public final class Ops extends Object
Graph
with operation wrappers
Any operation wrapper found in the classpath properly annotated as an@Operator
is exposed
by this API or one of its subgroup.
Example usage:
try (Graph g = new Graph()) {
Ops ops = new Ops(g);
// Operations are typed classes with convenience
// builders in Ops.
Constant three = ops.constant(3);
// Single-result operations implement the Operand
// interface, so this works too.
Operand four = ops.constant(4);
// Most builders are found within a group, and accept
// Operand types as operands
Operand nine = ops.math().add(four, ops.constant(5));
// Multi-result operations however offer methods to
// select a particular result for use.
Operand result =
ops.math().add(ops.array().unique(s, a).y(), b);
// Optional attributes
ops.math().matMul(a, b, MatMul.transposeA(true));
// Naming operators
ops.withName(“foo”).constant(5); // name “foo”
// Names can exist in a hierarchy
Ops sub = ops.withSubScope(“sub”);
sub.withName(“bar”).constant(4); // “sub/bar”
}
Modifier and Type | Method and Description |
---|---|
Abort |
abort(Abort.Options... options)
Adds an
Abort operation to the graph |
<T extends Number> |
abs(Operand<T> x)
Adds an
Abs operation to the graph |
<T> AccumulateNV2<T> |
accumulateNV2(Operand<T> inputs,
Shape shape)
Adds an
AccumulateNV2 operation to the graph |
<T> AccumulatorApplyGradient |
accumulatorApplyGradient(Operand<String> handle,
Operand<Long> localStep,
Operand<T> gradient)
Adds an
AccumulatorApplyGradient operation to the graph |
AccumulatorNumAccumulated |
accumulatorNumAccumulated(Operand<String> handle)
Adds an
AccumulatorNumAccumulated operation to the graph |
AccumulatorSetGlobalStep |
accumulatorSetGlobalStep(Operand<String> handle,
Operand<Long> newGlobalStep)
Adds an
AccumulatorSetGlobalStep operation to the graph |
<T> AccumulatorTakeGradient<T> |
accumulatorTakeGradient(Operand<String> handle,
Operand<Integer> numRequired,
Class<T> dtype)
Adds an
AccumulatorTakeGradient operation to the graph |
<T> Acos<T> |
acos(Operand<T> x)
Adds an
Acos operation to the graph |
<T> Acosh<T> |
acosh(Operand<T> x)
Adds an
Acosh operation to the graph |
<T> Add<T> |
add(Operand<T> x,
Operand<T> y)
Adds an
Add operation to the graph |
<T> AddManySparseToTensorsMap |
addManySparseToTensorsMap(Operand<Long> sparseIndices,
Operand<T> sparseValues,
Operand<Long> sparseShape,
AddManySparseToTensorsMap.Options... options)
Adds an
AddManySparseToTensorsMap operation to the graph |
<T> AddN<T> |
addN(Operand<T> inputs)
Adds an
AddN operation to the graph |
<T> AddSparseToTensorsMap |
addSparseToTensorsMap(Operand<Long> sparseIndices,
Operand<T> sparseValues,
Operand<Long> sparseShape,
AddSparseToTensorsMap.Options... options)
Adds an
AddSparseToTensorsMap operation to the graph |
<T> AddV2<T> |
addV2(Operand<T> x,
Operand<T> y)
Adds an
AddV2 operation to the graph |
AdjustContrast |
adjustContrast(Operand<Float> images,
Operand<Float> contrastFactor)
Adds an
AdjustContrast operation to the graph |
AdjustHue |
adjustHue(Operand<Float> images,
Operand<Float> delta)
Adds an
AdjustHue operation to the graph |
AdjustSaturation |
adjustSaturation(Operand<Float> images,
Operand<Float> scale)
Adds an
AdjustSaturation operation to the graph |
<T extends Number> |
all(Operand<Boolean> input,
Operand<T> axis,
All.Options... options)
Adds an
All operation to the graph |
AllCandidateSampler |
allCandidateSampler(Operand<Long> trueClasses,
Long numTrue,
Long numSampled,
Boolean unique,
AllCandidateSampler.Options... options)
Adds an
AllCandidateSampler operation to the graph |
<T> Angle<Float> |
angle(Operand<T> input)
Adds an
Angle operation to the graph |
<U extends Number,T> |
angle(Operand<T> input,
Class<U> Tout)
Adds an
Angle operation to the graph |
AnonymousIterator |
anonymousIterator(List<Class<?>> outputTypes,
List<Shape> outputShapes)
Adds an
AnonymousIterator operation to the graph |
<T extends Number> |
any(Operand<Boolean> input,
Operand<T> axis,
Any.Options... options)
Adds an
Any operation to the graph |
<T> ApplyAdadelta<T> |
applyAdadelta(Operand<T> var,
Operand<T> accum,
Operand<T> accumUpdate,
Operand<T> lr,
Operand<T> rho,
Operand<T> epsilon,
Operand<T> grad,
ApplyAdadelta.Options... options)
Adds an
ApplyAdadelta operation to the graph |
<T> ApplyAdagrad<T> |
applyAdagrad(Operand<T> var,
Operand<T> accum,
Operand<T> lr,
Operand<T> grad,
ApplyAdagrad.Options... options)
Adds an
ApplyAdagrad operation to the graph |
<T> ApplyAdagradDA<T> |
applyAdagradDA(Operand<T> var,
Operand<T> gradientAccumulator,
Operand<T> gradientSquaredAccumulator,
Operand<T> grad,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<Long> globalStep,
ApplyAdagradDA.Options... options)
Adds an
ApplyAdagradDA operation to the graph |
<T> ApplyAdam<T> |
applyAdam(Operand<T> var,
Operand<T> m,
Operand<T> v,
Operand<T> beta1Power,
Operand<T> beta2Power,
Operand<T> lr,
Operand<T> beta1,
Operand<T> beta2,
Operand<T> epsilon,
Operand<T> grad,
ApplyAdam.Options... options)
Adds an
ApplyAdam operation to the graph |
<T> ApplyAddSign<T> |
applyAddSign(Operand<T> var,
Operand<T> m,
Operand<T> lr,
Operand<T> alpha,
Operand<T> signDecay,
Operand<T> beta,
Operand<T> grad,
ApplyAddSign.Options... options)
Adds an
ApplyAddSign operation to the graph |
<T> ApplyCenteredRMSProp<T> |
applyCenteredRMSProp(Operand<T> var,
Operand<T> mg,
Operand<T> ms,
Operand<T> mom,
Operand<T> lr,
Operand<T> rho,
Operand<T> momentum,
Operand<T> epsilon,
Operand<T> grad,
ApplyCenteredRMSProp.Options... options)
Adds an
ApplyCenteredRMSProp operation to the graph |
<T> ApplyFtrl<T> |
applyFtrl(Operand<T> var,
Operand<T> accum,
Operand<T> linear,
Operand<T> grad,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> lrPower,
ApplyFtrl.Options... options)
Adds an
ApplyFtrl operation to the graph |
<T> ApplyFtrlV2<T> |
applyFtrlV2(Operand<T> var,
Operand<T> accum,
Operand<T> linear,
Operand<T> grad,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> l2Shrinkage,
Operand<T> lrPower,
ApplyFtrlV2.Options... options)
Adds an
ApplyFtrlV2 operation to the graph |
<T> ApplyGradientDescent<T> |
applyGradientDescent(Operand<T> var,
Operand<T> alpha,
Operand<T> delta,
ApplyGradientDescent.Options... options)
Adds an
ApplyGradientDescent operation to the graph |
<T> ApplyMomentum<T> |
applyMomentum(Operand<T> var,
Operand<T> accum,
Operand<T> lr,
Operand<T> grad,
Operand<T> momentum,
ApplyMomentum.Options... options)
Adds an
ApplyMomentum operation to the graph |
<T> ApplyPowerSign<T> |
applyPowerSign(Operand<T> var,
Operand<T> m,
Operand<T> lr,
Operand<T> logbase,
Operand<T> signDecay,
Operand<T> beta,
Operand<T> grad,
ApplyPowerSign.Options... options)
Adds an
ApplyPowerSign operation to the graph |
<T> ApplyProximalAdagrad<T> |
applyProximalAdagrad(Operand<T> var,
Operand<T> accum,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> grad,
ApplyProximalAdagrad.Options... options)
Adds an
ApplyProximalAdagrad operation to the graph |
<T> ApplyProximalGradientDescent<T> |
applyProximalGradientDescent(Operand<T> var,
Operand<T> alpha,
Operand<T> l1,
Operand<T> l2,
Operand<T> delta,
ApplyProximalGradientDescent.Options... options)
Adds an
ApplyProximalGradientDescent operation to the graph |
<T> ApplyRMSProp<T> |
applyRMSProp(Operand<T> var,
Operand<T> ms,
Operand<T> mom,
Operand<T> lr,
Operand<T> rho,
Operand<T> momentum,
Operand<T> epsilon,
Operand<T> grad,
ApplyRMSProp.Options... options)
Adds an
ApplyRMSProp operation to the graph |
<T> ApproximateEqual |
approximateEqual(Operand<T> x,
Operand<T> y,
ApproximateEqual.Options... options)
Adds an
ApproximateEqual operation to the graph |
<T,U extends Number> |
argMax(Operand<T> input,
Operand<U> dimension)
Adds an
ArgMax operation to the graph |
<V extends Number,T,U extends Number> |
argMax(Operand<T> input,
Operand<U> dimension,
Class<V> outputType)
Adds an
ArgMax operation to the graph |
<T,U extends Number> |
argMin(Operand<T> input,
Operand<U> dimension)
Adds an
ArgMin operation to the graph |
<V extends Number,T,U extends Number> |
argMin(Operand<T> input,
Operand<U> dimension,
Class<V> outputType)
Adds an
ArgMin operation to the graph |
<T> Asin<T> |
asin(Operand<T> x)
Adds an
Asin operation to the graph |
<T> Asinh<T> |
asinh(Operand<T> x)
Adds an
Asinh operation to the graph |
<T> Assign<T> |
assign(Operand<T> ref,
Operand<T> value,
Assign.Options... options)
Adds an
Assign operation to the graph |
<T> AssignAdd<T> |
assignAdd(Operand<T> ref,
Operand<T> value,
AssignAdd.Options... options)
Adds an
AssignAdd operation to the graph |
<T> AssignAddVariableOp |
assignAddVariableOp(Operand<?> resource,
Operand<T> value)
Adds an
AssignAddVariableOp operation to the graph |
<T> AssignSub<T> |
assignSub(Operand<T> ref,
Operand<T> value,
AssignSub.Options... options)
Adds an
AssignSub operation to the graph |
<T> AssignSubVariableOp |
assignSubVariableOp(Operand<?> resource,
Operand<T> value)
Adds an
AssignSubVariableOp operation to the graph |
<T> AssignVariableOp |
assignVariableOp(Operand<?> resource,
Operand<T> value)
Adds an
AssignVariableOp operation to the graph |
<T> AsString |
asString(Operand<T> input,
AsString.Options... options)
Adds an
AsString operation to the graph |
<T> Atan<T> |
atan(Operand<T> x)
Adds an
Atan operation to the graph |
<T extends Number> |
atan2(Operand<T> y,
Operand<T> x)
Adds an
Atan2 operation to the graph |
<T> Atanh<T> |
atanh(Operand<T> x)
Adds an
Atanh operation to the graph |
AudioSpectrogram |
audioSpectrogram(Operand<Float> input,
Long windowSize,
Long stride,
AudioSpectrogram.Options... options)
Adds an
AudioSpectrogram operation to the graph |
AudioSummary |
audioSummary(Operand<String> tag,
Operand<Float> tensor,
Operand<Float> sampleRate,
AudioSummary.Options... options)
Adds an
AudioSummary operation to the graph |
<T extends Number> |
avgPool(Operand<T> value,
List<Long> ksize,
List<Long> strides,
String padding,
AvgPool.Options... options)
Adds an
AvgPool operation to the graph |
<T extends Number> |
avgPool3D(Operand<T> input,
List<Long> ksize,
List<Long> strides,
String padding,
AvgPool3D.Options... options)
Adds an
AvgPool3D operation to the graph |
<T extends Number> |
avgPool3DGrad(Operand<Integer> origInputShape,
Operand<T> grad,
List<Long> ksize,
List<Long> strides,
String padding,
AvgPool3DGrad.Options... options)
Adds an
AvgPool3DGrad operation to the graph |
Barrier |
barrier(List<Class<?>> componentTypes,
Barrier.Options... options)
Adds an
Barrier operation to the graph |
BarrierClose |
barrierClose(Operand<String> handle,
BarrierClose.Options... options)
Adds an
BarrierClose operation to the graph |
BarrierIncompleteSize |
barrierIncompleteSize(Operand<String> handle)
Adds an
BarrierIncompleteSize operation to the graph |
<T> BarrierInsertMany |
barrierInsertMany(Operand<String> handle,
Operand<String> keys,
Operand<T> values,
Long componentIndex)
Adds an
BarrierInsertMany operation to the graph |
BarrierReadySize |
barrierReadySize(Operand<String> handle)
Adds an
BarrierReadySize operation to the graph |
BarrierTakeMany |
barrierTakeMany(Operand<String> handle,
Operand<Integer> numElements,
List<Class<?>> componentTypes,
BarrierTakeMany.Options... options)
Adds an
BarrierTakeMany operation to the graph |
Batch |
batch(Iterable<Operand<?>> inTensors,
Long numBatchThreads,
Long maxBatchSize,
Long batchTimeoutMicros,
Long gradTimeoutMicros,
Batch.Options... options)
Adds an
Batch operation to the graph |
<T extends Number> |
batchCholesky(Operand<T> input)
Adds an
BatchCholesky operation to the graph |
<T extends Number> |
batchCholeskyGrad(Operand<T> l,
Operand<T> grad)
Adds an
BatchCholeskyGrad operation to the graph |
BatchFFT |
batchFFT(Operand<?> input)
Adds an
BatchFFT operation to the graph |
BatchFFT2D |
batchFFT2D(Operand<?> input)
Adds an
BatchFFT2D operation to the graph |
BatchFFT3D |
batchFFT3D(Operand<?> input)
Adds an
BatchFFT3D operation to the graph |
BatchIFFT |
batchIFFT(Operand<?> input)
Adds an
BatchIFFT operation to the graph |
BatchIFFT2D |
batchIFFT2D(Operand<?> input)
Adds an
BatchIFFT2D operation to the graph |
BatchIFFT3D |
batchIFFT3D(Operand<?> input)
Adds an
BatchIFFT3D operation to the graph |
<T> BatchMatMul<T> |
batchMatMul(Operand<T> x,
Operand<T> y,
BatchMatMul.Options... options)
Adds an
BatchMatMul operation to the graph |
<T> BatchMatrixBandPart<T> |
batchMatrixBandPart(Operand<T> input,
Operand<Long> numLower,
Operand<Long> numUpper)
Adds an
BatchMatrixBandPart operation to the graph |
<T> BatchMatrixDeterminant<T> |
batchMatrixDeterminant(Operand<T> input)
Adds an
BatchMatrixDeterminant operation to the graph |
<T> BatchMatrixDiag<T> |
batchMatrixDiag(Operand<T> diagonal)
Adds an
BatchMatrixDiag operation to the graph |
<T> BatchMatrixDiagPart<T> |
batchMatrixDiagPart(Operand<T> input)
Adds an
BatchMatrixDiagPart operation to the graph |
<T extends Number> |
batchMatrixInverse(Operand<T> input,
BatchMatrixInverse.Options... options)
Adds an
BatchMatrixInverse operation to the graph |
<T> BatchMatrixSetDiag<T> |
batchMatrixSetDiag(Operand<T> input,
Operand<T> diagonal)
Adds an
BatchMatrixSetDiag operation to the graph |
<T extends Number> |
batchMatrixSolve(Operand<T> matrix,
Operand<T> rhs,
BatchMatrixSolve.Options... options)
Adds an
BatchMatrixSolve operation to the graph |
<T extends Number> |
batchMatrixSolveLs(Operand<T> matrix,
Operand<T> rhs,
Operand<Double> l2Regularizer,
BatchMatrixSolveLs.Options... options)
Adds an
BatchMatrixSolveLs operation to the graph |
<T extends Number> |
batchMatrixTriangularSolve(Operand<T> matrix,
Operand<T> rhs,
BatchMatrixTriangularSolve.Options... options)
Adds an
BatchMatrixTriangularSolve operation to the graph |
<T> BatchNormWithGlobalNormalization<T> |
batchNormWithGlobalNormalization(Operand<T> t,
Operand<T> m,
Operand<T> v,
Operand<T> beta,
Operand<T> gamma,
Float varianceEpsilon,
Boolean scaleAfterNormalization)
Adds an
BatchNormWithGlobalNormalization operation to the graph |
<T> BatchNormWithGlobalNormalizationGrad<T> |
batchNormWithGlobalNormalizationGrad(Operand<T> t,
Operand<T> m,
Operand<T> v,
Operand<T> gamma,
Operand<T> backprop,
Float varianceEpsilon,
Boolean scaleAfterNormalization)
Adds an
BatchNormWithGlobalNormalizationGrad operation to the graph |
<T extends Number> |
batchSelfAdjointEig(Operand<T> input)
Adds an
BatchSelfAdjointEig operation to the graph |
<T extends Number> |
batchSelfAdjointEigV2(Operand<T> input,
BatchSelfAdjointEigV2.Options... options)
Adds an
BatchSelfAdjointEigV2 operation to the graph |
<T> BatchSvd<T> |
batchSvd(Operand<T> input,
BatchSvd.Options... options)
Adds an
BatchSvd operation to the graph |
<T,U extends Number> |
batchToSpace(Operand<T> input,
Operand<U> crops,
Long blockSize)
Adds an
BatchToSpace operation to the graph |
<T,U extends Number,V extends Number> |
batchToSpaceND(Operand<T> input,
Operand<U> blockShape,
Operand<V> crops)
Adds an
BatchToSpaceND operation to the graph |
<T extends Number> |
besselI0e(Operand<T> x)
Adds an
BesselI0e operation to the graph |
<T extends Number> |
besselI1e(Operand<T> x)
Adds an
BesselI1e operation to the graph |
<T extends Number> |
betainc(Operand<T> a,
Operand<T> b,
Operand<T> x)
Adds an
Betainc operation to the graph |
<T> BiasAdd<T> |
biasAdd(Operand<T> value,
Operand<T> bias,
BiasAdd.Options... options)
Adds an
BiasAdd operation to the graph |
<T> BiasAddGrad<T> |
biasAddGrad(Operand<T> outBackprop,
BiasAddGrad.Options... options)
Adds an
BiasAddGrad operation to the graph |
BigQueryReader |
bigQueryReader(String projectId,
String datasetId,
String tableId,
List<String> columns,
Long timestampMillis,
BigQueryReader.Options... options)
Adds an
BigQueryReader operation to the graph |
<T extends Number> |
bincount(Operand<Integer> arr,
Operand<Integer> size,
Operand<T> weights)
Adds an
Bincount operation to the graph |
<U,T> Bitcast<U> |
bitcast(Operand<T> input,
Class<U> type)
Adds an
Bitcast operation to the graph |
<T extends Number> |
bitwiseAnd(Operand<T> x,
Operand<T> y)
Adds an
BitwiseAnd operation to the graph |
<T extends Number> |
bitwiseOr(Operand<T> x,
Operand<T> y)
Adds an
BitwiseOr operation to the graph |
<T extends Number> |
bitwiseXor(Operand<T> x,
Operand<T> y)
Adds an
BitwiseXor operation to the graph |
<T extends Number> |
broadcastDynamicShape(Operand<T> s0,
Operand<T> s1)
Adds an
BroadcastDynamicShape operation to the graph |
<T,U extends Number> |
broadcastTo(Operand<T> input,
Operand<U> shape)
Adds an
BroadcastTo operation to the graph |
<T extends Number> |
bucketize(Operand<T> input,
List<Float> boundaries)
Adds an
Bucketize operation to the graph |
<U,T> Cast<U> |
cast(Operand<T> x,
Class<U> DstT,
Cast.Options... options)
Adds an
Cast operation to the graph |
<T extends Number> |
ceil(Operand<T> x)
Adds an
Ceil operation to the graph |
<T extends Number> |
checkNumerics(Operand<T> tensor,
String message)
Adds an
CheckNumerics operation to the graph |
<T> Cholesky<T> |
cholesky(Operand<T> input)
Adds an
Cholesky operation to the graph |
<T extends Number> |
choleskyGrad(Operand<T> l,
Operand<T> grad)
Adds an
CholeskyGrad operation to the graph |
<T> ClipByValue<T> |
clipByValue(Operand<T> t,
Operand<T> clipValueMin,
Operand<T> clipValueMax)
Adds an
ClipByValue operation to the graph |
<T> CompareAndBitpack |
compareAndBitpack(Operand<T> input,
Operand<T> threshold)
Adds an
CompareAndBitpack operation to the graph |
<U,T extends Number> |
complex(Operand<T> real,
Operand<T> imag,
Class<U> Tout)
Adds an
Complex operation to the graph |
<T> ComplexAbs<Float> |
complexAbs(Operand<T> x)
Adds an
ComplexAbs operation to the graph |
<U extends Number,T> |
complexAbs(Operand<T> x,
Class<U> Tout)
Adds an
ComplexAbs operation to the graph |
ComputeAccidentalHits |
computeAccidentalHits(Operand<Long> trueClasses,
Operand<Long> sampledCandidates,
Long numTrue,
ComputeAccidentalHits.Options... options)
Adds an
ComputeAccidentalHits operation to the graph |
<T,U extends Number> |
concat(Operand<T> values,
Operand<U> axis)
Adds an
Concat operation to the graph |
<T> ConditionalAccumulator |
conditionalAccumulator(Class<T> dtype,
Shape shape,
ConditionalAccumulator.Options... options)
Adds an
ConditionalAccumulator operation to the graph |
<T> Conj<T> |
conj(Operand<T> input)
Adds an
Conj operation to the graph |
<T,U extends Number> |
conjugateTranspose(Operand<T> x,
Operand<U> perm)
Adds an
ConjugateTranspose operation to the graph |
Constant<Boolean> |
constant(boolean data)
Adds an
Constant operation to the graph |
Constant<Boolean> |
constant(boolean[] data)
Adds an
Constant operation to the graph |
Constant<Boolean> |
constant(boolean[][] data)
Adds an
Constant operation to the graph |
Constant<Boolean> |
constant(boolean[][][] data)
Adds an
Constant operation to the graph |
Constant<Boolean> |
constant(boolean[][][][] data)
Adds an
Constant operation to the graph |
Constant<Boolean> |
constant(boolean[][][][][] data)
Adds an
Constant operation to the graph |
Constant<Boolean> |
constant(boolean[][][][][][] data)
Adds an
Constant operation to the graph |
Constant<String> |
constant(byte[] data)
Adds an
Constant operation to the graph |
Constant<String> |
constant(byte[][] data)
Adds an
Constant operation to the graph |
Constant<String> |
constant(byte[][][] data)
Adds an
Constant operation to the graph |
Constant<String> |
constant(byte[][][][] data)
Adds an
Constant operation to the graph |
Constant<String> |
constant(byte[][][][][] data)
Adds an
Constant operation to the graph |
Constant<String> |
constant(byte[][][][][][] data)
Adds an
Constant operation to the graph |
<T> Constant<T> |
constant(Class<T> type,
long[] shape,
ByteBuffer data)
Adds an
Constant operation to the graph |
Constant<Double> |
constant(double data)
Adds an
Constant operation to the graph |
Constant<Double> |
constant(double[] data)
Adds an
Constant operation to the graph |
Constant<Double> |
constant(double[][] data)
Adds an
Constant operation to the graph |
Constant<Double> |
constant(double[][][] data)
Adds an
Constant operation to the graph |
Constant<Double> |
constant(double[][][][] data)
Adds an
Constant operation to the graph |
Constant<Double> |
constant(double[][][][][] data)
Adds an
Constant operation to the graph |
Constant<Double> |
constant(double[][][][][][] data)
Adds an
Constant operation to the graph |
Constant<Float> |
constant(float data)
Adds an
Constant operation to the graph |
Constant<Float> |
constant(float[] data)
Adds an
Constant operation to the graph |
Constant<Float> |
constant(float[][] data)
Adds an
Constant operation to the graph |
Constant<Float> |
constant(float[][][] data)
Adds an
Constant operation to the graph |
Constant<Float> |
constant(float[][][][] data)
Adds an
Constant operation to the graph |
Constant<Float> |
constant(float[][][][][] data)
Adds an
Constant operation to the graph |
Constant<Float> |
constant(float[][][][][][] data)
Adds an
Constant operation to the graph |
Constant<Integer> |
constant(int data)
Adds an
Constant operation to the graph |
Constant<Integer> |
constant(int[] data)
Adds an
Constant operation to the graph |
Constant<Integer> |
constant(int[][] data)
Adds an
Constant operation to the graph |
Constant<Integer> |
constant(int[][][] data)
Adds an
Constant operation to the graph |
Constant<Integer> |
constant(int[][][][] data)
Adds an
Constant operation to the graph |
Constant<Integer> |
constant(int[][][][][] data)
Adds an
Constant operation to the graph |
Constant<Integer> |
constant(int[][][][][][] data)
Adds an
Constant operation to the graph |
Constant<Long> |
constant(long data)
Adds an
Constant operation to the graph |
Constant<Long> |
constant(long[] data)
Adds an
Constant operation to the graph |
Constant<Long> |
constant(long[][] data)
Adds an
Constant operation to the graph |
Constant<Long> |
constant(long[][][] data)
Adds an
Constant operation to the graph |
Constant<Long> |
constant(long[][][][] data)
Adds an
Constant operation to the graph |
Constant<Long> |
constant(long[][][][][] data)
Adds an
Constant operation to the graph |
Constant<Long> |
constant(long[][][][][][] data)
Adds an
Constant operation to the graph |
Constant<Double> |
constant(long[] shape,
DoubleBuffer data)
Adds an
Constant operation to the graph |
Constant<Float> |
constant(long[] shape,
FloatBuffer data)
Adds an
Constant operation to the graph |
Constant<Integer> |
constant(long[] shape,
IntBuffer data)
Adds an
Constant operation to the graph |
Constant<Long> |
constant(long[] shape,
LongBuffer data)
Adds an
Constant operation to the graph |
<T> Constant<T> |
constant(Object object,
Class<T> type)
Adds an
Constant operation to the graph |
Constant<String> |
constant(String data)
Adds an
Constant operation to the graph |
Constant<String> |
constant(String data,
Charset charset)
Adds an
Constant operation to the graph |
ConsumeMutexLock |
consumeMutexLock(Operand<?> mutexLock)
Adds an
ConsumeMutexLock operation to the graph |
ControlTrigger |
controlTrigger()
Adds an
ControlTrigger operation to the graph |
<T extends Number> |
conv2D(Operand<T> input,
Operand<T> filter,
List<Long> strides,
String padding,
Conv2D.Options... options)
Adds an
Conv2D operation to the graph |
<T extends Number> |
conv2DBackpropFilter(Operand<T> input,
Operand<Integer> filterSizes,
Operand<T> outBackprop,
List<Long> strides,
String padding,
Conv2DBackpropFilter.Options... options)
Adds an
Conv2DBackpropFilter operation to the graph |
<T extends Number> |
conv2DBackpropInput(Operand<Integer> inputSizes,
Operand<T> filter,
Operand<T> outBackprop,
List<Long> strides,
String padding,
Conv2DBackpropInput.Options... options)
Adds an
Conv2DBackpropInput operation to the graph |
<T extends Number> |
conv3D(Operand<T> input,
Operand<T> filter,
List<Long> strides,
String padding,
Conv3D.Options... options)
Adds an
Conv3D operation to the graph |
<T extends Number> |
conv3DBackpropFilter(Operand<T> input,
Operand<T> filter,
Operand<T> outBackprop,
List<Long> strides,
String padding,
Conv3DBackpropFilter.Options... options)
Adds an
Conv3DBackpropFilter operation to the graph |
<T extends Number> |
conv3DBackpropFilterV2(Operand<T> input,
Operand<Integer> filterSizes,
Operand<T> outBackprop,
List<Long> strides,
String padding,
Conv3DBackpropFilterV2.Options... options)
Adds an
Conv3DBackpropFilterV2 operation to the graph |
<T extends Number> |
conv3DBackpropInput(Operand<T> input,
Operand<T> filter,
Operand<T> outBackprop,
List<Long> strides,
String padding,
Conv3DBackpropInput.Options... options)
Adds an
Conv3DBackpropInput operation to the graph |
<U extends Number,T extends Number> |
conv3DBackpropInputV2(Operand<T> inputSizes,
Operand<U> filter,
Operand<U> outBackprop,
List<Long> strides,
String padding,
Conv3DBackpropInputV2.Options... options)
Adds an
Conv3DBackpropInputV2 operation to the graph |
<T> Cos<T> |
cos(Operand<T> x)
Adds an
Cos operation to the graph |
<T> Cosh<T> |
cosh(Operand<T> x)
Adds an
Cosh operation to the graph |
<T extends Number> |
countUpTo(Operand<T> ref,
Long limit)
Adds an
CountUpTo operation to the graph |
static Ops |
create(Graph graph)
Creates an API for adding operations to the provided
graph |
<T extends Number> |
cropAndResize(Operand<T> image,
Operand<Float> boxes,
Operand<Integer> boxInd,
Operand<Integer> cropSize,
CropAndResize.Options... options)
Adds an
CropAndResize operation to the graph |
<T extends Number> |
cropAndResizeGradBoxes(Operand<Float> grads,
Operand<T> image,
Operand<Float> boxes,
Operand<Integer> boxInd,
CropAndResizeGradBoxes.Options... options)
Adds an
CropAndResizeGradBoxes operation to the graph |
<T extends Number> |
cropAndResizeGradImage(Operand<Float> grads,
Operand<Float> boxes,
Operand<Integer> boxInd,
Operand<Integer> imageSize,
Class<T> T,
CropAndResizeGradImage.Options... options)
Adds an
CropAndResizeGradImage operation to the graph |
<T extends Number> |
cross(Operand<T> a,
Operand<T> b)
Adds an
Cross operation to the graph |
CTCBeamSearchDecoder |
cTCBeamSearchDecoder(Operand<Float> inputs,
Operand<Integer> sequenceLength,
Long beamWidth,
Long topPaths,
CTCBeamSearchDecoder.Options... options)
Adds an
CTCBeamSearchDecoder operation to the graph |
CTCGreedyDecoder |
cTCGreedyDecoder(Operand<Float> inputs,
Operand<Integer> sequenceLength,
CTCGreedyDecoder.Options... options)
Adds an
CTCGreedyDecoder operation to the graph |
CTCLoss |
cTCLoss(Operand<Float> inputs,
Operand<Long> labelsIndices,
Operand<Integer> labelsValues,
Operand<Integer> sequenceLength,
CTCLoss.Options... options)
Adds an
CTCLoss operation to the graph |
<T extends Number> |
cudnnRNN(Operand<T> input,
Operand<T> inputH,
Operand<T> inputC,
Operand<T> params,
CudnnRNN.Options... options)
Adds an
CudnnRNN operation to the graph |
<T extends Number> |
cudnnRNNBackprop(Operand<T> input,
Operand<T> inputH,
Operand<T> inputC,
Operand<T> params,
Operand<T> output,
Operand<T> outputH,
Operand<T> outputC,
Operand<T> outputBackprop,
Operand<T> outputHBackprop,
Operand<T> outputCBackprop,
Operand<T> reserveSpace,
CudnnRNNBackprop.Options... options)
Adds an
CudnnRNNBackprop operation to the graph |
<T extends Number> |
cudnnRNNCanonicalToParams(Operand<Integer> numLayers,
Operand<Integer> numUnits,
Operand<Integer> inputSize,
Operand<T> weights,
Iterable<Operand<T>> biases,
CudnnRNNCanonicalToParams.Options... options)
Adds an
CudnnRNNCanonicalToParams operation to the graph |
<U extends Number,T extends Number> |
cudnnRNNParamsSize(Operand<Integer> numLayers,
Operand<Integer> numUnits,
Operand<Integer> inputSize,
Class<T> T,
Class<U> S,
CudnnRNNParamsSize.Options... options)
Adds an
CudnnRNNParamsSize operation to the graph |
<T extends Number> |
cudnnRNNParamsToCanonical(Operand<Integer> numLayers,
Operand<Integer> numUnits,
Operand<Integer> inputSize,
Operand<T> params,
Long numParams,
CudnnRNNParamsToCanonical.Options... options)
Adds an
CudnnRNNParamsToCanonical operation to the graph |
<T,U extends Number> |
cumprod(Operand<T> x,
Operand<U> axis,
Cumprod.Options... options)
Adds an
Cumprod operation to the graph |
<T,U extends Number> |
cumsum(Operand<T> x,
Operand<U> axis,
Cumsum.Options... options)
Adds an
Cumsum operation to the graph |
<T extends Number> |
dataFormatDimMap(Operand<T> x,
DataFormatDimMap.Options... options)
Adds an
DataFormatDimMap operation to the graph |
<T extends Number> |
dataFormatVecPermute(Operand<T> x,
DataFormatVecPermute.Options... options)
Adds an
DataFormatVecPermute operation to the graph |
<T> DebugGradientIdentity<T> |
debugGradientIdentity(Operand<T> input)
Adds an
DebugGradientIdentity operation to the graph |
<T> DebugGradientRefIdentity<T> |
debugGradientRefIdentity(Operand<T> input)
Adds an
DebugGradientRefIdentity operation to the graph |
DecodeAndCropJpeg |
decodeAndCropJpeg(Operand<String> contents,
Operand<Integer> cropWindow,
DecodeAndCropJpeg.Options... options)
Adds an
DecodeAndCropJpeg operation to the graph |
DecodeBase64 |
decodeBase64(Operand<String> input)
Adds an
DecodeBase64 operation to the graph |
DecodeBmp |
decodeBmp(Operand<String> contents,
DecodeBmp.Options... options)
Adds an
DecodeBmp operation to the graph |
DecodeCompressed |
decodeCompressed(Operand<String> bytes,
DecodeCompressed.Options... options)
Adds an
DecodeCompressed operation to the graph |
DecodeCSV |
decodeCSV(Operand<String> records,
Iterable<Operand<?>> recordDefaults,
DecodeCSV.Options... options)
Adds an
DecodeCSV operation to the graph |
DecodeGif |
decodeGif(Operand<String> contents)
Adds an
DecodeGif operation to the graph |
DecodeJpeg |
decodeJpeg(Operand<String> contents,
DecodeJpeg.Options... options)
Adds an
DecodeJpeg operation to the graph |
DecodeJSONExample |
decodeJSONExample(Operand<String> jsonExamples)
Adds an
DecodeJSONExample operation to the graph |
<T extends Number> |
decodePng(Operand<String> contents,
Class<T> dtype,
DecodePng.Options... options)
Adds an
DecodePng operation to the graph |
DecodePng<UInt8> |
decodePng(Operand<String> contents,
DecodePng.Options... options)
Adds an
DecodePng operation to the graph |
DecodeProtoV2 |
decodeProtoV2(Operand<String> bytes,
String messageType,
List<String> fieldNames,
List<Class<?>> outputTypes,
DecodeProtoV2.Options... options)
Adds an
DecodeProtoV2 operation to the graph |
<T extends Number> |
decodeRaw(Operand<String> bytes,
Class<T> outType,
DecodeRaw.Options... options)
Adds an
DecodeRaw operation to the graph |
DecodeWav |
decodeWav(Operand<String> contents,
DecodeWav.Options... options)
Adds an
DecodeWav operation to the graph |
<T> DeepCopy<T> |
deepCopy(Operand<T> x)
Adds an
DeepCopy operation to the graph |
DeleteSessionTensor |
deleteSessionTensor(Operand<String> handle)
Adds an
DeleteSessionTensor operation to the graph |
<T> DenseToDenseSetOperation<T> |
denseToDenseSetOperation(Operand<T> set1,
Operand<T> set2,
String setOperation,
DenseToDenseSetOperation.Options... options)
Adds an
DenseToDenseSetOperation operation to the graph |
<T> DenseToSparseSetOperation<T> |
denseToSparseSetOperation(Operand<T> set1,
Operand<Long> set2Indices,
Operand<T> set2Values,
Operand<Long> set2Shape,
String setOperation,
DenseToSparseSetOperation.Options... options)
Adds an
DenseToSparseSetOperation operation to the graph |
<T> DepthToSpace<T> |
depthToSpace(Operand<T> input,
Long blockSize,
DepthToSpace.Options... options)
Adds an
DepthToSpace operation to the graph |
<T extends Number> |
depthwiseConv2dNative(Operand<T> input,
Operand<T> filter,
List<Long> strides,
String padding,
DepthwiseConv2dNative.Options... options)
Adds an
DepthwiseConv2dNative operation to the graph |
<T extends Number> |
depthwiseConv2dNativeBackpropFilter(Operand<T> input,
Operand<Integer> filterSizes,
Operand<T> outBackprop,
List<Long> strides,
String padding,
DepthwiseConv2dNativeBackpropFilter.Options... options)
Adds an
DepthwiseConv2dNativeBackpropFilter operation to the graph |
<T extends Number> |
depthwiseConv2dNativeBackpropInput(Operand<Integer> inputSizes,
Operand<T> filter,
Operand<T> outBackprop,
List<Long> strides,
String padding,
DepthwiseConv2dNativeBackpropInput.Options... options)
Adds an
DepthwiseConv2dNativeBackpropInput operation to the graph |
<T> Dequantize |
dequantize(Operand<T> input,
Operand<Float> minRange,
Operand<Float> maxRange,
Dequantize.Options... options)
Adds an
Dequantize operation to the graph |
DeserializeIterator |
deserializeIterator(Operand<?> resourceHandle,
Operand<?> serialized)
Adds an
DeserializeIterator operation to the graph |
<T> DeserializeManySparse<T> |
deserializeManySparse(Operand<String> serializedSparse,
Class<T> dtype)
Adds an
DeserializeManySparse operation to the graph |
<U,T> DeserializeSparse<U> |
deserializeSparse(Operand<T> serializedSparse,
Class<U> dtype)
Adds an
DeserializeSparse operation to the graph |
DestroyResourceOp |
destroyResourceOp(Operand<?> resource,
DestroyResourceOp.Options... options)
Adds an
DestroyResourceOp operation to the graph |
<T> DestroyTemporaryVariable<T> |
destroyTemporaryVariable(Operand<T> ref,
String varName)
Adds an
DestroyTemporaryVariable operation to the graph |
<T> Diag<T> |
diag(Operand<T> diagonal)
Adds an
Diag operation to the graph |
<T> DiagPart<T> |
diagPart(Operand<T> input)
Adds an
DiagPart operation to the graph |
<T extends Number> |
digamma(Operand<T> x)
Adds an
Digamma operation to the graph |
<T extends Number> |
dilation2D(Operand<T> input,
Operand<T> filter,
List<Long> strides,
List<Long> rates,
String padding)
Adds an
Dilation2D operation to the graph |
<T extends Number> |
dilation2DBackpropFilter(Operand<T> input,
Operand<T> filter,
Operand<T> outBackprop,
List<Long> strides,
List<Long> rates,
String padding)
Adds an
Dilation2DBackpropFilter operation to the graph |
<T extends Number> |
dilation2DBackpropInput(Operand<T> input,
Operand<T> filter,
Operand<T> outBackprop,
List<Long> strides,
List<Long> rates,
String padding)
Adds an
Dilation2DBackpropInput operation to the graph |
<T> Div<T> |
div(Operand<T> x,
Operand<T> y)
Adds an
Div operation to the graph |
<T extends Number> |
divNoNan(Operand<T> x,
Operand<T> y)
Adds an
DivNoNan operation to the graph |
<T extends Number> |
drawBoundingBoxes(Operand<T> images,
Operand<Float> boxes)
Adds an
DrawBoundingBoxes operation to the graph |
<T> DynamicPartition<T> |
dynamicPartition(Operand<T> data,
Operand<Integer> partitions,
Long numPartitions)
Adds an
DynamicPartition operation to the graph |
<T> DynamicStitch<T> |
dynamicStitch(Iterable<Operand<Integer>> indices,
Operand<T> data)
Adds an
DynamicStitch operation to the graph |
EagerPyFunc |
eagerPyFunc(Iterable<Operand<?>> input,
String token,
List<Class<?>> Tout)
Adds an
EagerPyFunc operation to the graph |
<T> EditDistance |
editDistance(Operand<Long> hypothesisIndices,
Operand<T> hypothesisValues,
Operand<Long> hypothesisShape,
Operand<Long> truthIndices,
Operand<T> truthValues,
Operand<Long> truthShape,
EditDistance.Options... options)
Adds an
EditDistance operation to the graph |
<T extends Number> |
elu(Operand<T> features)
Adds an
Elu operation to the graph |
<T> Empty<T> |
empty(Operand<Integer> shape,
Class<T> dtype,
Empty.Options... options)
Adds an
Empty operation to the graph |
<T extends Number,U> |
emptyTensorList(Operand<T> elementShape,
Operand<Integer> maxNumElements,
Class<U> elementDtype)
Adds an
EmptyTensorList operation to the graph |
EncodeBase64 |
encodeBase64(Operand<String> input,
EncodeBase64.Options... options)
Adds an
EncodeBase64 operation to the graph |
EncodeJpeg |
encodeJpeg(Operand<UInt8> image,
EncodeJpeg.Options... options)
Adds an
EncodeJpeg operation to the graph |
<T extends Number> |
encodePng(Operand<T> image,
EncodePng.Options... options)
Adds an
EncodePng operation to the graph |
EncodeProto |
encodeProto(Operand<Integer> sizes,
Iterable<Operand<?>> values,
List<String> fieldNames,
String messageType,
EncodeProto.Options... options)
Adds an
EncodeProto operation to the graph |
EncodeWav |
encodeWav(Operand<Float> audio,
Operand<Integer> sampleRate)
Adds an
EncodeWav operation to the graph |
<T> EnsureShape<T> |
ensureShape(Operand<T> input,
Shape shape)
Adds an
EnsureShape operation to the graph |
<T> Equal |
equal(Operand<T> x,
Operand<T> y)
Adds an
Equal operation to the graph |
<T extends Number> |
erf(Operand<T> x)
Adds an
Erf operation to the graph |
<T extends Number> |
erfc(Operand<T> x)
Adds an
Erfc operation to the graph |
<T> Exp<T> |
exp(Operand<T> x)
Adds an
Exp operation to the graph |
<T,U extends Number> |
expandDims(Operand<T> input,
Operand<U> axis)
Adds an
ExpandDims operation to the graph |
<T> Expm1<T> |
expm1(Operand<T> x)
Adds an
Expm1 operation to the graph |
ExtractGlimpse |
extractGlimpse(Operand<Float> input,
Operand<Integer> size,
Operand<Float> offsets,
ExtractGlimpse.Options... options)
Adds an
ExtractGlimpse operation to the graph |
<T extends Number> |
extractImagePatches(Operand<T> images,
List<Long> ksizes,
List<Long> strides,
List<Long> rates,
String padding)
Adds an
ExtractImagePatches operation to the graph |
ExtractJpegShape<Integer> |
extractJpegShape(Operand<String> contents)
Adds an
ExtractJpegShape operation to the graph |
<T extends Number> |
extractJpegShape(Operand<String> contents,
Class<T> outputType)
Adds an
ExtractJpegShape operation to the graph |
<T extends Number> |
extractVolumePatches(Operand<T> input,
List<Long> ksizes,
List<Long> strides,
String padding)
Adds an
ExtractVolumePatches operation to the graph |
Fact |
fact()
Adds an
Fact operation to the graph |
FakeQuantWithMinMaxArgs |
fakeQuantWithMinMaxArgs(Operand<Float> inputs,
FakeQuantWithMinMaxArgs.Options... options)
Adds an
FakeQuantWithMinMaxArgs operation to the graph |
FakeQuantWithMinMaxArgsGradient |
fakeQuantWithMinMaxArgsGradient(Operand<Float> gradients,
Operand<Float> inputs,
FakeQuantWithMinMaxArgsGradient.Options... options)
Adds an
FakeQuantWithMinMaxArgsGradient operation to the graph |
FakeQuantWithMinMaxVars |
fakeQuantWithMinMaxVars(Operand<Float> inputs,
Operand<Float> min,
Operand<Float> max,
FakeQuantWithMinMaxVars.Options... options)
Adds an
FakeQuantWithMinMaxVars operation to the graph |
FakeQuantWithMinMaxVarsGradient |
fakeQuantWithMinMaxVarsGradient(Operand<Float> gradients,
Operand<Float> inputs,
Operand<Float> min,
Operand<Float> max,
FakeQuantWithMinMaxVarsGradient.Options... options)
Adds an
FakeQuantWithMinMaxVarsGradient operation to the graph |
FakeQuantWithMinMaxVarsPerChannel |
fakeQuantWithMinMaxVarsPerChannel(Operand<Float> inputs,
Operand<Float> min,
Operand<Float> max,
FakeQuantWithMinMaxVarsPerChannel.Options... options)
Adds an
FakeQuantWithMinMaxVarsPerChannel operation to the graph |
FakeQuantWithMinMaxVarsPerChannelGradient |
fakeQuantWithMinMaxVarsPerChannelGradient(Operand<Float> gradients,
Operand<Float> inputs,
Operand<Float> min,
Operand<Float> max,
FakeQuantWithMinMaxVarsPerChannelGradient.Options... options)
Adds an
FakeQuantWithMinMaxVarsPerChannelGradient operation to the graph |
<T> FFT<T> |
fFT(Operand<T> input)
Adds an
FFT operation to the graph |
<T> FFT2D<T> |
fFT2D(Operand<T> input)
Adds an
FFT2D operation to the graph |
<T> FFT3D<T> |
fFT3D(Operand<T> input)
Adds an
FFT3D operation to the graph |
FIFOQueue |
fIFOQueue(List<Class<?>> componentTypes,
FIFOQueue.Options... options)
Adds an
FIFOQueue operation to the graph |
<U,T extends Number> |
fill(Operand<T> dims,
Operand<U> value)
Adds an
Fill operation to the graph |
FixedLengthRecordReader |
fixedLengthRecordReader(Long recordBytes,
FixedLengthRecordReader.Options... options)
Adds an
FixedLengthRecordReader operation to the graph |
FixedUnigramCandidateSampler |
fixedUnigramCandidateSampler(Operand<Long> trueClasses,
Long numTrue,
Long numSampled,
Boolean unique,
Long rangeMax,
FixedUnigramCandidateSampler.Options... options)
Adds an
FixedUnigramCandidateSampler operation to the graph |
<T extends Number> |
floor(Operand<T> x)
Adds an
Floor operation to the graph |
<T> FloorDiv<T> |
floorDiv(Operand<T> x,
Operand<T> y)
Adds an
FloorDiv operation to the graph |
<T extends Number> |
floorMod(Operand<T> x,
Operand<T> y)
Adds an
FloorMod operation to the graph |
<T extends Number> |
fractionalAvgPool(Operand<T> value,
List<Float> poolingRatio,
FractionalAvgPool.Options... options)
Adds an
FractionalAvgPool operation to the graph |
<T extends Number> |
fractionalMaxPool(Operand<T> value,
List<Float> poolingRatio,
FractionalMaxPool.Options... options)
Adds an
FractionalMaxPool operation to the graph |
<T extends Number> |
fusedBatchNorm(Operand<T> x,
Operand<T> scale,
Operand<T> offset,
Operand<T> mean,
Operand<T> variance,
FusedBatchNorm.Options... options)
Adds an
FusedBatchNorm operation to the graph |
<T extends Number> |
fusedBatchNormGrad(Operand<T> yBackprop,
Operand<T> x,
Operand<T> scale,
Operand<T> reserveSpace1,
Operand<T> reserveSpace2,
FusedBatchNormGrad.Options... options)
Adds an
FusedBatchNormGrad operation to the graph |
<T extends Number,U extends Number> |
fusedBatchNormGradV2(Operand<T> yBackprop,
Operand<T> x,
Operand<Float> scale,
Operand<U> reserveSpace1,
Operand<U> reserveSpace2,
FusedBatchNormGradV2.Options... options)
Adds an
FusedBatchNormGradV2 operation to the graph |
<T extends Number,U extends Number> |
fusedBatchNormV2(Operand<T> x,
Operand<U> scale,
Operand<U> offset,
Operand<U> mean,
Operand<U> variance,
FusedBatchNormV2.Options... options)
Adds an
FusedBatchNormV2 operation to the graph |
<T extends Number> |
fusedPadConv2D(Operand<T> input,
Operand<Integer> paddings,
Operand<T> filter,
String mode,
List<Long> strides,
String padding)
Adds an
FusedPadConv2D operation to the graph |
<T extends Number> |
fusedResizeAndPadConv2D(Operand<T> input,
Operand<Integer> size,
Operand<Integer> paddings,
Operand<T> filter,
String mode,
List<Long> strides,
String padding,
FusedResizeAndPadConv2D.Options... options)
Adds an
FusedResizeAndPadConv2D operation to the graph |
<T,U extends Number> |
gather(Operand<T> params,
Operand<U> indices,
Gather.Options... options)
Adds an
Gather operation to the graph |
<T,U extends Number> |
gatherNd(Operand<T> params,
Operand<U> indices)
Adds an
GatherNd operation to the graph |
<T,U extends Number,V extends Number> |
gatherV2(Operand<T> params,
Operand<U> indices,
Operand<V> axis)
Adds an
GatherV2 operation to the graph |
GcsConfigureBlockCache |
gcsConfigureBlockCache(Operand<?> maxCacheSize,
Operand<?> blockSize,
Operand<?> maxStaleness)
Adds an
GcsConfigureBlockCache operation to the graph |
GcsConfigureCredentials |
gcsConfigureCredentials(Operand<String> json)
Adds an
GcsConfigureCredentials operation to the graph |
GenerateBigQueryReaderPartitions |
generateBigQueryReaderPartitions(String projectId,
String datasetId,
String tableId,
List<String> columns,
Long timestampMillis,
Long numPartitions,
GenerateBigQueryReaderPartitions.Options... options)
Adds an
GenerateBigQueryReaderPartitions operation to the graph |
GenerateVocabRemapping |
generateVocabRemapping(Operand<String> newVocabFile,
Operand<String> oldVocabFile,
Long newVocabOffset,
Long numNewVocab,
GenerateVocabRemapping.Options... options)
Adds an
GenerateVocabRemapping operation to the graph |
<T> GetSessionHandle |
getSessionHandle(Operand<T> value)
Adds an
GetSessionHandle operation to the graph |
<T> GetSessionHandleV2 |
getSessionHandleV2(Operand<T> value)
Adds an
GetSessionHandleV2 operation to the graph |
<T> GetSessionTensor<T> |
getSessionTensor(Operand<String> handle,
Class<T> dtype)
Adds an
GetSessionTensor operation to the graph |
Gradients |
gradients(Iterable<? extends Operand<?>> y,
Iterable<? extends Operand<?>> x,
Gradients.Options... options)
Adds an
Gradients operation to the graph |
Gradients |
gradients(Operand<?> y,
Iterable<? extends Operand<?>> x,
Gradients.Options... options)
Adds an
Gradients operation to the graph |
<T extends Number> |
greater(Operand<T> x,
Operand<T> y)
Adds an
Greater operation to the graph |
<T extends Number> |
greaterEqual(Operand<T> x,
Operand<T> y)
Adds an
GreaterEqual operation to the graph |
<T> GuaranteeConst<T> |
guaranteeConst(Operand<T> input)
Adds an
GuaranteeConst operation to the graph |
<T,U> HashTable |
hashTable(Class<T> keyDtype,
Class<U> valueDtype,
HashTable.Options... options)
Adds an
HashTable operation to the graph |
<T extends Number> |
histogramFixedWidth(Operand<T> values,
Operand<T> valueRange,
Operand<Integer> nbins)
Adds an
HistogramFixedWidth operation to the graph |
<U extends Number,T extends Number> |
histogramFixedWidth(Operand<T> values,
Operand<T> valueRange,
Operand<Integer> nbins,
Class<U> dtype)
Adds an
HistogramFixedWidth operation to the graph |
<T extends Number> |
histogramSummary(Operand<String> tag,
Operand<T> values)
Adds an
HistogramSummary operation to the graph |
<T extends Number> |
hSVToRGB(Operand<T> images)
Adds an
HSVToRGB operation to the graph |
<T> Identity<T> |
identity(Operand<T> input)
Adds an
Identity operation to the graph |
IdentityN |
identityN(Iterable<Operand<?>> input)
Adds an
IdentityN operation to the graph |
IdentityReader |
identityReader(IdentityReader.Options... options)
Adds an
IdentityReader operation to the graph |
<T> IFFT<T> |
iFFT(Operand<T> input)
Adds an
IFFT operation to the graph |
<T> IFFT2D<T> |
iFFT2D(Operand<T> input)
Adds an
IFFT2D operation to the graph |
<T> IFFT3D<T> |
iFFT3D(Operand<T> input)
Adds an
IFFT3D operation to the graph |
<T extends Number> |
igamma(Operand<T> a,
Operand<T> x)
Adds an
Igamma operation to the graph |
<T extends Number> |
igammac(Operand<T> a,
Operand<T> x)
Adds an
Igammac operation to the graph |
<T> Imag<Float> |
imag(Operand<T> input)
Adds an
Imag operation to the graph |
<U extends Number,T> |
imag(Operand<T> input,
Class<U> Tout)
Adds an
Imag operation to the graph |
<T extends Number> |
imageSummary(Operand<String> tag,
Operand<T> tensor,
ImageSummary.Options... options)
Adds an
ImageSummary operation to the graph |
<T> ImmutableConst<T> |
immutableConst(Class<T> dtype,
Shape shape,
String memoryRegionName)
Adds an
ImmutableConst operation to the graph |
<T,U> InitializeTable |
initializeTable(Operand<?> tableHandle,
Operand<T> keys,
Operand<U> values)
Adds an
InitializeTable operation to the graph |
InitializeTableFromTextFile |
initializeTableFromTextFile(Operand<?> tableHandle,
Operand<String> filename,
Long keyIndex,
Long valueIndex,
InitializeTableFromTextFile.Options... options)
Adds an
InitializeTableFromTextFile operation to the graph |
<T> InplaceAdd<T> |
inplaceAdd(Operand<T> x,
Operand<Integer> i,
Operand<T> v)
Adds an
InplaceAdd operation to the graph |
<T> InplaceSub<T> |
inplaceSub(Operand<T> x,
Operand<Integer> i,
Operand<T> v)
Adds an
InplaceSub operation to the graph |
<T> InplaceUpdate<T> |
inplaceUpdate(Operand<T> x,
Operand<Integer> i,
Operand<T> v)
Adds an
InplaceUpdate operation to the graph |
<T extends Number> |
inTopK(Operand<Float> predictions,
Operand<T> targets,
Long k)
Adds an
InTopK operation to the graph |
<T extends Number> |
inTopKV2(Operand<Float> predictions,
Operand<T> targets,
Operand<T> k)
Adds an
InTopKV2 operation to the graph |
<T> Inv<T> |
inv(Operand<T> x)
Adds an
Inv operation to the graph |
<T extends Number> |
invert(Operand<T> x)
Adds an
Invert operation to the graph |
<T extends Number> |
invertPermutation(Operand<T> x)
Adds an
InvertPermutation operation to the graph |
IRFFT |
iRFFT(Operand<?> input,
Operand<Integer> fftLength)
Adds an
IRFFT operation to the graph |
IRFFT2D |
iRFFT2D(Operand<?> input,
Operand<Integer> fftLength)
Adds an
IRFFT2D operation to the graph |
IRFFT3D |
iRFFT3D(Operand<?> input,
Operand<Integer> fftLength)
Adds an
IRFFT3D operation to the graph |
<T extends Number> |
isFinite(Operand<T> x)
Adds an
IsFinite operation to the graph |
<T extends Number> |
isInf(Operand<T> x)
Adds an
IsInf operation to the graph |
<T extends Number> |
isNan(Operand<T> x)
Adds an
IsNan operation to the graph |
<T> IsVariableInitialized |
isVariableInitialized(Operand<T> ref)
Adds an
IsVariableInitialized operation to the graph |
Iterator |
iterator(String sharedName,
String container,
List<Class<?>> outputTypes,
List<Shape> outputShapes)
Adds an
Iterator operation to the graph |
IteratorFromStringHandle |
iteratorFromStringHandle(Operand<String> stringHandle,
List<Class<?>> outputTypes,
IteratorFromStringHandle.Options... options)
Adds an
IteratorFromStringHandle operation to the graph |
IteratorGetNext |
iteratorGetNext(Operand<?> iterator,
List<Class<?>> outputTypes,
List<Shape> outputShapes)
Adds an
IteratorGetNext operation to the graph |
IteratorGetNextAsOptional |
iteratorGetNextAsOptional(Operand<?> iterator,
List<Class<?>> outputTypes,
List<Shape> outputShapes)
Adds an
IteratorGetNextAsOptional operation to the graph |
IteratorGetNextSync |
iteratorGetNextSync(Operand<?> iterator,
List<Class<?>> outputTypes,
List<Shape> outputShapes)
Adds an
IteratorGetNextSync operation to the graph |
IteratorToStringHandle |
iteratorToStringHandle(Operand<?> resourceHandle)
Adds an
IteratorToStringHandle operation to the graph |
<T extends Number> |
l2Loss(Operand<T> t)
Adds an
L2Loss operation to the graph |
LearnedUnigramCandidateSampler |
learnedUnigramCandidateSampler(Operand<Long> trueClasses,
Long numTrue,
Long numSampled,
Boolean unique,
Long rangeMax,
LearnedUnigramCandidateSampler.Options... options)
Adds an
LearnedUnigramCandidateSampler operation to the graph |
<T extends Number> |
leftShift(Operand<T> x,
Operand<T> y)
Adds an
LeftShift operation to the graph |
<T extends Number> |
less(Operand<T> x,
Operand<T> y)
Adds an
Less operation to the graph |
<T extends Number> |
lessEqual(Operand<T> x,
Operand<T> y)
Adds an
LessEqual operation to the graph |
<T extends Number> |
lgamma(Operand<T> x)
Adds an
Lgamma operation to the graph |
<T extends Number,U extends Number> |
linSpace(Operand<T> start,
Operand<T> stop,
Operand<U> num)
Adds an
LinSpace operation to the graph |
LMDBReader |
lMDBReader(LMDBReader.Options... options)
Adds an
LMDBReader operation to the graph |
LoadAndRemapMatrix |
loadAndRemapMatrix(Operand<String> ckptPath,
Operand<String> oldTensorName,
Operand<Long> rowRemapping,
Operand<Long> colRemapping,
Operand<Float> initializingValues,
Long numRows,
Long numCols,
LoadAndRemapMatrix.Options... options)
Adds an
LoadAndRemapMatrix operation to the graph |
<T> Log<T> |
log(Operand<T> x)
Adds an
Log operation to the graph |
<T> Log1p<T> |
log1p(Operand<T> x)
Adds an
Log1p operation to the graph |
LogicalAnd |
logicalAnd(Operand<Boolean> x,
Operand<Boolean> y)
Adds an
LogicalAnd operation to the graph |
LogicalNot |
logicalNot(Operand<Boolean> x)
Adds an
LogicalNot operation to the graph |
LogicalOr |
logicalOr(Operand<Boolean> x,
Operand<Boolean> y)
Adds an
LogicalOr operation to the graph |
<T> LogMatrixDeterminant<T> |
logMatrixDeterminant(Operand<T> input)
Adds an
LogMatrixDeterminant operation to the graph |
<T extends Number> |
logSoftmax(Operand<T> logits)
Adds an
LogSoftmax operation to the graph |
LogUniformCandidateSampler |
logUniformCandidateSampler(Operand<Long> trueClasses,
Long numTrue,
Long numSampled,
Boolean unique,
Long rangeMax,
LogUniformCandidateSampler.Options... options)
Adds an
LogUniformCandidateSampler operation to the graph |
<T,U> LookupTableExport<T,U> |
lookupTableExport(Operand<?> tableHandle,
Class<T> Tkeys,
Class<U> Tvalues)
Adds an
LookupTableExport operation to the graph |
<U,T> LookupTableFind<U> |
lookupTableFind(Operand<?> tableHandle,
Operand<T> keys,
Operand<U> defaultValue)
Adds an
LookupTableFind operation to the graph |
<T,U> LookupTableImport |
lookupTableImport(Operand<?> tableHandle,
Operand<T> keys,
Operand<U> values)
Adds an
LookupTableImport operation to the graph |
<T,U> LookupTableInsert |
lookupTableInsert(Operand<?> tableHandle,
Operand<T> keys,
Operand<U> values)
Adds an
LookupTableInsert operation to the graph |
LookupTableSize |
lookupTableSize(Operand<?> tableHandle)
Adds an
LookupTableSize operation to the graph |
LoopCond |
loopCond(Operand<Boolean> input)
Adds an
LoopCond operation to the graph |
<T extends Number> |
lRN(Operand<T> input,
LRN.Options... options)
Adds an
LRN operation to the graph |
<T> Lu<T,Integer> |
lu(Operand<T> input)
Adds an
Lu operation to the graph |
<T,U extends Number> |
lu(Operand<T> input,
Class<U> outputIdxType)
Adds an
Lu operation to the graph |
MakeIterator |
makeIterator(Operand<?> dataset,
Operand<?> iterator)
Adds an
MakeIterator operation to the graph |
MapClear |
mapClear(List<Class<?>> dtypes,
MapClear.Options... options)
Adds an
MapClear operation to the graph |
MapIncompleteSize |
mapIncompleteSize(List<Class<?>> dtypes,
MapIncompleteSize.Options... options)
Adds an
MapIncompleteSize operation to the graph |
MapPeek |
mapPeek(Operand<Long> key,
Operand<Integer> indices,
List<Class<?>> dtypes,
MapPeek.Options... options)
Adds an
MapPeek operation to the graph |
MapSize |
mapSize(List<Class<?>> dtypes,
MapSize.Options... options)
Adds an
MapSize operation to the graph |
MapStage |
mapStage(Operand<Long> key,
Operand<Integer> indices,
Iterable<Operand<?>> values,
List<Class<?>> dtypes,
MapStage.Options... options)
Adds an
MapStage operation to the graph |
MapUnstage |
mapUnstage(Operand<Long> key,
Operand<Integer> indices,
List<Class<?>> dtypes,
MapUnstage.Options... options)
Adds an
MapUnstage operation to the graph |
MapUnstageNoKey |
mapUnstageNoKey(Operand<Integer> indices,
List<Class<?>> dtypes,
MapUnstageNoKey.Options... options)
Adds an
MapUnstageNoKey operation to the graph |
MatchingFiles |
matchingFiles(Operand<String> pattern)
Adds an
MatchingFiles operation to the graph |
<T> MatMul<T> |
matMul(Operand<T> a,
Operand<T> b,
MatMul.Options... options)
Adds an
MatMul operation to the graph |
<T,U extends Number> |
matrixBandPart(Operand<T> input,
Operand<U> numLower,
Operand<U> numUpper)
Adds an
MatrixBandPart operation to the graph |
<T> MatrixDeterminant<T> |
matrixDeterminant(Operand<T> input)
Adds an
MatrixDeterminant operation to the graph |
<T> MatrixDiag<T> |
matrixDiag(Operand<T> diagonal)
Adds an
MatrixDiag operation to the graph |
<T> MatrixDiagPart<T> |
matrixDiagPart(Operand<T> input)
Adds an
MatrixDiagPart operation to the graph |
<T> MatrixInverse<T> |
matrixInverse(Operand<T> input,
MatrixInverse.Options... options)
Adds an
MatrixInverse operation to the graph |
<T> MatrixSetDiag<T> |
matrixSetDiag(Operand<T> input,
Operand<T> diagonal)
Adds an
MatrixSetDiag operation to the graph |
<T> MatrixSolve<T> |
matrixSolve(Operand<T> matrix,
Operand<T> rhs,
MatrixSolve.Options... options)
Adds an
MatrixSolve operation to the graph |
<T> MatrixSolveLs<T> |
matrixSolveLs(Operand<T> matrix,
Operand<T> rhs,
Operand<Double> l2Regularizer,
MatrixSolveLs.Options... options)
Adds an
MatrixSolveLs operation to the graph |
<T> MatrixSquareRoot<T> |
matrixSquareRoot(Operand<T> input)
Adds an
MatrixSquareRoot operation to the graph |
<T> MatrixTriangularSolve<T> |
matrixTriangularSolve(Operand<T> matrix,
Operand<T> rhs,
MatrixTriangularSolve.Options... options)
Adds an
MatrixTriangularSolve operation to the graph |
<T,U extends Number> |
max(Operand<T> input,
Operand<U> axis,
Max.Options... options)
Adds an
Max operation to the graph |
<T extends Number> |
maximum(Operand<T> x,
Operand<T> y)
Adds an
Maximum operation to the graph |
<T> MaxPool<T> |
maxPool(Operand<T> input,
List<Long> ksize,
List<Long> strides,
String padding,
MaxPool.Options... options)
Adds an
MaxPool operation to the graph |
<T extends Number> |
maxPool3D(Operand<T> input,
List<Long> ksize,
List<Long> strides,
String padding,
MaxPool3D.Options... options)
Adds an
MaxPool3D operation to the graph |
<U extends Number,T extends Number> |
maxPool3DGrad(Operand<T> origInput,
Operand<T> origOutput,
Operand<U> grad,
List<Long> ksize,
List<Long> strides,
String padding,
MaxPool3DGrad.Options... options)
Adds an
MaxPool3DGrad operation to the graph |
<T extends Number> |
maxPool3DGradGrad(Operand<T> origInput,
Operand<T> origOutput,
Operand<T> grad,
List<Long> ksize,
List<Long> strides,
String padding,
MaxPool3DGradGrad.Options... options)
Adds an
MaxPool3DGradGrad operation to the graph |
<T extends Number> |
maxPoolGradGrad(Operand<T> origInput,
Operand<T> origOutput,
Operand<T> grad,
List<Long> ksize,
List<Long> strides,
String padding,
MaxPoolGradGrad.Options... options)
Adds an
MaxPoolGradGrad operation to the graph |
<T extends Number> |
maxPoolGradGradV2(Operand<T> origInput,
Operand<T> origOutput,
Operand<T> grad,
Operand<Integer> ksize,
Operand<Integer> strides,
String padding,
MaxPoolGradGradV2.Options... options)
Adds an
MaxPoolGradGradV2 operation to the graph |
<T extends Number,U extends Number> |
maxPoolGradGradWithArgmax(Operand<T> input,
Operand<T> grad,
Operand<U> argmax,
List<Long> ksize,
List<Long> strides,
String padding)
Adds an
MaxPoolGradGradWithArgmax operation to the graph |
<T extends Number> |
maxPoolGradV2(Operand<T> origInput,
Operand<T> origOutput,
Operand<T> grad,
Operand<Integer> ksize,
Operand<Integer> strides,
String padding,
MaxPoolGradV2.Options... options)
Adds an
MaxPoolGradV2 operation to the graph |
<T> MaxPoolV2<T> |
maxPoolV2(Operand<T> input,
Operand<Integer> ksize,
Operand<Integer> strides,
String padding,
MaxPoolV2.Options... options)
Adds an
MaxPoolV2 operation to the graph |
<T extends Number,U extends Number> |
maxPoolWithArgmax(Operand<T> input,
List<Long> ksize,
List<Long> strides,
Class<U> Targmax,
String padding)
Adds an
MaxPoolWithArgmax operation to the graph |
<T extends Number> |
maxPoolWithArgmax(Operand<T> input,
List<Long> ksize,
List<Long> strides,
String padding)
Adds an
MaxPoolWithArgmax operation to the graph |
<T,U extends Number> |
mean(Operand<T> input,
Operand<U> axis,
Mean.Options... options)
Adds an
Mean operation to the graph |
<T> Merge<T> |
merge(Operand<T> inputs)
Adds an
Merge operation to the graph |
MergeSummary |
mergeSummary(Iterable<Operand<String>> inputs)
Adds an
MergeSummary operation to the graph |
MergeV2Checkpoints |
mergeV2Checkpoints(Operand<String> checkpointPrefixes,
Operand<String> destinationPrefix,
MergeV2Checkpoints.Options... options)
Adds an
MergeV2Checkpoints operation to the graph |
Mfcc |
mfcc(Operand<Float> spectrogram,
Operand<Integer> sampleRate,
Mfcc.Options... options)
Adds an
Mfcc operation to the graph |
<T,U extends Number> |
min(Operand<T> input,
Operand<U> axis,
Min.Options... options)
Adds an
Min operation to the graph |
<T extends Number> |
minimum(Operand<T> x,
Operand<T> y)
Adds an
Minimum operation to the graph |
<T,U extends Number> |
mirrorPad(Operand<T> input,
Operand<U> paddings,
String mode)
Adds an
MirrorPad operation to the graph |
<T extends Number> |
mod(Operand<T> x,
Operand<T> y)
Adds an
Mod operation to the graph |
<T> Mul<T> |
mul(Operand<T> x,
Operand<T> y)
Adds an
Mul operation to the graph |
<U extends Number,T extends Number> |
multinomial(Operand<T> logits,
Operand<Integer> numSamples,
Class<U> outputDtype,
Multinomial.Options... options)
Adds an
Multinomial operation to the graph |
<T extends Number> |
multinomial(Operand<T> logits,
Operand<Integer> numSamples,
Multinomial.Options... options)
Adds an
Multinomial operation to the graph |
<T> Multiply<T> |
multiply(Operand<T> x,
Operand<T> y)
Adds an
Multiply operation to the graph |
<T,U> MutableDenseHashTable |
mutableDenseHashTable(Operand<T> emptyKey,
Operand<T> deletedKey,
Class<U> valueDtype,
MutableDenseHashTable.Options... options)
Adds an
MutableDenseHashTable operation to the graph |
<T,U> MutableHashTable |
mutableHashTable(Class<T> keyDtype,
Class<U> valueDtype,
MutableHashTable.Options... options)
Adds an
MutableHashTable operation to the graph |
<T,U> MutableHashTableOfTensors |
mutableHashTableOfTensors(Class<T> keyDtype,
Class<U> valueDtype,
MutableHashTableOfTensors.Options... options)
Adds an
MutableHashTableOfTensors operation to the graph |
MutexLock |
mutexLock(Operand<?> mutex)
Adds an
MutexLock operation to the graph |
MutexV2 |
mutexV2(MutexV2.Options... options)
Adds an
MutexV2 operation to the graph |
<T> Neg<T> |
neg(Operand<T> x)
Adds an
Neg operation to the graph |
<T> Negate<T> |
negate(Operand<T> x)
Adds an
Negate operation to the graph |
NegTrain |
negTrain(Operand<Float> wIn,
Operand<Float> wOut,
Operand<Integer> examples,
Operand<Integer> labels,
Operand<Float> lr,
List<Long> vocabCount,
Long numNegativeSamples)
Adds an
NegTrain operation to the graph |
<T> NextIteration<T> |
nextIteration(Operand<T> data)
Adds an
NextIteration operation to the graph |
NonMaxSuppression |
nonMaxSuppression(Operand<Float> boxes,
Operand<Float> scores,
Operand<Integer> maxOutputSize,
NonMaxSuppression.Options... options)
Adds an
NonMaxSuppression operation to the graph |
<T extends Number> |
nonMaxSuppressionV2(Operand<T> boxes,
Operand<T> scores,
Operand<Integer> maxOutputSize,
Operand<Float> iouThreshold)
Adds an
NonMaxSuppressionV2 operation to the graph |
<T extends Number> |
nonMaxSuppressionV3(Operand<T> boxes,
Operand<T> scores,
Operand<Integer> maxOutputSize,
Operand<Float> iouThreshold,
Operand<Float> scoreThreshold)
Adds an
NonMaxSuppressionV3 operation to the graph |
<T extends Number> |
nonMaxSuppressionV4(Operand<T> boxes,
Operand<T> scores,
Operand<Integer> maxOutputSize,
Operand<Float> iouThreshold,
Operand<Float> scoreThreshold,
NonMaxSuppressionV4.Options... options)
Adds an
NonMaxSuppressionV4 operation to the graph |
NonMaxSuppressionWithOverlaps |
nonMaxSuppressionWithOverlaps(Operand<Float> overlaps,
Operand<Float> scores,
Operand<Integer> maxOutputSize,
Operand<Float> overlapThreshold,
Operand<Float> scoreThreshold)
Adds an
NonMaxSuppressionWithOverlaps operation to the graph |
NoOp |
noOp()
Adds an
NoOp operation to the graph |
<T> NotEqual |
notEqual(Operand<T> x,
Operand<T> y)
Adds an
NotEqual operation to the graph |
<T extends Number> |
nthElement(Operand<T> input,
Operand<Integer> n,
NthElement.Options... options)
Adds an
NthElement operation to the graph |
<U,T extends Number> |
oneHot(Operand<T> indices,
Operand<Integer> depth,
Operand<U> onValue,
Operand<U> offValue,
OneHot.Options... options)
Adds an
OneHot operation to the graph |
<T> OnesLike<T> |
onesLike(Operand<T> x)
Adds an
OnesLike operation to the graph |
OptionalFromValue |
optionalFromValue(Iterable<Operand<?>> components)
Adds an
OptionalFromValue operation to the graph |
OptionalGetValue |
optionalGetValue(Operand<?> optional,
List<Class<?>> outputTypes,
List<Shape> outputShapes)
Adds an
OptionalGetValue operation to the graph |
OptionalHasValue |
optionalHasValue(Operand<?> optional)
Adds an
OptionalHasValue operation to the graph |
OptionalNone |
optionalNone()
Adds an
OptionalNone operation to the graph |
OrderedMapClear |
orderedMapClear(List<Class<?>> dtypes,
OrderedMapClear.Options... options)
Adds an
OrderedMapClear operation to the graph |
OrderedMapIncompleteSize |
orderedMapIncompleteSize(List<Class<?>> dtypes,
OrderedMapIncompleteSize.Options... options)
Adds an
OrderedMapIncompleteSize operation to the graph |
OrderedMapPeek |
orderedMapPeek(Operand<Long> key,
Operand<Integer> indices,
List<Class<?>> dtypes,
OrderedMapPeek.Options... options)
Adds an
OrderedMapPeek operation to the graph |
OrderedMapSize |
orderedMapSize(List<Class<?>> dtypes,
OrderedMapSize.Options... options)
Adds an
OrderedMapSize operation to the graph |
OrderedMapStage |
orderedMapStage(Operand<Long> key,
Operand<Integer> indices,
Iterable<Operand<?>> values,
List<Class<?>> dtypes,
OrderedMapStage.Options... options)
Adds an
OrderedMapStage operation to the graph |
OrderedMapUnstage |
orderedMapUnstage(Operand<Long> key,
Operand<Integer> indices,
List<Class<?>> dtypes,
OrderedMapUnstage.Options... options)
Adds an
OrderedMapUnstage operation to the graph |
OrderedMapUnstageNoKey |
orderedMapUnstageNoKey(Operand<Integer> indices,
List<Class<?>> dtypes,
OrderedMapUnstageNoKey.Options... options)
Adds an
OrderedMapUnstageNoKey operation to the graph |
<T,U extends Number> |
pad(Operand<T> input,
Operand<U> paddings)
Adds an
Pad operation to the graph |
PaddingFIFOQueue |
paddingFIFOQueue(List<Class<?>> componentTypes,
PaddingFIFOQueue.Options... options)
Adds an
PaddingFIFOQueue operation to the graph |
<T,U extends Number> |
padV2(Operand<T> input,
Operand<U> paddings,
Operand<T> constantValues)
Adds an
PadV2 operation to the graph |
<T> ParallelConcat<T> |
parallelConcat(Operand<T> values,
Shape shape)
Adds an
ParallelConcat operation to the graph |
<T> ParallelDynamicStitch<T> |
parallelDynamicStitch(Iterable<Operand<Integer>> indices,
Operand<T> data)
Adds an
ParallelDynamicStitch operation to the graph |
<U extends Number,T extends Number> |
parameterizedTruncatedNormal(Operand<T> shape,
Operand<U> means,
Operand<U> stdevs,
Operand<U> minvals,
Operand<U> maxvals,
ParameterizedTruncatedNormal.Options... options)
Adds an
ParameterizedTruncatedNormal operation to the graph |
ParseExample |
parseExample(Operand<String> serialized,
Operand<String> names,
Iterable<Operand<String>> sparseKeys,
Iterable<Operand<String>> denseKeys,
Iterable<Operand<?>> denseDefaults,
List<Class<?>> sparseTypes,
List<Shape> denseShapes)
Adds an
ParseExample operation to the graph |
ParseSequenceExample |
parseSequenceExample(Operand<String> serialized,
Operand<String> debugName,
Iterable<Operand<?>> contextDenseDefaults,
List<String> featureListDenseMissingAssumedEmpty,
List<String> contextSparseKeys,
List<String> contextDenseKeys,
List<String> featureListSparseKeys,
List<String> featureListDenseKeys,
List<Class<?>> contextSparseTypes,
List<Class<?>> featureListDenseTypes,
List<Class<?>> featureListSparseTypes,
ParseSequenceExample.Options... options)
Adds an
ParseSequenceExample operation to the graph |
ParseSingleExample |
parseSingleExample(Operand<String> serialized,
Iterable<Operand<?>> denseDefaults,
Long numSparse,
List<String> sparseKeys,
List<String> denseKeys,
List<Class<?>> sparseTypes,
List<Shape> denseShapes)
Adds an
ParseSingleExample operation to the graph |
ParseSingleSequenceExample |
parseSingleSequenceExample(Operand<String> serialized,
Operand<String> featureListDenseMissingAssumedEmpty,
Iterable<Operand<String>> contextSparseKeys,
Iterable<Operand<String>> contextDenseKeys,
Iterable<Operand<String>> featureListSparseKeys,
Iterable<Operand<String>> featureListDenseKeys,
Iterable<Operand<?>> contextDenseDefaults,
Operand<String> debugName,
List<Class<?>> contextSparseTypes,
List<Class<?>> featureListDenseTypes,
List<Class<?>> featureListSparseTypes,
ParseSingleSequenceExample.Options... options)
Adds an
ParseSingleSequenceExample operation to the graph |
<T> ParseTensor<T> |
parseTensor(Operand<String> serialized,
Class<T> outType)
Adds an
ParseTensor operation to the graph |
<T> Placeholder<T> |
placeholder(Class<T> dtype,
Placeholder.Options... options)
Adds an
Placeholder operation to the graph |
<T> PlaceholderV2<T> |
placeholderV2(Class<T> dtype,
Shape shape)
Adds an
PlaceholderV2 operation to the graph |
<T> PlaceholderWithDefault<T> |
placeholderWithDefault(Operand<T> input,
Shape shape)
Adds an
PlaceholderWithDefault operation to the graph |
<T extends Number> |
polygamma(Operand<T> a,
Operand<T> x)
Adds an
Polygamma operation to the graph |
<T extends Number> |
populationCount(Operand<T> x)
Adds an
PopulationCount operation to the graph |
<T> Pow<T> |
pow(Operand<T> x,
Operand<T> y)
Adds an
Pow operation to the graph |
<T> PreventGradient<T> |
preventGradient(Operand<T> input,
PreventGradient.Options... options)
Adds an
PreventGradient operation to the graph |
<T> Print<T> |
print(Operand<T> input,
Iterable<Operand<?>> data,
Print.Options... options)
Adds an
Print operation to the graph |
PrintV2 |
printV2(Operand<String> input,
PrintV2.Options... options)
Adds an
PrintV2 operation to the graph |
PriorityQueue |
priorityQueue(List<Class<?>> componentTypes,
List<Shape> shapes,
PriorityQueue.Options... options)
Adds an
PriorityQueue operation to the graph |
<T,U extends Number> |
prod(Operand<T> input,
Operand<U> axis,
Prod.Options... options)
Adds an
Prod operation to the graph |
<T> Qr<T> |
qr(Operand<T> input,
Qr.Options... options)
Adds an
Qr operation to the graph |
<T extends Number> |
quantizeAndDequantize(Operand<T> input,
QuantizeAndDequantize.Options... options)
Adds an
QuantizeAndDequantize operation to the graph |
<T extends Number> |
quantizeAndDequantizeV2(Operand<T> input,
Operand<T> inputMin,
Operand<T> inputMax,
QuantizeAndDequantizeV2.Options... options)
Adds an
QuantizeAndDequantizeV2 operation to the graph |
<T extends Number> |
quantizeAndDequantizeV3(Operand<T> input,
Operand<T> inputMin,
Operand<T> inputMax,
Operand<Integer> numBits,
QuantizeAndDequantizeV3.Options... options)
Adds an
QuantizeAndDequantizeV3 operation to the graph |
<V,T,U> QuantizedAdd<V> |
quantizedAdd(Operand<T> x,
Operand<U> y,
Operand<Float> minX,
Operand<Float> maxX,
Operand<Float> minY,
Operand<Float> maxY,
Class<V> Toutput)
Adds an
QuantizedAdd operation to the graph |
<T> QuantizedAvgPool<T> |
quantizedAvgPool(Operand<T> input,
Operand<Float> minInput,
Operand<Float> maxInput,
List<Long> ksize,
List<Long> strides,
String padding)
Adds an
QuantizedAvgPool operation to the graph |
<U,T> QuantizedBatchNormWithGlobalNormalization<U> |
quantizedBatchNormWithGlobalNormalization(Operand<T> t,
Operand<Float> tMin,
Operand<Float> tMax,
Operand<T> m,
Operand<Float> mMin,
Operand<Float> mMax,
Operand<T> v,
Operand<Float> vMin,
Operand<Float> vMax,
Operand<T> beta,
Operand<Float> betaMin,
Operand<Float> betaMax,
Operand<T> gamma,
Operand<Float> gammaMin,
Operand<Float> gammaMax,
Class<U> outType,
Float varianceEpsilon,
Boolean scaleAfterNormalization)
Adds an
QuantizedBatchNormWithGlobalNormalization operation to the graph |
<V,T,U> QuantizedBiasAdd<V> |
quantizedBiasAdd(Operand<T> input,
Operand<U> bias,
Operand<Float> minInput,
Operand<Float> maxInput,
Operand<Float> minBias,
Operand<Float> maxBias,
Class<V> outType)
Adds an
QuantizedBiasAdd operation to the graph |
<T> QuantizedConcat<T> |
quantizedConcat(Operand<Integer> concatDim,
Operand<T> values,
Iterable<Operand<Float>> inputMins,
Iterable<Operand<Float>> inputMaxes)
Adds an
QuantizedConcat operation to the graph |
<V,T,U> QuantizedConv2D<V> |
quantizedConv2D(Operand<T> input,
Operand<U> filter,
Operand<Float> minInput,
Operand<Float> maxInput,
Operand<Float> minFilter,
Operand<Float> maxFilter,
Class<V> outType,
List<Long> strides,
String padding,
QuantizedConv2D.Options... options)
Adds an
QuantizedConv2D operation to the graph |
<T> QuantizedInstanceNorm<T> |
quantizedInstanceNorm(Operand<T> x,
Operand<Float> xMin,
Operand<Float> xMax,
QuantizedInstanceNorm.Options... options)
Adds an
QuantizedInstanceNorm operation to the graph |
<V,T,U,W> QuantizedMatMul<V> |
quantizedMatMul(Operand<T> a,
Operand<U> b,
Operand<Float> minA,
Operand<Float> maxA,
Operand<Float> minB,
Operand<Float> maxB,
Class<V> Toutput,
Class<W> Tactivation,
QuantizedMatMul.Options... options)
Adds an
QuantizedMatMul operation to the graph |
<T> QuantizedMaxPool<T> |
quantizedMaxPool(Operand<T> input,
Operand<Float> minInput,
Operand<Float> maxInput,
List<Long> ksize,
List<Long> strides,
String padding)
Adds an
QuantizedMaxPool operation to the graph |
<V,T,U> QuantizedMul<V> |
quantizedMul(Operand<T> x,
Operand<U> y,
Operand<Float> minX,
Operand<Float> maxX,
Operand<Float> minY,
Operand<Float> maxY,
Class<V> Toutput)
Adds an
QuantizedMul operation to the graph |
<U,T> QuantizeDownAndShrinkRange<U> |
quantizeDownAndShrinkRange(Operand<T> input,
Operand<Float> inputMin,
Operand<Float> inputMax,
Class<U> outType)
Adds an
QuantizeDownAndShrinkRange operation to the graph |
<U,T> QuantizedRelu<U> |
quantizedRelu(Operand<T> features,
Operand<Float> minFeatures,
Operand<Float> maxFeatures,
Class<U> outType)
Adds an
QuantizedRelu operation to the graph |
<U,T> QuantizedRelu6<U> |
quantizedRelu6(Operand<T> features,
Operand<Float> minFeatures,
Operand<Float> maxFeatures,
Class<U> outType)
Adds an
QuantizedRelu6 operation to the graph |
<U,T> QuantizedReluX<U> |
quantizedReluX(Operand<T> features,
Operand<Float> maxValue,
Operand<Float> minFeatures,
Operand<Float> maxFeatures,
Class<U> outType)
Adds an
QuantizedReluX operation to the graph |
<T,U extends Number> |
quantizedReshape(Operand<T> tensor,
Operand<U> shape,
Operand<Float> inputMin,
Operand<Float> inputMax)
Adds an
QuantizedReshape operation to the graph |
<T> QuantizedResizeBilinear<T> |
quantizedResizeBilinear(Operand<T> images,
Operand<Integer> size,
Operand<Float> min,
Operand<Float> max,
QuantizedResizeBilinear.Options... options)
Adds an
QuantizedResizeBilinear operation to the graph |
<T> QuantizeV2<T> |
quantizeV2(Operand<Float> input,
Operand<Float> minRange,
Operand<Float> maxRange,
Class<T> T,
QuantizeV2.Options... options)
Adds an
QuantizeV2 operation to the graph |
QueueClose |
queueClose(Operand<?> handle,
QueueClose.Options... options)
Adds an
QueueClose operation to the graph |
QueueDequeue |
queueDequeue(Operand<?> handle,
List<Class<?>> componentTypes,
QueueDequeue.Options... options)
Adds an
QueueDequeue operation to the graph |
QueueDequeueMany |
queueDequeueMany(Operand<?> handle,
Operand<Integer> n,
List<Class<?>> componentTypes,
QueueDequeueMany.Options... options)
Adds an
QueueDequeueMany operation to the graph |
QueueDequeueUpTo |
queueDequeueUpTo(Operand<?> handle,
Operand<Integer> n,
List<Class<?>> componentTypes,
QueueDequeueUpTo.Options... options)
Adds an
QueueDequeueUpTo operation to the graph |
QueueEnqueue |
queueEnqueue(Operand<?> handle,
Iterable<Operand<?>> components,
QueueEnqueue.Options... options)
Adds an
QueueEnqueue operation to the graph |
QueueEnqueueMany |
queueEnqueueMany(Operand<?> handle,
Iterable<Operand<?>> components,
QueueEnqueueMany.Options... options)
Adds an
QueueEnqueueMany operation to the graph |
QueueIsClosed |
queueIsClosed(Operand<String> handle)
Adds an
QueueIsClosed operation to the graph |
QueueIsClosedV2 |
queueIsClosedV2(Operand<?> handle)
Adds an
QueueIsClosedV2 operation to the graph |
QueueSize |
queueSize(Operand<?> handle)
Adds an
QueueSize operation to the graph |
<T extends Number> |
randomCrop(Operand<T> image,
Operand<Long> size,
RandomCrop.Options... options)
Adds an
RandomCrop operation to the graph |
<U extends Number,T extends Number> |
randomGamma(Operand<T> shape,
Operand<U> alpha,
RandomGamma.Options... options)
Adds an
RandomGamma operation to the graph |
<U extends Number,T extends Number> |
randomNormal(Operand<T> shape,
Class<U> dtype,
RandomNormal.Options... options)
Adds an
RandomNormal operation to the graph |
<U extends Number,T extends Number> |
randomPoisson(Operand<T> shape,
Operand<U> rate,
RandomPoisson.Options... options)
Adds an
RandomPoisson operation to the graph |
<V extends Number,T extends Number,U extends Number> |
randomPoissonV2(Operand<T> shape,
Operand<U> rate,
Class<V> dtype,
RandomPoissonV2.Options... options)
Adds an
RandomPoissonV2 operation to the graph |
<T extends Number,U extends Number> |
randomPoissonV2(Operand<T> shape,
Operand<U> rate,
RandomPoissonV2.Options... options)
Adds an
RandomPoissonV2 operation to the graph |
<T> RandomShuffle<T> |
randomShuffle(Operand<T> value,
RandomShuffle.Options... options)
Adds an
RandomShuffle operation to the graph |
RandomShuffleQueue |
randomShuffleQueue(List<Class<?>> componentTypes,
RandomShuffleQueue.Options... options)
Adds an
RandomShuffleQueue operation to the graph |
<U extends Number,T extends Number> |
randomUniform(Operand<T> shape,
Class<U> dtype,
RandomUniform.Options... options)
Adds an
RandomUniform operation to the graph |
<U extends Number,T extends Number> |
randomUniformInt(Operand<T> shape,
Operand<U> minval,
Operand<U> maxval,
RandomUniformInt.Options... options)
Adds an
RandomUniformInt operation to the graph |
<T extends Number> |
range(Operand<T> start,
Operand<T> limit,
Operand<T> delta)
Adds an
Range operation to the graph |
<T> Rank |
rank(Operand<T> input)
Adds an
Rank operation to the graph |
ReaderNumRecordsProduced |
readerNumRecordsProduced(Operand<?> readerHandle)
Adds an
ReaderNumRecordsProduced operation to the graph |
ReaderNumWorkUnitsCompleted |
readerNumWorkUnitsCompleted(Operand<?> readerHandle)
Adds an
ReaderNumWorkUnitsCompleted operation to the graph |
ReaderRead |
readerRead(Operand<?> readerHandle,
Operand<?> queueHandle)
Adds an
ReaderRead operation to the graph |
ReaderReadUpTo |
readerReadUpTo(Operand<?> readerHandle,
Operand<?> queueHandle,
Operand<Long> numRecords)
Adds an
ReaderReadUpTo operation to the graph |
ReaderReset |
readerReset(Operand<?> readerHandle)
Adds an
ReaderReset operation to the graph |
ReaderRestoreState |
readerRestoreState(Operand<?> readerHandle,
Operand<String> state)
Adds an
ReaderRestoreState operation to the graph |
ReaderSerializeState |
readerSerializeState(Operand<?> readerHandle)
Adds an
ReaderSerializeState operation to the graph |
ReadFile |
readFile(Operand<String> filename)
Adds an
ReadFile operation to the graph |
<T> ReadVariableOp<T> |
readVariableOp(Operand<?> resource,
Class<T> dtype)
Adds an
ReadVariableOp operation to the graph |
<T> Real<Float> |
real(Operand<T> input)
Adds an
Real operation to the graph |
<U extends Number,T> |
real(Operand<T> input,
Class<U> Tout)
Adds an
Real operation to the graph |
<T> RealDiv<T> |
realDiv(Operand<T> x,
Operand<T> y)
Adds an
RealDiv operation to the graph |
<T> Reciprocal<T> |
reciprocal(Operand<T> x)
Adds an
Reciprocal operation to the graph |
RecordInput |
recordInput(String filePattern,
RecordInput.Options... options)
Adds an
RecordInput operation to the graph |
<T extends Number> |
reduceAll(Operand<Boolean> input,
Operand<T> axis,
ReduceAll.Options... options)
Adds an
ReduceAll operation to the graph |
<T extends Number> |
reduceAny(Operand<Boolean> input,
Operand<T> axis,
ReduceAny.Options... options)
Adds an
ReduceAny operation to the graph |
ReduceJoin |
reduceJoin(Operand<String> inputs,
Operand<Integer> reductionIndices,
ReduceJoin.Options... options)
Adds an
ReduceJoin operation to the graph |
<T,U extends Number> |
reduceMax(Operand<T> input,
Operand<U> axis,
ReduceMax.Options... options)
Adds an
ReduceMax operation to the graph |
<T,U extends Number> |
reduceMean(Operand<T> input,
Operand<U> axis,
ReduceMean.Options... options)
Adds an
ReduceMean operation to the graph |
<T,U extends Number> |
reduceMin(Operand<T> input,
Operand<U> axis,
ReduceMin.Options... options)
Adds an
ReduceMin operation to the graph |
<T,U extends Number> |
reduceProd(Operand<T> input,
Operand<U> axis,
ReduceProd.Options... options)
Adds an
ReduceProd operation to the graph |
<T,U extends Number> |
reduceSum(Operand<T> input,
Operand<U> axis,
ReduceSum.Options... options)
Adds an
ReduceSum operation to the graph |
<T> RefNextIteration<T> |
refNextIteration(Operand<T> data)
Adds an
RefNextIteration operation to the graph |
<T> RefSelect<T> |
refSelect(Operand<Integer> index,
Operand<T> inputs)
Adds an
RefSelect operation to the graph |
<T> RefSwitch<T> |
refSwitch(Operand<T> data,
Operand<Boolean> pred)
Adds an
RefSwitch operation to the graph |
RegexFullMatch |
regexFullMatch(Operand<String> input,
Operand<String> pattern)
Adds an
RegexFullMatch operation to the graph |
RegexReplace |
regexReplace(Operand<String> input,
Operand<String> pattern,
Operand<String> rewrite,
RegexReplace.Options... options)
Adds an
RegexReplace operation to the graph |
<T> Relu<T> |
relu(Operand<T> features)
Adds an
Relu operation to the graph |
<T extends Number> |
relu6(Operand<T> features)
Adds an
Relu6 operation to the graph |
RemoteFusedGraphExecute |
remoteFusedGraphExecute(Iterable<Operand<?>> inputs,
List<Class<?>> Toutputs,
String serializedRemoteFusedGraphExecuteInfo)
Adds an
RemoteFusedGraphExecute operation to the graph |
<T> RequantizationRange |
requantizationRange(Operand<T> input,
Operand<Float> inputMin,
Operand<Float> inputMax)
Adds an
RequantizationRange operation to the graph |
<U,T> Requantize<U> |
requantize(Operand<T> input,
Operand<Float> inputMin,
Operand<Float> inputMax,
Operand<Float> requestedOutputMin,
Operand<Float> requestedOutputMax,
Class<U> outType)
Adds an
Requantize operation to the graph |
<T,U extends Number> |
reshape(Operand<T> tensor,
Operand<U> shape)
Adds an
Reshape operation to the graph |
<T extends Number> |
resizeArea(Operand<T> images,
Operand<Integer> size,
ResizeArea.Options... options)
Adds an
ResizeArea operation to the graph |
<T extends Number> |
resizeBicubic(Operand<T> images,
Operand<Integer> size,
ResizeBicubic.Options... options)
Adds an
ResizeBicubic operation to the graph |
<T extends Number> |
resizeBilinear(Operand<T> images,
Operand<Integer> size,
ResizeBilinear.Options... options)
Adds an
ResizeBilinear operation to the graph |
<T extends Number> |
resizeNearestNeighbor(Operand<T> images,
Operand<Integer> size,
ResizeNearestNeighbor.Options... options)
Adds an
ResizeNearestNeighbor operation to the graph |
<T> ResourceApplyAdadelta |
resourceApplyAdadelta(Operand<?> var,
Operand<?> accum,
Operand<?> accumUpdate,
Operand<T> lr,
Operand<T> rho,
Operand<T> epsilon,
Operand<T> grad,
ResourceApplyAdadelta.Options... options)
Adds an
ResourceApplyAdadelta operation to the graph |
<T> ResourceApplyAdagrad |
resourceApplyAdagrad(Operand<?> var,
Operand<?> accum,
Operand<T> lr,
Operand<T> grad,
ResourceApplyAdagrad.Options... options)
Adds an
ResourceApplyAdagrad operation to the graph |
<T> ResourceApplyAdagradDA |
resourceApplyAdagradDA(Operand<?> var,
Operand<?> gradientAccumulator,
Operand<?> gradientSquaredAccumulator,
Operand<T> grad,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<Long> globalStep,
ResourceApplyAdagradDA.Options... options)
Adds an
ResourceApplyAdagradDA operation to the graph |
<T> ResourceApplyAdam |
resourceApplyAdam(Operand<?> var,
Operand<?> m,
Operand<?> v,
Operand<T> beta1Power,
Operand<T> beta2Power,
Operand<T> lr,
Operand<T> beta1,
Operand<T> beta2,
Operand<T> epsilon,
Operand<T> grad,
ResourceApplyAdam.Options... options)
Adds an
ResourceApplyAdam operation to the graph |
<T> ResourceApplyAdamWithAmsgrad |
resourceApplyAdamWithAmsgrad(Operand<?> var,
Operand<?> m,
Operand<?> v,
Operand<?> vhat,
Operand<T> beta1Power,
Operand<T> beta2Power,
Operand<T> lr,
Operand<T> beta1,
Operand<T> beta2,
Operand<T> epsilon,
Operand<T> grad,
ResourceApplyAdamWithAmsgrad.Options... options)
Adds an
ResourceApplyAdamWithAmsgrad operation to the graph |
<T> ResourceApplyAddSign |
resourceApplyAddSign(Operand<?> var,
Operand<?> m,
Operand<T> lr,
Operand<T> alpha,
Operand<T> signDecay,
Operand<T> beta,
Operand<T> grad,
ResourceApplyAddSign.Options... options)
Adds an
ResourceApplyAddSign operation to the graph |
<T> ResourceApplyCenteredRMSProp |
resourceApplyCenteredRMSProp(Operand<?> var,
Operand<?> mg,
Operand<?> ms,
Operand<?> mom,
Operand<T> lr,
Operand<T> rho,
Operand<T> momentum,
Operand<T> epsilon,
Operand<T> grad,
ResourceApplyCenteredRMSProp.Options... options)
Adds an
ResourceApplyCenteredRMSProp operation to the graph |
<T> ResourceApplyFtrl |
resourceApplyFtrl(Operand<?> var,
Operand<?> accum,
Operand<?> linear,
Operand<T> grad,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> lrPower,
ResourceApplyFtrl.Options... options)
Adds an
ResourceApplyFtrl operation to the graph |
<T> ResourceApplyFtrlV2 |
resourceApplyFtrlV2(Operand<?> var,
Operand<?> accum,
Operand<?> linear,
Operand<T> grad,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> l2Shrinkage,
Operand<T> lrPower,
ResourceApplyFtrlV2.Options... options)
Adds an
ResourceApplyFtrlV2 operation to the graph |
<T> ResourceApplyGradientDescent |
resourceApplyGradientDescent(Operand<?> var,
Operand<T> alpha,
Operand<T> delta,
ResourceApplyGradientDescent.Options... options)
Adds an
ResourceApplyGradientDescent operation to the graph |
<T> ResourceApplyKerasMomentum |
resourceApplyKerasMomentum(Operand<?> var,
Operand<?> accum,
Operand<T> lr,
Operand<T> grad,
Operand<T> momentum,
ResourceApplyKerasMomentum.Options... options)
Adds an
ResourceApplyKerasMomentum operation to the graph |
<T> ResourceApplyMomentum |
resourceApplyMomentum(Operand<?> var,
Operand<?> accum,
Operand<T> lr,
Operand<T> grad,
Operand<T> momentum,
ResourceApplyMomentum.Options... options)
Adds an
ResourceApplyMomentum operation to the graph |
<T> ResourceApplyPowerSign |
resourceApplyPowerSign(Operand<?> var,
Operand<?> m,
Operand<T> lr,
Operand<T> logbase,
Operand<T> signDecay,
Operand<T> beta,
Operand<T> grad,
ResourceApplyPowerSign.Options... options)
Adds an
ResourceApplyPowerSign operation to the graph |
<T> ResourceApplyProximalAdagrad |
resourceApplyProximalAdagrad(Operand<?> var,
Operand<?> accum,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> grad,
ResourceApplyProximalAdagrad.Options... options)
Adds an
ResourceApplyProximalAdagrad operation to the graph |
<T> ResourceApplyProximalGradientDescent |
resourceApplyProximalGradientDescent(Operand<?> var,
Operand<T> alpha,
Operand<T> l1,
Operand<T> l2,
Operand<T> delta,
ResourceApplyProximalGradientDescent.Options... options)
Adds an
ResourceApplyProximalGradientDescent operation to the graph |
<T> ResourceApplyRMSProp |
resourceApplyRMSProp(Operand<?> var,
Operand<?> ms,
Operand<?> mom,
Operand<T> lr,
Operand<T> rho,
Operand<T> momentum,
Operand<T> epsilon,
Operand<T> grad,
ResourceApplyRMSProp.Options... options)
Adds an
ResourceApplyRMSProp operation to the graph |
<T extends Number> |
resourceCountUpTo(Operand<?> resource,
Long limit,
Class<T> T)
Adds an
ResourceCountUpTo operation to the graph |
<U,T extends Number> |
resourceGather(Operand<?> resource,
Operand<T> indices,
Class<U> dtype,
ResourceGather.Options... options)
Adds an
ResourceGather operation to the graph |
<T extends Number,U> |
resourceScatterAdd(Operand<?> resource,
Operand<T> indices,
Operand<U> updates)
Adds an
ResourceScatterAdd operation to the graph |
<T extends Number,U> |
resourceScatterDiv(Operand<?> resource,
Operand<T> indices,
Operand<U> updates)
Adds an
ResourceScatterDiv operation to the graph |
<T extends Number,U> |
resourceScatterMax(Operand<?> resource,
Operand<T> indices,
Operand<U> updates)
Adds an
ResourceScatterMax operation to the graph |
<T extends Number,U> |
resourceScatterMin(Operand<?> resource,
Operand<T> indices,
Operand<U> updates)
Adds an
ResourceScatterMin operation to the graph |
<T extends Number,U> |
resourceScatterMul(Operand<?> resource,
Operand<T> indices,
Operand<U> updates)
Adds an
ResourceScatterMul operation to the graph |
<T extends Number,U> |
resourceScatterNdAdd(Operand<?> ref,
Operand<T> indices,
Operand<U> updates,
ResourceScatterNdAdd.Options... options)
Adds an
ResourceScatterNdAdd operation to the graph |
<T extends Number,U> |
resourceScatterNdUpdate(Operand<?> ref,
Operand<T> indices,
Operand<U> updates,
ResourceScatterNdUpdate.Options... options)
Adds an
ResourceScatterNdUpdate operation to the graph |
<T extends Number,U> |
resourceScatterSub(Operand<?> resource,
Operand<T> indices,
Operand<U> updates)
Adds an
ResourceScatterSub operation to the graph |
<T extends Number,U> |
resourceScatterUpdate(Operand<?> resource,
Operand<T> indices,
Operand<U> updates)
Adds an
ResourceScatterUpdate operation to the graph |
<T,U extends Number> |
resourceSparseApplyAdadelta(Operand<?> var,
Operand<?> accum,
Operand<?> accumUpdate,
Operand<T> lr,
Operand<T> rho,
Operand<T> epsilon,
Operand<T> grad,
Operand<U> indices,
ResourceSparseApplyAdadelta.Options... options)
Adds an
ResourceSparseApplyAdadelta operation to the graph |
<T,U extends Number> |
resourceSparseApplyAdagrad(Operand<?> var,
Operand<?> accum,
Operand<T> lr,
Operand<T> grad,
Operand<U> indices,
ResourceSparseApplyAdagrad.Options... options)
Adds an
ResourceSparseApplyAdagrad operation to the graph |
<T,U extends Number> |
resourceSparseApplyAdagradDA(Operand<?> var,
Operand<?> gradientAccumulator,
Operand<?> gradientSquaredAccumulator,
Operand<T> grad,
Operand<U> indices,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<Long> globalStep,
ResourceSparseApplyAdagradDA.Options... options)
Adds an
ResourceSparseApplyAdagradDA operation to the graph |
<T,U extends Number> |
resourceSparseApplyCenteredRMSProp(Operand<?> var,
Operand<?> mg,
Operand<?> ms,
Operand<?> mom,
Operand<T> lr,
Operand<T> rho,
Operand<T> momentum,
Operand<T> epsilon,
Operand<T> grad,
Operand<U> indices,
ResourceSparseApplyCenteredRMSProp.Options... options)
Adds an
ResourceSparseApplyCenteredRMSProp operation to the graph |
<T,U extends Number> |
resourceSparseApplyFtrl(Operand<?> var,
Operand<?> accum,
Operand<?> linear,
Operand<T> grad,
Operand<U> indices,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> lrPower,
ResourceSparseApplyFtrl.Options... options)
Adds an
ResourceSparseApplyFtrl operation to the graph |
<T,U extends Number> |
resourceSparseApplyFtrlV2(Operand<?> var,
Operand<?> accum,
Operand<?> linear,
Operand<T> grad,
Operand<U> indices,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> l2Shrinkage,
Operand<T> lrPower,
ResourceSparseApplyFtrlV2.Options... options)
Adds an
ResourceSparseApplyFtrlV2 operation to the graph |
<T,U extends Number> |
resourceSparseApplyKerasMomentum(Operand<?> var,
Operand<?> accum,
Operand<T> lr,
Operand<T> grad,
Operand<U> indices,
Operand<T> momentum,
ResourceSparseApplyKerasMomentum.Options... options)
Adds an
ResourceSparseApplyKerasMomentum operation to the graph |
<T,U extends Number> |
resourceSparseApplyMomentum(Operand<?> var,
Operand<?> accum,
Operand<T> lr,
Operand<T> grad,
Operand<U> indices,
Operand<T> momentum,
ResourceSparseApplyMomentum.Options... options)
Adds an
ResourceSparseApplyMomentum operation to the graph |
<T,U extends Number> |
resourceSparseApplyProximalAdagrad(Operand<?> var,
Operand<?> accum,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> grad,
Operand<U> indices,
ResourceSparseApplyProximalAdagrad.Options... options)
Adds an
ResourceSparseApplyProximalAdagrad operation to the graph |
<T,U extends Number> |
resourceSparseApplyProximalGradientDescent(Operand<?> var,
Operand<T> alpha,
Operand<T> l1,
Operand<T> l2,
Operand<T> grad,
Operand<U> indices,
ResourceSparseApplyProximalGradientDescent.Options... options)
Adds an
ResourceSparseApplyProximalGradientDescent operation to the graph |
<T,U extends Number> |
resourceSparseApplyRMSProp(Operand<?> var,
Operand<?> ms,
Operand<?> mom,
Operand<T> lr,
Operand<T> rho,
Operand<T> momentum,
Operand<T> epsilon,
Operand<T> grad,
Operand<U> indices,
ResourceSparseApplyRMSProp.Options... options)
Adds an
ResourceSparseApplyRMSProp operation to the graph |
<T extends Number,U> |
resourceStridedSliceAssign(Operand<?> ref,
Operand<T> begin,
Operand<T> end,
Operand<T> strides,
Operand<U> value,
ResourceStridedSliceAssign.Options... options)
Adds an
ResourceStridedSliceAssign operation to the graph |
<T> Restore<T> |
restore(Operand<String> filePattern,
Operand<String> tensorName,
Class<T> dt,
Restore.Options... options)
Adds an
Restore operation to the graph |
<T> RestoreSlice<T> |
restoreSlice(Operand<String> filePattern,
Operand<String> tensorName,
Operand<String> shapeAndSlice,
Class<T> dt,
RestoreSlice.Options... options)
Adds an
RestoreSlice operation to the graph |
RestoreV2 |
restoreV2(Operand<String> prefix,
Operand<String> tensorNames,
Operand<String> shapeAndSlices,
List<Class<?>> dtypes)
Adds an
RestoreV2 operation to the graph |
<T,U extends Number> |
reverse(Operand<T> tensor,
Operand<U> axis)
Adds an
Reverse operation to the graph |
<T,U extends Number> |
reverseSequence(Operand<T> input,
Operand<U> seqLengths,
Long seqDim,
ReverseSequence.Options... options)
Adds an
ReverseSequence operation to the graph |
RFFT |
rFFT(Operand<Float> input,
Operand<Integer> fftLength)
Adds an
RFFT operation to the graph |
RFFT2D |
rFFT2D(Operand<Float> input,
Operand<Integer> fftLength)
Adds an
RFFT2D operation to the graph |
RFFT3D |
rFFT3D(Operand<Float> input,
Operand<Integer> fftLength)
Adds an
RFFT3D operation to the graph |
<T extends Number> |
rGBToHSV(Operand<T> images)
Adds an
RGBToHSV operation to the graph |
<T extends Number> |
rightShift(Operand<T> x,
Operand<T> y)
Adds an
RightShift operation to the graph |
<T extends Number> |
rint(Operand<T> x)
Adds an
Rint operation to the graph |
<T,U extends Number,V extends Number> |
roll(Operand<T> input,
Operand<U> shift,
Operand<V> axis)
Adds an
Roll operation to the graph |
<T> Round<T> |
round(Operand<T> x)
Adds an
Round operation to the graph |
Rpc |
rpc(Operand<String> address,
Operand<String> method,
Operand<String> request,
Rpc.Options... options)
Adds an
Rpc operation to the graph |
<T> Rsqrt<T> |
rsqrt(Operand<T> x)
Adds an
Rsqrt operation to the graph |
<T extends Number> |
sampleDistortedBoundingBox(Operand<T> imageSize,
Operand<Float> boundingBoxes,
SampleDistortedBoundingBox.Options... options)
Adds an
SampleDistortedBoundingBox operation to the graph |
<T extends Number> |
sampleDistortedBoundingBoxV2(Operand<T> imageSize,
Operand<Float> boundingBoxes,
Operand<Float> minObjectCovered,
SampleDistortedBoundingBoxV2.Options... options)
Adds an
SampleDistortedBoundingBoxV2 operation to the graph |
Save |
save(Operand<String> filename,
Operand<String> tensorNames,
Iterable<Operand<?>> data)
Adds an
Save operation to the graph |
SaveSlices |
saveSlices(Operand<String> filename,
Operand<String> tensorNames,
Operand<String> shapesAndSlices,
Iterable<Operand<?>> data)
Adds an
SaveSlices operation to the graph |
SaveV2 |
saveV2(Operand<String> prefix,
Operand<String> tensorNames,
Operand<String> shapeAndSlices,
Iterable<Operand<?>> tensors)
Adds an
SaveV2 operation to the graph |
<T extends Number> |
scalarSummary(Operand<String> tags,
Operand<T> values)
Adds an
ScalarSummary operation to the graph |
<T,U extends Number> |
scatterAdd(Operand<T> ref,
Operand<U> indices,
Operand<T> updates,
ScatterAdd.Options... options)
Adds an
ScatterAdd operation to the graph |
<T,U extends Number> |
scatterDiv(Operand<T> ref,
Operand<U> indices,
Operand<T> updates,
ScatterDiv.Options... options)
Adds an
ScatterDiv operation to the graph |
<T extends Number,U extends Number> |
scatterMax(Operand<T> ref,
Operand<U> indices,
Operand<T> updates,
ScatterMax.Options... options)
Adds an
ScatterMax operation to the graph |
<T extends Number,U extends Number> |
scatterMin(Operand<T> ref,
Operand<U> indices,
Operand<T> updates,
ScatterMin.Options... options)
Adds an
ScatterMin operation to the graph |
<T,U extends Number> |
scatterMul(Operand<T> ref,
Operand<U> indices,
Operand<T> updates,
ScatterMul.Options... options)
Adds an
ScatterMul operation to the graph |
<U,T extends Number> |
scatterNd(Operand<T> indices,
Operand<U> updates,
Operand<T> shape)
Adds an
ScatterNd operation to the graph |
<T,U extends Number> |
scatterNdAdd(Operand<T> ref,
Operand<U> indices,
Operand<T> updates,
ScatterNdAdd.Options... options)
Adds an
ScatterNdAdd operation to the graph |
<T,U extends Number> |
scatterNdNonAliasingAdd(Operand<T> input,
Operand<U> indices,
Operand<T> updates)
Adds an
ScatterNdNonAliasingAdd operation to the graph |
<T,U extends Number> |
scatterNdSub(Operand<T> ref,
Operand<U> indices,
Operand<T> updates,
ScatterNdSub.Options... options)
Adds an
ScatterNdSub operation to the graph |
<T,U extends Number> |
scatterNdUpdate(Operand<T> ref,
Operand<U> indices,
Operand<T> updates,
ScatterNdUpdate.Options... options)
Adds an
ScatterNdUpdate operation to the graph |
<T,U extends Number> |
scatterSub(Operand<T> ref,
Operand<U> indices,
Operand<T> updates,
ScatterSub.Options... options)
Adds an
ScatterSub operation to the graph |
<T,U extends Number> |
scatterUpdate(Operand<T> ref,
Operand<U> indices,
Operand<T> updates,
ScatterUpdate.Options... options)
Adds an
ScatterUpdate operation to the graph |
Scope |
scope()
Returns the current
scope of this API |
SdcaFprint |
sdcaFprint(Operand<String> input)
Adds an
SdcaFprint operation to the graph |
SdcaOptimizer |
sdcaOptimizer(Iterable<Operand<Long>> sparseExampleIndices,
Iterable<Operand<Long>> sparseFeatureIndices,
Iterable<Operand<Float>> sparseFeatureValues,
Iterable<Operand<Float>> denseFeatures,
Operand<Float> exampleWeights,
Operand<Float> exampleLabels,
Iterable<Operand<Long>> sparseIndices,
Iterable<Operand<Float>> sparseWeights,
Iterable<Operand<Float>> denseWeights,
Operand<Float> exampleStateData,
String lossType,
Float l1,
Float l2,
Long numLossPartitions,
Long numInnerIterations,
SdcaOptimizer.Options... options)
Adds an
SdcaOptimizer operation to the graph |
SdcaShrinkL1 |
sdcaShrinkL1(Iterable<Operand<Float>> weights,
Float l1,
Float l2)
Adds an
SdcaShrinkL1 operation to the graph |
<T extends Number,U extends Number> |
segmentMax(Operand<T> data,
Operand<U> segmentIds)
Adds an
SegmentMax operation to the graph |
<T,U extends Number> |
segmentMean(Operand<T> data,
Operand<U> segmentIds)
Adds an
SegmentMean operation to the graph |
<T extends Number,U extends Number> |
segmentMin(Operand<T> data,
Operand<U> segmentIds)
Adds an
SegmentMin operation to the graph |
<T,U extends Number> |
segmentProd(Operand<T> data,
Operand<U> segmentIds)
Adds an
SegmentProd operation to the graph |
<T,U extends Number> |
segmentSum(Operand<T> data,
Operand<U> segmentIds)
Adds an
SegmentSum operation to the graph |
<T> SelfAdjointEig<T> |
selfAdjointEig(Operand<T> input,
SelfAdjointEig.Options... options)
Adds an
SelfAdjointEig operation to the graph |
<T extends Number> |
selu(Operand<T> features)
Adds an
Selu operation to the graph |
SerializeIterator |
serializeIterator(Operand<?> resourceHandle)
Adds an
SerializeIterator operation to the graph |
<T> SerializeManySparse<String> |
serializeManySparse(Operand<Long> sparseIndices,
Operand<T> sparseValues,
Operand<Long> sparseShape)
Adds an
SerializeManySparse operation to the graph |
<U,T> SerializeManySparse<U> |
serializeManySparse(Operand<Long> sparseIndices,
Operand<T> sparseValues,
Operand<Long> sparseShape,
Class<U> outType)
Adds an
SerializeManySparse operation to the graph |
<T> SerializeSparse<String> |
serializeSparse(Operand<Long> sparseIndices,
Operand<T> sparseValues,
Operand<Long> sparseShape)
Adds an
SerializeSparse operation to the graph |
<U,T> SerializeSparse<U> |
serializeSparse(Operand<Long> sparseIndices,
Operand<T> sparseValues,
Operand<Long> sparseShape,
Class<U> outType)
Adds an
SerializeSparse operation to the graph |
<T> SerializeTensor |
serializeTensor(Operand<T> tensor)
Adds an
SerializeTensor operation to the graph |
<T> SetDiff1D<T,Integer> |
setDiff1D(Operand<T> x,
Operand<T> y)
Adds an
SetDiff1D operation to the graph |
<T,U extends Number> |
setDiff1D(Operand<T> x,
Operand<T> y,
Class<U> outIdx)
Adds an
SetDiff1D operation to the graph |
<T> SetSize |
setSize(Operand<Long> setIndices,
Operand<T> setValues,
Operand<Long> setShape,
SetSize.Options... options)
Adds an
SetSize operation to the graph |
<T> Shape<Integer> |
shape(Operand<T> input)
Adds an
Shape operation to the graph |
<U extends Number,T> |
shape(Operand<T> input,
Class<U> outType)
Adds an
Shape operation to the graph |
<T> ShapeN<Integer> |
shapeN(Operand<T> input)
Adds an
ShapeN operation to the graph |
<U extends Number,T> |
shapeN(Operand<T> input,
Class<U> outType)
Adds an
ShapeN operation to the graph |
ShardedFilename |
shardedFilename(Operand<String> basename,
Operand<Integer> shard,
Operand<Integer> numShards)
Adds an
ShardedFilename operation to the graph |
ShardedFilespec |
shardedFilespec(Operand<String> basename,
Operand<Integer> numShards)
Adds an
ShardedFilespec operation to the graph |
<T> Sigmoid<T> |
sigmoid(Operand<T> x)
Adds an
Sigmoid operation to the graph |
<T> Sign<T> |
sign(Operand<T> x)
Adds an
Sign operation to the graph |
<T> Sin<T> |
sin(Operand<T> x)
Adds an
Sin operation to the graph |
<T> Sinh<T> |
sinh(Operand<T> x)
Adds an
Sinh operation to the graph |
<T> Size<Integer> |
size(Operand<T> input)
Adds an
Size operation to the graph |
<U extends Number,T> |
size(Operand<T> input,
Class<U> outType)
Adds an
Size operation to the graph |
Skipgram |
skipgram(String filename,
Long batchSize,
Skipgram.Options... options)
Adds an
Skipgram operation to the graph |
<T,U extends Number> |
slice(Operand<T> input,
Operand<U> begin,
Operand<U> size)
Adds an
Slice operation to the graph |
<T> Snapshot<T> |
snapshot(Operand<T> input)
Adds an
Snapshot operation to the graph |
<T extends Number> |
softmax(Operand<T> logits)
Adds an
Softmax operation to the graph |
<T extends Number> |
softmaxCrossEntropyWithLogits(Operand<T> features,
Operand<T> labels)
Adds an
SoftmaxCrossEntropyWithLogits operation to the graph |
<T extends Number> |
softplus(Operand<T> features)
Adds an
Softplus operation to the graph |
<T extends Number> |
softsign(Operand<T> features)
Adds an
Softsign operation to the graph |
<T,U extends Number> |
spaceToBatch(Operand<T> input,
Operand<U> paddings,
Long blockSize)
Adds an
SpaceToBatch operation to the graph |
<T,U extends Number,V extends Number> |
spaceToBatchND(Operand<T> input,
Operand<U> blockShape,
Operand<V> paddings)
Adds an
SpaceToBatchND operation to the graph |
<T> SpaceToDepth<T> |
spaceToDepth(Operand<T> input,
Long blockSize,
SpaceToDepth.Options... options)
Adds an
SpaceToDepth operation to the graph |
<T> SparseAccumulatorApplyGradient |
sparseAccumulatorApplyGradient(Operand<String> handle,
Operand<Long> localStep,
Operand<Long> gradientIndices,
Operand<T> gradientValues,
Operand<Long> gradientShape,
Boolean hasKnownShape)
Adds an
SparseAccumulatorApplyGradient operation to the graph |
<T> SparseAccumulatorTakeGradient<T> |
sparseAccumulatorTakeGradient(Operand<String> handle,
Operand<Integer> numRequired,
Class<T> dtype)
Adds an
SparseAccumulatorTakeGradient operation to the graph |
<T,U extends Number> |
sparseAdd(Operand<Long> aIndices,
Operand<T> aValues,
Operand<Long> aShape,
Operand<Long> bIndices,
Operand<T> bValues,
Operand<Long> bShape,
Operand<U> thresh)
Adds an
SparseAdd operation to the graph |
<T> SparseAddGrad<T> |
sparseAddGrad(Operand<T> backpropValGrad,
Operand<Long> aIndices,
Operand<Long> bIndices,
Operand<Long> sumIndices)
Adds an
SparseAddGrad operation to the graph |
<T,U extends Number> |
sparseApplyAdadelta(Operand<T> var,
Operand<T> accum,
Operand<T> accumUpdate,
Operand<T> lr,
Operand<T> rho,
Operand<T> epsilon,
Operand<T> grad,
Operand<U> indices,
SparseApplyAdadelta.Options... options)
Adds an
SparseApplyAdadelta operation to the graph |
<T,U extends Number> |
sparseApplyAdagrad(Operand<T> var,
Operand<T> accum,
Operand<T> lr,
Operand<T> grad,
Operand<U> indices,
SparseApplyAdagrad.Options... options)
Adds an
SparseApplyAdagrad operation to the graph |
<T,U extends Number> |
sparseApplyAdagradDA(Operand<T> var,
Operand<T> gradientAccumulator,
Operand<T> gradientSquaredAccumulator,
Operand<T> grad,
Operand<U> indices,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<Long> globalStep,
SparseApplyAdagradDA.Options... options)
Adds an
SparseApplyAdagradDA operation to the graph |
<T,U extends Number> |
sparseApplyCenteredRMSProp(Operand<T> var,
Operand<T> mg,
Operand<T> ms,
Operand<T> mom,
Operand<T> lr,
Operand<T> rho,
Operand<T> momentum,
Operand<T> epsilon,
Operand<T> grad,
Operand<U> indices,
SparseApplyCenteredRMSProp.Options... options)
Adds an
SparseApplyCenteredRMSProp operation to the graph |
<T,U extends Number> |
sparseApplyFtrl(Operand<T> var,
Operand<T> accum,
Operand<T> linear,
Operand<T> grad,
Operand<U> indices,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> lrPower,
SparseApplyFtrl.Options... options)
Adds an
SparseApplyFtrl operation to the graph |
<T,U extends Number> |
sparseApplyFtrlV2(Operand<T> var,
Operand<T> accum,
Operand<T> linear,
Operand<T> grad,
Operand<U> indices,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> l2Shrinkage,
Operand<T> lrPower,
SparseApplyFtrlV2.Options... options)
Adds an
SparseApplyFtrlV2 operation to the graph |
<T,U extends Number> |
sparseApplyMomentum(Operand<T> var,
Operand<T> accum,
Operand<T> lr,
Operand<T> grad,
Operand<U> indices,
Operand<T> momentum,
SparseApplyMomentum.Options... options)
Adds an
SparseApplyMomentum operation to the graph |
<T,U extends Number> |
sparseApplyProximalAdagrad(Operand<T> var,
Operand<T> accum,
Operand<T> lr,
Operand<T> l1,
Operand<T> l2,
Operand<T> grad,
Operand<U> indices,
SparseApplyProximalAdagrad.Options... options)
Adds an
SparseApplyProximalAdagrad operation to the graph |
<T,U extends Number> |
sparseApplyProximalGradientDescent(Operand<T> var,
Operand<T> alpha,
Operand<T> l1,
Operand<T> l2,
Operand<T> grad,
Operand<U> indices,
SparseApplyProximalGradientDescent.Options... options)
Adds an
SparseApplyProximalGradientDescent operation to the graph |
<T,U extends Number> |
sparseApplyRMSProp(Operand<T> var,
Operand<T> ms,
Operand<T> mom,
Operand<T> lr,
Operand<T> rho,
Operand<T> momentum,
Operand<T> epsilon,
Operand<T> grad,
Operand<U> indices,
SparseApplyRMSProp.Options... options)
Adds an
SparseApplyRMSProp operation to the graph |
<T> SparseConcat<T> |
sparseConcat(Iterable<Operand<Long>> indices,
Operand<T> values,
Iterable<Operand<Long>> shapes,
Long concatDim)
Adds an
SparseConcat operation to the graph |
<T> SparseConditionalAccumulator |
sparseConditionalAccumulator(Class<T> dtype,
Shape shape,
SparseConditionalAccumulator.Options... options)
Adds an
SparseConditionalAccumulator operation to the graph |
<T,U> SparseCross<T> |
sparseCross(Iterable<Operand<Long>> indices,
Iterable<Operand<?>> values,
Iterable<Operand<Long>> shapes,
Iterable<Operand<?>> denseInputs,
Boolean hashedOutput,
Long numBuckets,
Long hashKey,
Class<T> outType,
Class<U> internalType)
Adds an
SparseCross operation to the graph |
<T> SparseDenseCwiseAdd<T> |
sparseDenseCwiseAdd(Operand<Long> spIndices,
Operand<T> spValues,
Operand<Long> spShape,
Operand<T> dense)
Adds an
SparseDenseCwiseAdd operation to the graph |
<T> SparseDenseCwiseDiv<T> |
sparseDenseCwiseDiv(Operand<Long> spIndices,
Operand<T> spValues,
Operand<Long> spShape,
Operand<T> dense)
Adds an
SparseDenseCwiseDiv operation to the graph |
<T> SparseDenseCwiseMul<T> |
sparseDenseCwiseMul(Operand<Long> spIndices,
Operand<T> spValues,
Operand<Long> spShape,
Operand<T> dense)
Adds an
SparseDenseCwiseMul operation to the graph |
<T> SparseFillEmptyRows<T> |
sparseFillEmptyRows(Operand<Long> indices,
Operand<T> values,
Operand<Long> denseShape,
Operand<T> defaultValue)
Adds an
SparseFillEmptyRows operation to the graph |
<T> SparseFillEmptyRowsGrad<T> |
sparseFillEmptyRowsGrad(Operand<Long> reverseIndexMap,
Operand<T> gradValues)
Adds an
SparseFillEmptyRowsGrad operation to the graph |
<T extends Number,U extends Number> |
sparseMatMul(Operand<T> a,
Operand<U> b,
SparseMatMul.Options... options)
Adds an
SparseMatMul operation to the graph |
<T extends Number> |
sparseReduceMax(Operand<Long> inputIndices,
Operand<T> inputValues,
Operand<Long> inputShape,
Operand<Integer> reductionAxes,
SparseReduceMax.Options... options)
Adds an
SparseReduceMax operation to the graph |
<T extends Number> |
sparseReduceMaxSparse(Operand<Long> inputIndices,
Operand<T> inputValues,
Operand<Long> inputShape,
Operand<Integer> reductionAxes,
SparseReduceMaxSparse.Options... options)
Adds an
SparseReduceMaxSparse operation to the graph |
<T> SparseReduceSum<T> |
sparseReduceSum(Operand<Long> inputIndices,
Operand<T> inputValues,
Operand<Long> inputShape,
Operand<Integer> reductionAxes,
SparseReduceSum.Options... options)
Adds an
SparseReduceSum operation to the graph |
<T> SparseReduceSumSparse<T> |
sparseReduceSumSparse(Operand<Long> inputIndices,
Operand<T> inputValues,
Operand<Long> inputShape,
Operand<Integer> reductionAxes,
SparseReduceSumSparse.Options... options)
Adds an
SparseReduceSumSparse operation to the graph |
<T> SparseReorder<T> |
sparseReorder(Operand<Long> inputIndices,
Operand<T> inputValues,
Operand<Long> inputShape)
Adds an
SparseReorder operation to the graph |
SparseReshape |
sparseReshape(Operand<Long> inputIndices,
Operand<Long> inputShape,
Operand<Long> newShape)
Adds an
SparseReshape operation to the graph |
<T extends Number,U extends Number> |
sparseSegmentMean(Operand<T> data,
Operand<U> indices,
Operand<Integer> segmentIds)
Adds an
SparseSegmentMean operation to the graph |
<T extends Number,U extends Number> |
sparseSegmentMeanGrad(Operand<T> grad,
Operand<U> indices,
Operand<Integer> segmentIds,
Operand<Integer> outputDim0)
Adds an
SparseSegmentMeanGrad operation to the graph |
<T extends Number,U extends Number,V extends Number> |
sparseSegmentMeanWithNumSegments(Operand<T> data,
Operand<U> indices,
Operand<Integer> segmentIds,
Operand<V> numSegments)
Adds an
SparseSegmentMeanWithNumSegments operation to the graph |
<T extends Number,U extends Number> |
sparseSegmentSqrtN(Operand<T> data,
Operand<U> indices,
Operand<Integer> segmentIds)
Adds an
SparseSegmentSqrtN operation to the graph |
<T extends Number,U extends Number> |
sparseSegmentSqrtNGrad(Operand<T> grad,
Operand<U> indices,
Operand<Integer> segmentIds,
Operand<Integer> outputDim0)
Adds an
SparseSegmentSqrtNGrad operation to the graph |
<T extends Number,U extends Number,V extends Number> |
sparseSegmentSqrtNWithNumSegments(Operand<T> data,
Operand<U> indices,
Operand<Integer> segmentIds,
Operand<V> numSegments)
Adds an
SparseSegmentSqrtNWithNumSegments operation to the graph |
<T extends Number,U extends Number> |
sparseSegmentSum(Operand<T> data,
Operand<U> indices,
Operand<Integer> segmentIds)
Adds an
SparseSegmentSum operation to the graph |
<T extends Number,U extends Number,V extends Number> |
sparseSegmentSumWithNumSegments(Operand<T> data,
Operand<U> indices,
Operand<Integer> segmentIds,
Operand<V> numSegments)
Adds an
SparseSegmentSumWithNumSegments operation to the graph |
<T> SparseSlice<T> |
sparseSlice(Operand<Long> indices,
Operand<T> values,
Operand<Long> shape,
Operand<Long> start,
Operand<Long> size)
Adds an
SparseSlice operation to the graph |
<T> SparseSliceGrad<T> |
sparseSliceGrad(Operand<T> backpropValGrad,
Operand<Long> inputIndices,
Operand<Long> inputStart,
Operand<Long> outputIndices)
Adds an
SparseSliceGrad operation to the graph |
<T extends Number> |
sparseSoftmax(Operand<Long> spIndices,
Operand<T> spValues,
Operand<Long> spShape)
Adds an
SparseSoftmax operation to the graph |
<T extends Number,U extends Number> |
sparseSoftmaxCrossEntropyWithLogits(Operand<T> features,
Operand<U> labels)
Adds an
SparseSoftmaxCrossEntropyWithLogits operation to the graph |
<T extends Number> |
sparseSparseMaximum(Operand<Long> aIndices,
Operand<T> aValues,
Operand<Long> aShape,
Operand<Long> bIndices,
Operand<T> bValues,
Operand<Long> bShape)
Adds an
SparseSparseMaximum operation to the graph |
<T> SparseSparseMinimum<T> |
sparseSparseMinimum(Operand<Long> aIndices,
Operand<T> aValues,
Operand<Long> aShape,
Operand<Long> bIndices,
Operand<T> bValues,
Operand<Long> bShape)
Adds an
SparseSparseMinimum operation to the graph |
<T> SparseSplit<T> |
sparseSplit(Operand<Long> splitDim,
Operand<Long> indices,
Operand<T> values,
Operand<Long> shape,
Long numSplit)
Adds an
SparseSplit operation to the graph |
<U,T extends Number> |
sparseTensorDenseAdd(Operand<T> aIndices,
Operand<U> aValues,
Operand<T> aShape,
Operand<U> b)
Adds an
SparseTensorDenseAdd operation to the graph |
<U,T extends Number> |
sparseTensorDenseMatMul(Operand<T> aIndices,
Operand<U> aValues,
Operand<Long> aShape,
Operand<U> b,
SparseTensorDenseMatMul.Options... options)
Adds an
SparseTensorDenseMatMul operation to the graph |
<U,T extends Number> |
sparseToDense(Operand<T> sparseIndices,
Operand<T> outputShape,
Operand<U> sparseValues,
Operand<U> defaultValue,
SparseToDense.Options... options)
Adds an
SparseToDense operation to the graph |
<T> SparseToSparseSetOperation<T> |
sparseToSparseSetOperation(Operand<Long> set1Indices,
Operand<T> set1Values,
Operand<Long> set1Shape,
Operand<Long> set2Indices,
Operand<T> set2Values,
Operand<Long> set2Shape,
String setOperation,
SparseToSparseSetOperation.Options... options)
Adds an
SparseToSparseSetOperation operation to the graph |
<T> Split<T> |
split(Operand<Integer> axis,
Operand<T> value,
Long numSplit)
Adds an
Split operation to the graph |
<T,U extends Number> |
splitV(Operand<T> value,
Operand<U> sizeSplits,
Operand<Integer> axis,
Long numSplit)
Adds an
SplitV operation to the graph |
<T> Sqrt<T> |
sqrt(Operand<T> x)
Adds an
Sqrt operation to the graph |
<T> Square<T> |
square(Operand<T> x)
Adds an
Square operation to the graph |
<T> SquaredDifference<T> |
squaredDifference(Operand<T> x,
Operand<T> y)
Adds an
SquaredDifference operation to the graph |
<T> Squeeze<T> |
squeeze(Operand<T> input,
Squeeze.Options... options)
Adds an
Squeeze operation to the graph |
<T> Stack<T> |
stack(Operand<T> values,
Stack.Options... options)
Adds an
Stack operation to the graph |
Stage |
stage(Iterable<Operand<?>> values,
Stage.Options... options)
Adds an
Stage operation to the graph |
StageClear |
stageClear(List<Class<?>> dtypes,
StageClear.Options... options)
Adds an
StageClear operation to the graph |
StagePeek |
stagePeek(Operand<Integer> index,
List<Class<?>> dtypes,
StagePeek.Options... options)
Adds an
StagePeek operation to the graph |
StageSize |
stageSize(List<Class<?>> dtypes,
StageSize.Options... options)
Adds an
StageSize operation to the graph |
<T extends Number,U extends Number> |
statelessMultinomial(Operand<T> logits,
Operand<Integer> numSamples,
Operand<U> seed)
Adds an
StatelessMultinomial operation to the graph |
<V extends Number,T extends Number,U extends Number> |
statelessMultinomial(Operand<T> logits,
Operand<Integer> numSamples,
Operand<U> seed,
Class<V> outputDtype)
Adds an
StatelessMultinomial operation to the graph |
<T extends Number,U extends Number> |
statelessRandomNormal(Operand<T> shape,
Operand<U> seed)
Adds an
StatelessRandomNormal operation to the graph |
<V extends Number,T extends Number,U extends Number> |
statelessRandomNormal(Operand<T> shape,
Operand<U> seed,
Class<V> dtype)
Adds an
StatelessRandomNormal operation to the graph |
<T extends Number,U extends Number> |
statelessRandomUniform(Operand<T> shape,
Operand<U> seed)
Adds an
StatelessRandomUniform operation to the graph |
<V extends Number,T extends Number,U extends Number> |
statelessRandomUniform(Operand<T> shape,
Operand<U> seed,
Class<V> dtype)
Adds an
StatelessRandomUniform operation to the graph |
<T extends Number,U extends Number> |
statelessTruncatedNormal(Operand<T> shape,
Operand<U> seed)
Adds an
StatelessTruncatedNormal operation to the graph |
<V extends Number,T extends Number,U extends Number> |
statelessTruncatedNormal(Operand<T> shape,
Operand<U> seed,
Class<V> dtype)
Adds an
StatelessTruncatedNormal operation to the graph |
<T> StopGradient<T> |
stopGradient(Operand<T> input)
Adds an
StopGradient operation to the graph |
<T,U extends Number> |
stridedSlice(Operand<T> input,
Operand<U> begin,
Operand<U> end,
Operand<U> strides,
StridedSlice.Options... options)
Adds an
StridedSlice operation to the graph |
<T,U extends Number> |
stridedSliceAssign(Operand<T> ref,
Operand<U> begin,
Operand<U> end,
Operand<U> strides,
Operand<T> value,
StridedSliceAssign.Options... options)
Adds an
StridedSliceAssign operation to the graph |
<U,T extends Number> |
stridedSliceGrad(Operand<T> shape,
Operand<T> begin,
Operand<T> end,
Operand<T> strides,
Operand<U> dy,
StridedSliceGrad.Options... options)
Adds an
StridedSliceGrad operation to the graph |
StringFormat |
stringFormat(Iterable<Operand<?>> inputs,
StringFormat.Options... options)
Adds an
StringFormat operation to the graph |
StringJoin |
stringJoin(Iterable<Operand<String>> inputs,
StringJoin.Options... options)
Adds an
StringJoin operation to the graph |
StringLength |
stringLength(Operand<String> input,
StringLength.Options... options)
Adds an
StringLength operation to the graph |
StringSplit |
stringSplit(Operand<String> input,
Operand<String> delimiter,
StringSplit.Options... options)
Adds an
StringSplit operation to the graph |
StringSplitV2 |
stringSplitV2(Operand<String> input,
Operand<String> sep,
StringSplitV2.Options... options)
Adds an
StringSplitV2 operation to the graph |
StringStrip |
stringStrip(Operand<String> input)
Adds an
StringStrip operation to the graph |
StringToHashBucket |
stringToHashBucket(Operand<String> stringTensor,
Long numBuckets)
Adds an
StringToHashBucket operation to the graph |
StringToHashBucketFast |
stringToHashBucketFast(Operand<String> input,
Long numBuckets)
Adds an
StringToHashBucketFast operation to the graph |
StringToHashBucketStrong |
stringToHashBucketStrong(Operand<String> input,
Long numBuckets,
List<Long> key)
Adds an
StringToHashBucketStrong operation to the graph |
StringToNumber<Float> |
stringToNumber(Operand<String> stringTensor)
Adds an
StringToNumber operation to the graph |
<T extends Number> |
stringToNumber(Operand<String> stringTensor,
Class<T> outType)
Adds an
StringToNumber operation to the graph |
<T> Sub<T> |
sub(Operand<T> x,
Operand<T> y)
Adds an
Sub operation to the graph |
<T extends Number> |
substr(Operand<String> input,
Operand<T> pos,
Operand<T> len,
Substr.Options... options)
Adds an
Substr operation to the graph |
<T> Subtract<T> |
subtract(Operand<T> x,
Operand<T> y)
Adds an
Subtract operation to the graph |
<T,U extends Number> |
sum(Operand<T> input,
Operand<U> axis,
Sum.Options... options)
Adds an
Sum operation to the graph |
<T> Svd<T> |
svd(Operand<T> input,
Svd.Options... options)
Adds an
Svd operation to the graph |
<T> TakeManySparseFromTensorsMap<T> |
takeManySparseFromTensorsMap(Operand<Long> sparseHandles,
Class<T> dtype,
TakeManySparseFromTensorsMap.Options... options)
Adds an
TakeManySparseFromTensorsMap operation to the graph |
<T> Tan<T> |
tan(Operand<T> x)
Adds an
Tan operation to the graph |
<T> Tanh<T> |
tanh(Operand<T> x)
Adds an
Tanh operation to the graph |
<T> TemporaryVariable<T> |
temporaryVariable(Shape shape,
Class<T> dtype,
TemporaryVariable.Options... options)
Adds an
TemporaryVariable operation to the graph |
<T> TensorArray |
tensorArray(Operand<Integer> size,
Class<T> dtype,
TensorArray.Options... options)
Adds an
TensorArray operation to the graph |
TensorArrayClose |
tensorArrayClose(Operand<?> handle)
Adds an
TensorArrayClose operation to the graph |
<T> TensorArrayConcat<T> |
tensorArrayConcat(Operand<?> handle,
Operand<Float> flowIn,
Class<T> dtype,
TensorArrayConcat.Options... options)
Adds an
TensorArrayConcat operation to the graph |
<T> TensorArrayGather<T> |
tensorArrayGather(Operand<?> handle,
Operand<Integer> indices,
Operand<Float> flowIn,
Class<T> dtype,
TensorArrayGather.Options... options)
Adds an
TensorArrayGather operation to the graph |
TensorArrayGrad |
tensorArrayGrad(Operand<?> handle,
Operand<Float> flowIn,
