trait RegionTMonad[S, M[_]] extends Monad[[γ$5$]RegionT[S, M, γ$5$]]
- Source
- RegionT.scala
- Alphabetic
- By Inheritance
- RegionTMonad
- Monad
- Bind
- Applicative
- InvariantApplicative
- Apply
- Functor
- InvariantFunctor
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- trait ApplicativeLaw extends ApplyLaw
- Definition Classes
- Applicative
- trait ApplyLaw extends FunctorLaw
- Definition Classes
- Apply
- trait FlippedApply extends Apply[F]
- Attributes
- protected[this]
- Definition Classes
- Apply
- trait BindLaw extends ApplyLaw
- Definition Classes
- Bind
- trait FunctorLaw extends InvariantFunctorLaw
- Definition Classes
- Functor
- trait InvariantFunctorLaw extends AnyRef
- Definition Classes
- InvariantFunctor
- trait MonadLaw extends ApplicativeLaw with BindLaw
- Definition Classes
- Monad
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def ap[A, B](fa: => RegionT[S, M, A])(f: => RegionT[S, M, (A) => B]): RegionT[S, M, B]
Sequence
f
, thenfa
, combining their results by function application.Sequence
f
, thenfa
, combining their results by function application.NB: with respect to
apply2
and all other combinators, as well as scalaz.Bind, thef
action appears to the *left*. Sof
should be the "first"F
-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first". - def ap2[A, B, C](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B])(f: RegionT[S, M, (A, B) => C]): RegionT[S, M, C]
- Definition Classes
- Apply
- def ap3[A, B, C, D](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C])(f: RegionT[S, M, (A, B, C) => D]): RegionT[S, M, D]
- Definition Classes
- Apply
- def ap4[A, B, C, D, E](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D])(f: RegionT[S, M, (A, B, C, D) => E]): RegionT[S, M, E]
- Definition Classes
- Apply
- def ap5[A, B, C, D, E, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E])(f: RegionT[S, M, (A, B, C, D, E) => R]): RegionT[S, M, R]
- Definition Classes
- Apply
- def ap6[A, B, C, D, E, FF, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E], ff: => RegionT[S, M, FF])(f: RegionT[S, M, (A, B, C, D, E, FF) => R]): RegionT[S, M, R]
- Definition Classes
- Apply
- def ap7[A, B, C, D, E, FF, G, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E], ff: => RegionT[S, M, FF], fg: => RegionT[S, M, G])(f: RegionT[S, M, (A, B, C, D, E, FF, G) => R]): RegionT[S, M, R]
- Definition Classes
- Apply
- def ap8[A, B, C, D, E, FF, G, H, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E], ff: => RegionT[S, M, FF], fg: => RegionT[S, M, G], fh: => RegionT[S, M, H])(f: RegionT[S, M, (A, B, C, D, E, FF, G, H) => R]): RegionT[S, M, R]
- Definition Classes
- Apply
- def apF[A, B](f: => RegionT[S, M, (A) => B]): (RegionT[S, M, A]) => RegionT[S, M, B]
Flipped variant of
ap
.Flipped variant of
ap
.- Definition Classes
- Apply
- def applicativeLaw: ApplicativeLaw
- Definition Classes
- Applicative
- val applicativeSyntax: ApplicativeSyntax[[γ$5$]RegionT[S, M, γ$5$]]
- Definition Classes
- Applicative
- def apply[A, B](fa: RegionT[S, M, A])(f: (A) => B): RegionT[S, M, B]
Alias for
map
.Alias for
map
.- Definition Classes
- Functor
- def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E], ff: => RegionT[S, M, FF], fg: => RegionT[S, M, G], fh: => RegionT[S, M, H], fi: => RegionT[S, M, I], fj: => RegionT[S, M, J])(f: (A, B, C, D, E, FF, G, H, I, J) => R): RegionT[S, M, R]
- Definition Classes
- Apply
- def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E], ff: => RegionT[S, M, FF], fg: => RegionT[S, M, G], fh: => RegionT[S, M, H], fi: => RegionT[S, M, I], fj: => RegionT[S, M, J], fk: => RegionT[S, M, K])(f: (A, B, C, D, E, FF, G, H, I, J, K) => R): RegionT[S, M, R]
- Definition Classes
- Apply
- def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E], ff: => RegionT[S, M, FF], fg: => RegionT[S, M, G], fh: => RegionT[S, M, H], fi: => RegionT[S, M, I], fj: => RegionT[S, M, J], fk: => RegionT[S, M, K], fl: => RegionT[S, M, L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): RegionT[S, M, R]
- Definition Classes
- Apply
- def apply2[A, B, C](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B])(f: (A, B) => C): RegionT[S, M, C]
- def apply3[A, B, C, D](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C])(f: (A, B, C) => D): RegionT[S, M, D]
- Definition Classes
- Apply
- def apply4[A, B, C, D, E](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D])(f: (A, B, C, D) => E): RegionT[S, M, E]
- Definition Classes
- Apply
- def apply5[A, B, C, D, E, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E])(f: (A, B, C, D, E) => R): RegionT[S, M, R]
- Definition Classes
- Apply
- def apply6[A, B, C, D, E, FF, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E], ff: => RegionT[S, M, FF])(f: (A, B, C, D, E, FF) => R): RegionT[S, M, R]
- Definition Classes
- Apply
- def apply7[A, B, C, D, E, FF, G, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E], ff: => RegionT[S, M, FF], fg: => RegionT[S, M, G])(f: (A, B, C, D, E, FF, G) => R): RegionT[S, M, R]
- Definition Classes
- Apply
- def apply8[A, B, C, D, E, FF, G, H, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E], ff: => RegionT[S, M, FF], fg: => RegionT[S, M, G], fh: => RegionT[S, M, H])(f: (A, B, C, D, E, FF, G, H) => R): RegionT[S, M, R]
- Definition Classes
- Apply
- def apply9[A, B, C, D, E, FF, G, H, I, R](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E], ff: => RegionT[S, M, FF], fg: => RegionT[S, M, G], fh: => RegionT[S, M, H], fi: => RegionT[S, M, I])(f: (A, B, C, D, E, FF, G, H, I) => R): RegionT[S, M, R]
- Definition Classes
- Apply
- def applyApplicative: Applicative[[α]\/[RegionT[S, M, α], α]]
Add a unit to any Apply to form an Applicative.
Add a unit to any Apply to form an Applicative.
- Definition Classes
- Apply
- def applyLaw: ApplyLaw
- Definition Classes
- Apply
- val applySyntax: ApplySyntax[[γ$5$]RegionT[S, M, γ$5$]]
- Definition Classes
- Apply
- final def applying1[Z, A1](f: (A1) => Z)(implicit a1: RegionT[S, M, A1]): RegionT[S, M, Z]
- Definition Classes
- Apply
- final def applying2[Z, A1, A2](f: (A1, A2) => Z)(implicit a1: RegionT[S, M, A1], a2: RegionT[S, M, A2]): RegionT[S, M, Z]
- Definition Classes
- Apply
- final def applying3[Z, A1, A2, A3](f: (A1, A2, A3) => Z)(implicit a1: RegionT[S, M, A1], a2: RegionT[S, M, A2], a3: RegionT[S, M, A3]): RegionT[S, M, Z]
- Definition Classes
- Apply
- final def applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z)(implicit a1: RegionT[S, M, A1], a2: RegionT[S, M, A2], a3: RegionT[S, M, A3], a4: RegionT[S, M, A4]): RegionT[S, M, Z]
- Definition Classes
- Apply
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]RegionT[S, M, G[α, β]]]
The composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a BifunctorThe composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a Bifunctor- Definition Classes
- Functor
- def bind[A, B](fa: RegionT[S, M, A])(f: (A) => RegionT[S, M, B]): RegionT[S, M, B]
Equivalent to
join(map(fa)(f))
.Equivalent to
join(map(fa)(f))
.- Definition Classes
- RegionTMonad → Bind
- def bindLaw: BindLaw
- Definition Classes
- Bind
- val bindSyntax: BindSyntax[[γ$5$]RegionT[S, M, γ$5$]]
- Definition Classes
- Bind
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- def compose[G[_]](implicit G0: Applicative[G]): Applicative[[α]RegionT[S, M, G[α]]]
The composition of Applicatives
F
andG
,[x]F[G[x]]
, is an ApplicativeThe composition of Applicatives
F
andG
,[x]F[G[x]]
, is an Applicative- Definition Classes
- Applicative
- def compose[G[_]](implicit G0: Apply[G]): Apply[[α]RegionT[S, M, G[α]]]
