Packages

t

scalaz

IsomorphismDivisible

trait IsomorphismDivisible[F[_], G[_]] extends Divisible[F] with IsomorphismDivide[F, G]

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsomorphismDivisible
  2. IsomorphismDivide
  3. IsomorphismContravariant
  4. Divisible
  5. ApplicativeDivisible
  6. Divide
  7. ApplyDivide
  8. Contravariant
  9. InvariantFunctor
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ContravariantLaw extends InvariantFunctorLaw
    Definition Classes
    Contravariant
  2. trait DivideLaw extends ContravariantLaw
    Definition Classes
    Divide
  3. trait DivisibleLaw extends DivideLaw
    Definition Classes
    Divisible
  4. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor

Abstract Value Members

  1. implicit abstract def G: Divisible[G]
  2. abstract def iso: Isomorphism.<~>[F, G]
    Definition Classes
    IsomorphismContravariant

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val applicativeDivisibleSyntax: ApplicativeDivisibleSyntax[F]
    Definition Classes
    ApplicativeDivisible
  5. val applyDivideSyntax: ApplyDivideSyntax[F]
    Definition Classes
    ApplyDivide
  6. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  7. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def compose[G[_]](implicit G0: Contravariant[G]): Functor[[α]F[G[α]]]

    The composition of Contravariant F and G, [x]F[G[x]], is covariant.

    The composition of Contravariant F and G, [x]F[G[x]], is covariant.

    Definition Classes
    Contravariant
  9. def conquer[A]: F[A]

    Universally quantified instance of F[_]

    Universally quantified instance of F[_]

    Definition Classes
    IsomorphismDivisibleDivisible
  10. def contramap[A, B](r: F[A])(f: (B) ⇒ A): F[B]

    Transform A.

    Transform A.

    Definition Classes
    IsomorphismContravariantContravariant
    Note

    contramap(r)(identity) = r

  11. def contravariantLaw: ContravariantLaw
    Definition Classes
    Contravariant
  12. val contravariantSyntax: ContravariantSyntax[F]
    Definition Classes
    Contravariant
  13. final def divide[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (C) ⇒ (A, B)): F[C]
    Definition Classes
    Divide
  14. final def divide1[A1, Z](a1: F[A1])(f: (Z) ⇒ A1): F[Z]
    Definition Classes
    Divide
  15. def divide2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (C) ⇒ (A, B)): F[C]
    Definition Classes
    IsomorphismDivideDivide
  16. def divide3[A1, A2, A3, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (Z) ⇒ (A1, A2, A3)): F[Z]
    Definition Classes
    Divide
  17. def divide4[A1, A2, A3, A4, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
    Definition Classes
    Divide
  18. def divideLaw: DivideLaw
    Definition Classes
    Divide
  19. val divideSyntax: DivideSyntax[F]
    Definition Classes
    Divide
  20. final def dividing1[A1, Z](f: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    Divide
  21. final def dividing2[A1, A2, Z](f: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    Divide
  22. final def dividing3[A1, A2, A3, Z](f: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    Divide
  23. final def dividing4[A1, A2, A3, A4, Z](f: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    Divide
  24. def divisibleLaw: DivisibleLaw
    Definition Classes
    Divisible
  25. val divisibleSyntax: DivisibleSyntax[F]
    Definition Classes
    Divisible
  26. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  27. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  28. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  29. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  30. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  31. def icompose[G[_]](implicit G0: Functor[G]): Contravariant[[α]F[G[α]]]

    The composition of Contravariant F and Functor G, [x]F[G[x]], is contravariant.

    The composition of Contravariant F and Functor G, [x]F[G[x]], is contravariant.

    Definition Classes
    Contravariant
  32. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  33. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  34. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  35. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  36. final def notify(): Unit
    Definition Classes
    AnyRef
  37. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  38. def product[G[_]](implicit G0: Contravariant[G]): Contravariant[[α](F[α], G[α])]

    The product of Contravariant F and G, [x](F[x], G[x]]), is contravariant.

    The product of Contravariant F and G, [x](F[x], G[x]]), is contravariant.

    Definition Classes
    Contravariant
  39. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  40. def toString(): String
    Definition Classes
    AnyRef → Any
  41. def tuple2[A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2]): F[(A1, A2)]
    Definition Classes
    Divide
  42. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  43. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  44. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  45. final def xderiving0[Z](z: Z): F[Z]
    Definition Classes
    ApplicativeDivisible
  46. final def xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    ApplyDivide
  47. final def xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    ApplyDivide
  48. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    ApplyDivide
  49. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    ApplyDivide
  50. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    ContravariantInvariantFunctor
  51. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  52. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor
  53. def xproduct0[Z](z: ⇒ Z): F[Z]
    Definition Classes
    DivisibleApplicativeDivisible
  54. def xproduct1[Z, A1](a1: F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
    Definition Classes
    ApplyDivide
  55. final def xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]
    Definition Classes
    DivideApplyDivide
  56. final def xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]
    Definition Classes
    DivideApplyDivide
  57. final def xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
    Definition Classes
    DivideApplyDivide

Inherited from IsomorphismDivide[F, G]

Inherited from IsomorphismContravariant[F, G]

Inherited from Divisible[F]

Inherited from ApplicativeDivisible[F]

Inherited from Divide[F]

Inherited from ApplyDivide[F]

Inherited from Contravariant[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped