexedSeq[(A, B)]]

Inherited from IterableOnce[(A, B)]

Inherited from AnyRef

Inherited from Any

Ungrouped