The composition of Applys
F
andG
,[x]F[G[x]]
, is a ApplyThe composition of Applys
F
andG
,[x]F[G[x]]
, is a Apply- Definition Classes
- Apply
- def compose[G[_]](implicit G0: Functor[G]): Functor[[α]RegionT[S, M, G[α]]]
The composition of Functors
F
andG
,[x]F[G[x]]
, is a FunctorThe composition of Functors
F
andG
,[x]F[G[x]]
, is a Functor- Definition Classes
- Functor
- def counzip[A, B](a: \/[RegionT[S, M, A], RegionT[S, M, B]]): RegionT[S, M, \/[A, B]]
- Definition Classes
- Functor
- def discardLeft[A, B](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B]): RegionT[S, M, B]
Combine
fa
andfb
according toApply[F]
with a function that discards theA
(s)Combine
fa
andfb
according toApply[F]
with a function that discards theA
(s)- Definition Classes
- Apply
- def discardRight[A, B](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B]): RegionT[S, M, A]
Combine
fa
andfb
according toApply[F]
with a function that discards theB
(s)Combine
fa
andfb
according toApply[F]
with a function that discards theB
(s)- Definition Classes
- Apply
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def filterM[A](l: IList[A])(f: (A) => RegionT[S, M, Boolean]): RegionT[S, M, IList[A]]
Filter
l
according to an applicative predicate.Filter
l
according to an applicative predicate.- Definition Classes
- Applicative
- def filterM[A](l: List[A])(f: (A) => RegionT[S, M, Boolean]): RegionT[S, M, List[A]]
Filter
l
according to an applicative predicate.Filter
l
according to an applicative predicate.- Definition Classes
- Applicative
- def filterM[A, B](map: ==>>[A, B])(f: (B) => RegionT[S, M, Boolean])(implicit O: Order[A]): RegionT[S, M, ==>>[A, B]]
Filter
map
according to an applicative predicate.Filter
map
according to an applicative predicate. *- Definition Classes
- Applicative
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- def flip: Applicative[[γ$5$]RegionT[S, M, γ$5$]]
An
Applicative
forF
in which effects happen in the opposite order.An
Applicative
forF
in which effects happen in the opposite order.- Definition Classes
- Applicative → Apply
- def forever[A, B](fa: RegionT[S, M, A]): RegionT[S, M, B]
Repeats an applicative action infinitely
Repeats an applicative action infinitely
- Definition Classes
- Apply
- def fpair[A](fa: RegionT[S, M, A]): RegionT[S, M, (A, A)]
Twin all
A
s infa
.Twin all
A
s infa
.- Definition Classes
- Functor
- def fproduct[A, B](fa: RegionT[S, M, A])(f: (A) => B): RegionT[S, M, (A, B)]
Pair all
A
s infa
with the result of function application.Pair all
A
s infa
with the result of function application.- Definition Classes
- Functor
- def functorLaw: FunctorLaw
- Definition Classes
- Functor
- val functorSyntax: FunctorSyntax[[γ$5$]RegionT[S, M, γ$5$]]
- Definition Classes
- Functor
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]RegionT[S, M, G[α]]]
The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.- Definition Classes
- Functor
- def ifM[B](value: RegionT[S, M, Boolean], ifTrue: => RegionT[S, M, B], ifFalse: => RegionT[S, M, B]): RegionT[S, M, B]
if
lifted into a binding.if
lifted into a binding. Unlikelift3((t,c,a)=>if(t)c else a)
, this will only include context from the chosen ofifTrue
andifFalse
, not the other.- Definition Classes
- Bind
- val invariantApplicativeSyntax: InvariantApplicativeSyntax[[γ$5$]RegionT[S, M, γ$5$]]
- Definition Classes
- InvariantApplicative
- def invariantFunctorLaw: InvariantFunctorLaw
- Definition Classes
- InvariantFunctor
- val invariantFunctorSyntax: InvariantFunctorSyntax[[γ$5$]RegionT[S, M, γ$5$]]
- Definition Classes
- InvariantFunctor
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def iterateUntil[A](f: RegionT[S, M, A])(p: (A) => Boolean): RegionT[S, M, A]
Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.
Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.
- Definition Classes
- Monad
- def iterateWhile[A](f: RegionT[S, M, A])(p: (A) => Boolean): RegionT[S, M, A]
Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.
Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.
- Definition Classes
- Monad
- def join[A](ffa: RegionT[S, M, RegionT[S, M, A]]): RegionT[S, M, A]
Sequence the inner
F
ofFFA
after the outerF
, forming a singleF[A]
.Sequence the inner
F
ofFFA
after the outerF
, forming a singleF[A]
.- Definition Classes
- Bind
- def lift[A, B](f: (A) => B): (RegionT[S, M, A]) => RegionT[S, M, B]
Lift
f
intoF
.Lift
f
intoF
.- Definition Classes
- Functor
- def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) => R): (RegionT[S, M, A], RegionT[S, M, B], RegionT[S, M, C], RegionT[S, M, D], RegionT[S, M, E], RegionT[S, M, FF], RegionT[S, M, G], RegionT[S, M, H], RegionT[S, M, I], RegionT[S, M, J]) => RegionT[S, M, R]
- Definition Classes
- Apply
- def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) => R): (RegionT[S, M, A], RegionT[S, M, B], RegionT[S, M, C], RegionT[S, M, D], RegionT[S, M, E], RegionT[S, M, FF], RegionT[S, M, G], RegionT[S, M, H], RegionT[S, M, I], RegionT[S, M, J], RegionT[S, M, K]) => RegionT[S, M, R]
- Definition Classes
- Apply
- def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): (RegionT[S, M, A], RegionT[S, M, B], RegionT[S, M, C], RegionT[S, M, D], RegionT[S, M, E], RegionT[S, M, FF], RegionT[S, M, G], RegionT[S, M, H], RegionT[S, M, I], RegionT[S, M, J], RegionT[S, M, K], RegionT[S, M, L]) => RegionT[S, M, R]
- Definition Classes
- Apply
- def lift2[A, B, C](f: (A, B) => C): (RegionT[S, M, A], RegionT[S, M, B]) => RegionT[S, M, C]
- Definition Classes
- Apply
- def lift3[A, B, C, D](f: (A, B, C) => D): (RegionT[S, M, A], RegionT[S, M, B], RegionT[S, M, C]) => RegionT[S, M, D]
- Definition Classes
- Apply
- def lift4[A, B, C, D, E](f: (A, B, C, D) => E): (RegionT[S, M, A], RegionT[S, M, B], RegionT[S, M, C], RegionT[S, M, D]) => RegionT[S, M, E]
- Definition Classes
- Apply
- def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) => R): (RegionT[S, M, A], RegionT[S, M, B], RegionT[S, M, C], RegionT[S, M, D], RegionT[S, M, E]) => RegionT[S, M, R]
- Definition Classes
- Apply
- def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) => R): (RegionT[S, M, A], RegionT[S, M, B], RegionT[S, M, C], RegionT[S, M, D], RegionT[S, M, E], RegionT[S, M, FF]) => RegionT[S, M, R]
- Definition Classes
- Apply
- def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) => R): (RegionT[S, M, A], RegionT[S, M, B], RegionT[S, M, C], RegionT[S, M, D], RegionT[S, M, E], RegionT[S, M, FF], RegionT[S, M, G]) => RegionT[S, M, R]
- Definition Classes
- Apply
- def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) => R): (RegionT[S, M, A], RegionT[S, M, B], RegionT[S, M, C], RegionT[S, M, D], RegionT[S, M, E], RegionT[S, M, FF], RegionT[S, M, G], RegionT[S, M, H]) => RegionT[S, M, R]
- Definition Classes
- Apply
- def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) => R): (RegionT[S, M, A], RegionT[S, M, B], RegionT[S, M, C], RegionT[S, M, D], RegionT[S, M, E], RegionT[S, M, FF], RegionT[S, M, G], RegionT[S, M, H], RegionT[S, M, I]) => RegionT[S, M, R]
- Definition Classes
- Apply
- def liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[RegionT[S, M, A], RegionT[S, M, B]]
- Definition Classes
- Apply
- def map[A, B](fa: RegionT[S, M, A])(f: (A) => B): RegionT[S, M, B]
Lift
f
intoF
and apply toF[A]
.Lift
f
intoF
and apply toF[A]
.- Definition Classes
- Monad → Applicative → Functor
- def mapply[A, B](a: A)(f: RegionT[S, M, (A) => B]): RegionT[S, M, B]
Lift
apply(a)
, and apply the result tof
.Lift
apply(a)
, and apply the result tof
.- Definition Classes
- Functor
- def monadLaw: MonadLaw
- Definition Classes
- Monad
- val monadSyntax: MonadSyntax[[γ$5$]RegionT[S, M, γ$5$]]
- Definition Classes
- Monad
- def mproduct[A, B](fa: RegionT[S, M, A])(f: (A) => RegionT[S, M, B]): RegionT[S, M, (A, B)]
Pair
A
with the result of function application.Pair
A
with the result of function application.- Definition Classes
- Bind
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def par: Par[[γ$5$]RegionT[S, M, γ$5$]]
A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g.
A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).
- Definition Classes
- Applicative
- def plusA[A](x: => RegionT[S, M, A], y: => RegionT[S, M, A])(implicit sa: Semigroup[A]): RegionT[S, M, A]
Semigroups can be added within an Applicative
Semigroups can be added within an Applicative
- Definition Classes
- Applicative
- def point[A](a: => A): RegionT[S, M, A]
- Definition Classes
- RegionTMonad → Applicative
- def product[G[_]](implicit G0: Monad[G]): Monad[[α](RegionT[S, M, α], G[α])]
The product of Monad
F
andG
,[x](F[x], G[x]])
, is a MonadThe product of Monad
F
andG
,[x](F[x], G[x]])
, is a Monad- Definition Classes
- Monad
- def product[G[_]](implicit G0: Bind[G]): Bind[[α](RegionT[S, M, α], G[α])]
The product of Bind
F
andG
,[x](F[x], G[x]])
, is a BindThe product of Bind
F
andG
,[x](F[x], G[x]])
, is a Bind- Definition Classes
- Bind
- def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](RegionT[S, M, α], G[α])]
The product of Applicatives
F
andG
,[x](F[x], G[x]])
, is an ApplicativeThe product of Applicatives
F
andG
,[x](F[x], G[x]])
, is an Applicative- Definition Classes
- Applicative
- def product[G[_]](implicit G0: Apply[G]): Apply[[α](RegionT[S, M, α], G[α])]
The product of Applys
F
andG
,[x](F[x], G[x]])
, is a ApplyThe product of Applys
F
andG
,[x](F[x], G[x]])
, is a Apply- Definition Classes
- Apply
- def product[G[_]](implicit G0: Functor[G]): Functor[[α](RegionT[S, M, α], G[α])]
The product of Functors
F
andG
,[x](F[x], G[x]])
, is a FunctorThe product of Functors
F
andG
,[x](F[x], G[x]])
, is a Functor- Definition Classes
- Functor
- final def pure[A](a: => A): RegionT[S, M, A]
- Definition Classes
- Applicative
- def replicateM[A](n: Int, fa: RegionT[S, M, A]): RegionT[S, M, IList[A]]
Performs the action
n
times, returning the list of results.Performs the action
n
times, returning the list of results.- Definition Classes
- Applicative
- def replicateM_[A](n: Int, fa: RegionT[S, M, A]): RegionT[S, M, Unit]
Performs the action
n
times, returning nothing.Performs the action
n
times, returning nothing.- Definition Classes
- Applicative
- def sequence[A, G[_]](as: G[RegionT[S, M, A]])(implicit arg0: Traverse[G]): RegionT[S, M, G[A]]
- Definition Classes
- Applicative
- def sequence1[A, G[_]](as: G[RegionT[S, M, A]])(implicit arg0: Traverse1[G]): RegionT[S, M, G[A]]
- Definition Classes
- Apply
- def strengthL[A, B](a: A, f: RegionT[S, M, B]): RegionT[S, M, (A, B)]
Inject
a
to the left ofB
s inf
.Inject
a
to the left ofB
s inf
.- Definition Classes
- Functor
- def strengthR[A, B](f: RegionT[S, M, A], b: B): RegionT[S, M, (A, B)]
Inject
b
to the right ofA
s inf
.Inject
b
to the right ofA
s inf
.- Definition Classes
- Functor
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def traverse[A, G[_], B](value: G[A])(f: (A) => RegionT[S, M, B])(implicit G: Traverse[G]): RegionT[S, M, G[B]]
- Definition Classes
- Applicative
- def traverse1[A, G[_], B](value: G[A])(f: (A) => RegionT[S, M, B])(implicit G: Traverse1[G]): RegionT[S, M, G[B]]
- Definition Classes
- Apply
- def tuple2[A, B](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B]): RegionT[S, M, (A, B)]
- Definition Classes
- Apply
- def tuple3[A, B, C](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C]): RegionT[S, M, (A, B, C)]
- Definition Classes
- Apply
- def tuple4[A, B, C, D](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D]): RegionT[S, M, (A, B, C, D)]
- Definition Classes
- Apply
- def tuple5[A, B, C, D, E](fa: => RegionT[S, M, A], fb: => RegionT[S, M, B], fc: => RegionT[S, M, C], fd: => RegionT[S, M, D], fe: => RegionT[S, M, E]): RegionT[S, M, (A, B, C, D, E)]
- Definition Classes
- Apply
- def unfoldrOpt[S, A, B](seed: S)(f: (S) => Maybe[(RegionT[S, M, A], S)])(implicit R: Reducer[A, B]): Maybe[RegionT[S, M, B]]
Unfold
seed
to the right and combine effects left-to-right, using the given Reducer to combine values. - def unlessM[A](cond: Boolean)(f: => RegionT[S, M, A]): RegionT[S, M, Unit]
Returns the given argument if
cond
isfalse
, otherwise, unit lifted into F.Returns the given argument if
cond
isfalse
, otherwise, unit lifted into F.- Definition Classes
- Applicative
- def untilM[G[_], A](f: RegionT[S, M, A], cond: => RegionT[S, M, Boolean])(implicit G: MonadPlus[G]): RegionT[S, M, G[A]]
Execute an action repeatedly until the
Boolean
condition returnstrue
.Execute an action repeatedly until the
Boolean
condition returnstrue
. The condition is evaluated after the loop body. Collects results into an arbitraryMonadPlus
value, such as aList
.- Definition Classes
- Monad
- def untilM_[A](f: RegionT[S, M, A], cond: => RegionT[S, M, Boolean]): RegionT[S, M, Unit]
Execute an action repeatedly until the
Boolean
condition returnstrue
.Execute an action repeatedly until the
Boolean
condition returnstrue
. The condition is evaluated after the loop body. Discards results.- Definition Classes
- Monad
- def void[A](fa: RegionT[S, M, A]): RegionT[S, M, Unit]
Empty
fa
of meaningful pure values, preserving its structure.Empty
fa
of meaningful pure values, preserving its structure.- Definition Classes
- Functor
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- def whenM[A](cond: Boolean)(f: => RegionT[S, M, A]): RegionT[S, M, Unit]
Returns the given argument if
cond
istrue
, otherwise, unit lifted into F.Returns the given argument if
cond
istrue
, otherwise, unit lifted into F.- Definition Classes
- Applicative
- def whileM[G[_], A](p: RegionT[S, M, Boolean], body: => RegionT[S, M, A])(implicit G: MonadPlus[G]): RegionT[S, M, G[A]]
Execute an action repeatedly as long as the given
Boolean
expression returnstrue
.Execute an action repeatedly as long as the given
Boolean
expression returnstrue
. The condition is evaluated before the loop body. Collects the results into an arbitraryMonadPlus
value, such as aList
.- Definition Classes
- Monad
- def whileM_[A](p: RegionT[S, M, Boolean], body: => RegionT[S, M, A]): RegionT[S, M, Unit]
Execute an action repeatedly as long as the given
Boolean
expression returnstrue
.Execute an action repeatedly as long as the given
Boolean
expression returnstrue
. The condition is evaluated before the loop body. Discards results.- Definition Classes
- Monad
- def widen[A, B](fa: RegionT[S, M, A])(implicit ev: <~<[A, B]): RegionT[S, M, B]
Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.- Definition Classes
- Functor
- final def xderiving0[Z](z: => Z): RegionT[S, M, Z]
- Definition Classes
- InvariantApplicative
- final def xderiving1[Z, A1](f: (A1) => Z, g: (Z) => A1)(implicit a1: RegionT[S, M, A1]): RegionT[S, M, Z]
- Definition Classes
- InvariantApplicative
- final def xderiving2[Z, A1, A2](f: (A1, A2) => Z, g: (Z) => (A1, A2))(implicit a1: RegionT[S, M, A1], a2: RegionT[S, M, A2]): RegionT[S, M, Z]
- Definition Classes
- InvariantApplicative
- final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) => Z, g: (Z) => (A1, A2, A3))(implicit a1: RegionT[S, M, A1], a2: RegionT[S, M, A2], a3: RegionT[S, M, A3]): RegionT[S, M, Z]
- Definition Classes
- InvariantApplicative
- final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z, g: (Z) => (A1, A2, A3, A4))(implicit a1: RegionT[S, M, A1], a2: RegionT[S, M, A2], a3: RegionT[S, M, A3], a4: RegionT[S, M, A4]): RegionT[S, M, Z]
- Definition Classes
- InvariantApplicative
- def xmap[A, B](fa: RegionT[S, M, A], f: (A) => B, g: (B) => A): RegionT[S, M, B]
Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.- Definition Classes
- Functor → InvariantFunctor
- def xmapb[A, B](ma: RegionT[S, M, A])(b: Bijection[A, B]): RegionT[S, M, B]
Converts
ma
to a value of typeF[B]
using the provided bijection.Converts
ma
to a value of typeF[B]
using the provided bijection.- Definition Classes
- InvariantFunctor
- def xmapi[A, B](ma: RegionT[S, M, A])(iso: Isomorphism.<=>[A, B]): RegionT[S, M, B]
Converts
ma
to a value of typeF[B]
using the provided isomorphism.Converts
ma
to a value of typeF[B]
using the provided isomorphism.- Definition Classes
- InvariantFunctor
- def xproduct0[Z](z: => Z): RegionT[S, M, Z]
- Definition Classes
- Applicative → InvariantApplicative
- def xproduct1[Z, A1](a1: => RegionT[S, M, A1])(f: (A1) => Z, g: (Z) => A1): RegionT[S, M, Z]
- Definition Classes
- Applicative → InvariantApplicative
- def xproduct2[Z, A1, A2](a1: => RegionT[S, M, A1], a2: => RegionT[S, M, A2])(f: (A1, A2) => Z, g: (Z) => (A1, A2)): RegionT[S, M, Z]
- Definition Classes
- Applicative → InvariantApplicative
- def xproduct3[Z, A1, A2, A3](a1: => RegionT[S, M, A1], a2: => RegionT[S, M, A2], a3: => RegionT[S, M, A3])(f: (A1, A2, A3) => Z, g: (Z) => (A1, A2, A3)): RegionT[S, M, Z]
- Definition Classes
- Applicative → InvariantApplicative
- def xproduct4[Z, A1, A2, A3, A4](a1: => RegionT[S, M, A1], a2: => RegionT[S, M, A2], a3: => RegionT[S, M, A3], a4: => RegionT[S, M, A4])(f: (A1, A2, A3, A4) => Z, g: (Z) => (A1, A2, A3, A4)): RegionT[S, M, Z]
- Definition Classes
- Applicative → InvariantApplicative