String source)
Adds an
TensorArrayGrad operation to the graph |
TensorArrayGradWithShape |
tensorArrayGradWithShape(Operand<?> handle,
Operand<Float> flowIn,
Operand<Integer> shapeToPrepend,
String source)
Adds an
TensorArrayGradWithShape operation to the graph |
<T> TensorArrayPack<T> |
tensorArrayPack(Operand<String> handle,
Operand<Float> flowIn,
Class<T> dtype,
TensorArrayPack.Options... options)
Adds an
TensorArrayPack operation to the graph |
<T> TensorArrayRead<T> |
tensorArrayRead(Operand<?> handle,
Operand<Integer> index,
Operand<Float> flowIn,
Class<T> dtype)
Adds an
TensorArrayRead operation to the graph |
<T> TensorArrayScatter |
tensorArrayScatter(Operand<?> handle,
Operand<Integer> indices,
Operand<T> value,
Operand<Float> flowIn)
Adds an
TensorArrayScatter operation to the graph |
TensorArraySize |
tensorArraySize(Operand<?> handle,
Operand<Float> flowIn)
Adds an
TensorArraySize operation to the graph |
<T> TensorArraySplit |
tensorArraySplit(Operand<?> handle,
Operand<T> value,
Operand<Long> lengths,
Operand<Float> flowIn)
Adds an
TensorArraySplit operation to the graph |
<T> TensorArrayUnpack |
tensorArrayUnpack(Operand<String> handle,
Operand<T> value,
Operand<Float> flowIn)
Adds an
TensorArrayUnpack operation to the graph |
<T> TensorArrayWrite |
tensorArrayWrite(Operand<?> handle,
Operand<Integer> index,
Operand<T> value,
Operand<Float> flowIn)
Adds an
TensorArrayWrite operation to the graph |
<T> TensorListConcat<T> |
tensorListConcat(Operand<?> inputHandle,
Class<T> elementDtype)
Adds an
TensorListConcat operation to the graph |
<T> TensorListConcatLists |
tensorListConcatLists(Operand<?> inputA,
Operand<?> inputB,
Class<T> elementDtype)
Adds an
TensorListConcatLists operation to the graph |
<T extends Number> |
tensorListElementShape(Operand<?> inputHandle,
Class<T> shapeType)
Adds an
TensorListElementShape operation to the graph |
<T,U extends Number> |
tensorListFromTensor(Operand<T> tensor,
Operand<U> elementShape)
Adds an
TensorListFromTensor operation to the graph |
<T> TensorListGather<T> |
tensorListGather(Operand<?> inputHandle,
Operand<Integer> indices,
Class<T> elementDtype)
Adds an
TensorListGather operation to the graph |
<T> TensorListGetItem<T> |
tensorListGetItem(Operand<?> inputHandle,
Operand<Integer> index,
Class<T> elementDtype)
Adds an
TensorListGetItem operation to the graph |
TensorListLength |
tensorListLength(Operand<?> inputHandle)
Adds an
TensorListLength operation to the graph |
<T> TensorListPopBack<T> |
tensorListPopBack(Operand<?> inputHandle,
Class<T> elementDtype)
Adds an
TensorListPopBack operation to the graph |
<T> TensorListPushBack |
tensorListPushBack(Operand<?> inputHandle,
Operand<T> tensor)
Adds an
TensorListPushBack operation to the graph |
<T> TensorListPushBackBatch |
tensorListPushBackBatch(Operand<?> inputHandles,
Operand<T> tensor)
Adds an
TensorListPushBackBatch operation to the graph |
<T extends Number,U> |
tensorListReserve(Operand<T> elementShape,
Operand<Integer> numElements,
Class<U> elementDtype)
Adds an
TensorListReserve operation to the graph |
<T,U extends Number> |
tensorListScatter(Operand<T> tensor,
Operand<Integer> indices,
Operand<U> elementShape)
Adds an
TensorListScatter operation to the graph |
<T> TensorListSetItem |
tensorListSetItem(Operand<?> inputHandle,
Operand<Integer> index,
Operand<T> item)
Adds an
TensorListSetItem operation to the graph |
<T,U extends Number> |
tensorListSplit(Operand<T> tensor,
Operand<U> elementShape,
Operand<Long> lengths)
Adds an
TensorListSplit operation to the graph |
<T> TensorListStack<T> |
tensorListStack(Operand<?> inputHandle,
Class<T> elementDtype,
TensorListStack.Options... options)
Adds an
TensorListStack operation to the graph |
<T,U extends Number> |
tensorScatterAdd(Operand<T> tensor,
Operand<U> indices,
Operand<T> updates)
Adds an
TensorScatterAdd operation to the graph |
<T,U extends Number> |
tensorScatterSub(Operand<T> tensor,
Operand<U> indices,
Operand<T> updates)
Adds an
TensorScatterSub operation to the graph |
<T,U extends Number> |
tensorScatterUpdate(Operand<T> tensor,
Operand<U> indices,
Operand<T> updates)
Adds an
TensorScatterUpdate operation to the graph |
<T> TensorSummary |
tensorSummary(Operand<T> tensor,
TensorSummary.Options... options)
Adds an
TensorSummary operation to the graph |
<T> TensorSummaryV2 |
tensorSummaryV2(Operand<String> tag,
Operand<T> tensor,
Operand<String> serializedSummaryMetadata)
Adds an
TensorSummaryV2 operation to the graph |
TextLineReader |
textLineReader(TextLineReader.Options... options)
Adds an
TextLineReader operation to the graph |
TFRecordReader |
tFRecordReader(TFRecordReader.Options... options)
Adds an
TFRecordReader operation to the graph |
<T,U extends Number> |
tile(Operand<T> input,
Operand<U> multiples)
Adds an
Tile operation to the graph |
<T> TileGrad<T> |
tileGrad(Operand<T> input,
Operand<Integer> multiples)
Adds an
TileGrad operation to the graph |
Timestamp |
timestamp()
Adds an
Timestamp operation to the graph |
<T extends Number> |
topK(Operand<T> input,
Operand<Integer> k,
TopK.Options... options)
Adds an
TopK operation to the graph |
<T,U extends Number> |
transpose(Operand<T> x,
Operand<U> perm)
Adds an
Transpose operation to the graph |
<T> TruncateDiv<T> |
truncateDiv(Operand<T> x,
Operand<T> y)
Adds an
TruncateDiv operation to the graph |
<U extends Number,T extends Number> |
truncatedNormal(Operand<T> shape,
Class<U> dtype,
TruncatedNormal.Options... options)
Adds an
TruncatedNormal operation to the graph |
<T extends Number> |
truncateMod(Operand<T> x,
Operand<T> y)
Adds an
TruncateMod operation to the graph |
TryRpc |
tryRpc(Operand<String> address,
Operand<String> method,
Operand<String> request,
TryRpc.Options... options)
Adds an
TryRpc operation to the graph |
<T> Unbatch<T> |
unbatch(Operand<T> batchedTensor,
Operand<Long> batchIndex,
Operand<Long> id,
Long timeoutMicros,
Unbatch.Options... options)
Adds an
Unbatch operation to the graph |
<T> UnbatchGrad<T> |
unbatchGrad(Operand<T> originalInput,
Operand<Long> batchIndex,
Operand<T> grad,
Operand<Long> id,
UnbatchGrad.Options... options)
Adds an
UnbatchGrad operation to the graph |
UnicodeScript |
unicodeScript(Operand<Integer> input)
Adds an
UnicodeScript operation to the graph |
UnicodeTranscode |
unicodeTranscode(Operand<String> input,
String inputEncoding,
String outputEncoding,
UnicodeTranscode.Options... options)
Adds an
UnicodeTranscode operation to the graph |
UniformCandidateSampler |
uniformCandidateSampler(Operand<Long> trueClasses,
Long numTrue,
Long numSampled,
Boolean unique,
Long rangeMax,
UniformCandidateSampler.Options... options)
Adds an
UniformCandidateSampler operation to the graph |
<T> Unique<T,Integer> |
unique(Operand<T> x)
Adds an
Unique operation to the graph |
<T,U extends Number> |
unique(Operand<T> x,
Class<U> outIdx)
Adds an
Unique operation to the graph |
<T,U extends Number> |
uniqueV2(Operand<T> x,
Operand<U> axis)
Adds an
UniqueV2 operation to the graph |
<T,V extends Number,U extends Number> |
uniqueV2(Operand<T> x,
Operand<U> axis,
Class<V> outIdx)
Adds an
UniqueV2 operation to the graph |
<T> UniqueWithCounts<T,Integer> |
uniqueWithCounts(Operand<T> x)
Adds an
UniqueWithCounts operation to the graph |
<T,U extends Number> |
uniqueWithCounts(Operand<T> x,
Class<U> outIdx)
Adds an
UniqueWithCounts operation to the graph |
<T,U extends Number> |
uniqueWithCountsV2(Operand<T> x,
Operand<U> axis)
Adds an
UniqueWithCountsV2 operation to the graph |
<T,V extends Number,U extends Number> |
uniqueWithCountsV2(Operand<T> x,
Operand<U> axis,
Class<V> outIdx)
Adds an
UniqueWithCountsV2 operation to the graph |
<T extends Number> |
unravelIndex(Operand<T> indices,
Operand<T> dims)
Adds an
UnravelIndex operation to the graph |
<T extends Number,U extends Number,V extends Number> |
unsortedSegmentMax(Operand<T> data,
Operand<U> segmentIds,
Operand<V> numSegments)
Adds an
UnsortedSegmentMax operation to the graph |
<T extends Number,U extends Number,V extends Number> |
unsortedSegmentMin(Operand<T> data,
Operand<U> segmentIds,
Operand<V> numSegments)
Adds an
UnsortedSegmentMin operation to the graph |
<T,U extends Number,V extends Number> |
unsortedSegmentProd(Operand<T> data,
Operand<U> segmentIds,
Operand<V> numSegments)
Adds an
UnsortedSegmentProd operation to the graph |
<T,U extends Number,V extends Number> |
unsortedSegmentSum(Operand<T> data,
Operand<U> segmentIds,
Operand<V> numSegments)
Adds an
UnsortedSegmentSum operation to the graph |
<T> Unstack<T> |
unstack(Operand<T> value,
Long num,
Unstack.Options... options)
Adds an
Unstack operation to the graph |
Unstage |
unstage(List<Class<?>> dtypes,
Unstage.Options... options)
Adds an
Unstage operation to the graph |
<T> VarHandleOp |
varHandleOp(Class<T> dtype,
Shape shape,
VarHandleOp.Options... options)
Adds an
VarHandleOp operation to the graph |
<T> Variable<T> |
variable(Shape shape,
Class<T> dtype,
Variable.Options... options)
Adds an
Variable operation to the graph |
VariableShape<Integer> |
variableShape(Operand<?> input)
Adds an
VariableShape operation to the graph |
<T extends Number> |
variableShape(Operand<?> input,
Class<T> outType)
Adds an
VariableShape operation to the graph |
VarIsInitializedOp |
varIsInitializedOp(Operand<?> resource)
Adds an
VarIsInitializedOp operation to the graph |
<T> Where |
where(Operand<T> condition)
Adds an
Where operation to the graph |
<T> Where3<T> |
where3(Operand<Boolean> condition,
Operand<T> x,
Operand<T> y)
Adds an
Where3 operation to the graph |
WholeFileReader |
wholeFileReader(WholeFileReader.Options... options)
Adds an
WholeFileReader operation to the graph |
Ops |
withName(String opName)
Returns an API that uses the provided name for an op.
|
Ops |
withSubScope(String childScopeName)
Returns an API that adds operations to the graph with the provided name prefix.
|
WriteFile |
writeFile(Operand<String> filename,
Operand<String> contents)
Adds an
WriteFile operation to the graph |
<T> Xdivy<T> |
xdivy(Operand<T> x,
Operand<T> y)
Adds an
Xdivy operation to the graph |
<T> Xlogy<T> |
xlogy(Operand<T> x,
Operand<T> y)
Adds an
Xlogy operation to the graph |
<T,U extends Number> |
zeros(Operand<U> dims,
Class<T> type)
Adds an
Zeros operation to the graph |
<T> ZerosLike<T> |
zerosLike(Operand<T> x)
Adds an
ZerosLike operation to the graph |
<T extends Number> |
zeta(Operand<T> x,
Operand<T> q)
Adds an
Zeta operation to the graph |
public <T,U extends Number,V extends Number> GatherV2<T> gatherV2(Operand<T> params, Operand<U> indices, Operand<V> axis)
GatherV2
operation to the graphparams
- The tensor from which to gather values. Must be at least rankindices
- Index tensor. Must be in range `[0, params.shape[axis])`.axis
- The axis in `params` to gather `indices` from. Defaults to the firstGatherV2
public <T extends Number,U extends Number,V extends Number> SparseSegmentSumWithNumSegments<T> sparseSegmentSumWithNumSegments(Operand<T> data, Operand<U> indices, Operand<Integer> segmentIds, Operand<V> numSegments)
SparseSegmentSumWithNumSegments
operation to the graphdata
- indices
- A 1-D tensor. Has same rank as `segment_ids`.segmentIds
- A 1-D tensor. Values should be sorted and can be repeated.numSegments
- Should equal the number of distinct segment IDs.SparseSegmentSumWithNumSegments
public <T> Assign<T> assign(Operand<T> ref, Operand<T> value, Assign.Options... options)
Assign
operation to the graphref
- Should be from a `Variable` node. May be uninitialized.value
- The value to be assigned to the variable.options
- carries optional attributes valuesAssign
public <T extends Number> IsFinite isFinite(Operand<T> x)
IsFinite
operation to the graphx
- IsFinite
public <T extends Number> Conv2DBackpropInput<T> conv2DBackpropInput(Operand<Integer> inputSizes, Operand<T> filter, Operand<T> outBackprop, List<Long> strides, String padding, Conv2DBackpropInput.Options... options)
Conv2DBackpropInput
operation to the graphinputSizes
- An integer vector representing the shape of `input`,filter
- 4-D with shapeoutBackprop
- 4-D with shape `[batch, out_height, out_width, out_channels]`.strides
- The stride of the sliding window for each dimension of the inputpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesConv2DBackpropInput
public <T> Split<T> split(Operand<Integer> axis, Operand<T> value, Long numSplit)
Split
operation to the graphaxis
- 0-D. The dimension along which to split. Must be in the rangevalue
- The tensor to split.numSplit
- The number of ways to split. Must evenly divideSplit
public CTCLoss cTCLoss(Operand<Float> inputs, Operand<Long> labelsIndices, Operand<Integer> labelsValues, Operand<Integer> sequenceLength, CTCLoss.Options... options)
CTCLoss
operation to the graphinputs
- 3-D, shape: `(max_time x batch_size x num_classes)`, the logits.labelsIndices
- The indices of a `SparseTensorlabelsValues
- The values (labels) associated with the given batch and time.sequenceLength
- A vector containing sequence lengths (batch).options
- carries optional attributes valuesCTCLoss
public <T> Sigmoid<T> sigmoid(Operand<T> x)
Sigmoid
operation to the graphx
- Sigmoid
public <T extends Number,U> ResourceStridedSliceAssign resourceStridedSliceAssign(Operand<?> ref, Operand<T> begin, Operand<T> end, Operand<T> strides, Operand<U> value, ResourceStridedSliceAssign.Options... options)
ResourceStridedSliceAssign
operation to the graphref
- begin
- end
- strides
- value
- options
- carries optional attributes valuesResourceStridedSliceAssign
public <T extends Number> BatchCholeskyGrad<T> batchCholeskyGrad(Operand<T> l, Operand<T> grad)
BatchCholeskyGrad
operation to the graphl
- grad
- BatchCholeskyGrad
public PriorityQueue priorityQueue(List<Class<?>> componentTypes, List<Shape> shapes, PriorityQueue.Options... options)
PriorityQueue
operation to the graphcomponentTypes
- The type of each component in a value.shapes
- The shape of each component in a value. The length of this attr mustoptions
- carries optional attributes valuesPriorityQueue
public <T,U extends Number> Pad<T> pad(Operand<T> input, Operand<U> paddings)
Pad
operation to the graphinput
- paddings
- Pad
public Constant<Float> constant(float[][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T> FloorDiv<T> floorDiv(Operand<T> x, Operand<T> y)
FloorDiv
operation to the graphx
- y
- FloorDiv
public <U,T> QuantizedReluX<U> quantizedReluX(Operand<T> features, Operand<Float> maxValue, Operand<Float> minFeatures, Operand<Float> maxFeatures, Class<U> outType)
QuantizedReluX
operation to the graphfeatures
- maxValue
- minFeatures
- The float value that the lowest quantized value represents.maxFeatures
- The float value that the highest quantized value represents.outType
- QuantizedReluX
public <T extends Number> UnravelIndex<T> unravelIndex(Operand<T> indices, Operand<T> dims)
UnravelIndex
operation to the graphindices
- An 0-D or 1-D `int` Tensor whose elements are indices into thedims
- An 1-D `int` Tensor. The shape of the array to use for unravelingUnravelIndex
public <T extends Number,U> ResourceScatterAdd resourceScatterAdd(Operand<?> resource, Operand<T> indices, Operand<U> updates)
ResourceScatterAdd
operation to the graphresource
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to add to `ref`.ResourceScatterAdd
public <T> RestoreSlice<T> restoreSlice(Operand<String> filePattern, Operand<String> tensorName, Operand<String> shapeAndSlice, Class<T> dt, RestoreSlice.Options... options)
RestoreSlice
operation to the graphfilePattern
- Must have a single element. The pattern of the files fromtensorName
- Must have a single element. The name of the tensor to beshapeAndSlice
- Scalar. The shapes and slice specifications to use whendt
- The type of the tensor to be restored.options
- carries optional attributes valuesRestoreSlice
public <T> AccumulateNV2<T> accumulateNV2(Operand<T> inputs, Shape shape)
AccumulateNV2
operation to the graphinputs
- A list of `Tensor` objects, each with same shape and type.shape
- Shape of elements of `inputs`.AccumulateNV2
public <T,U extends Number> ScatterNdAdd<T> scatterNdAdd(Operand<T> ref, Operand<U> indices, Operand<T> updates, ScatterNdAdd.Options... options)
ScatterNdAdd
operation to the graphref
- A mutable Tensor. Should be from a Variable node.indices
- A Tensor. Must be one of the following types: int32, int64.updates
- A Tensor. Must have the same type as ref. A tensor of updated valuesoptions
- carries optional attributes valuesScatterNdAdd
public Constant<Integer> constant(int[][][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T> AddN<T> addN(Operand<T> inputs)
AddN
operation to the graphinputs
- Must all be the same size and shape.AddN
public <T,U extends Number> Sum<T> sum(Operand<T> input, Operand<U> axis, Sum.Options... options)
Sum
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesSum
public <T> PlaceholderWithDefault<T> placeholderWithDefault(Operand<T> input, Shape shape)
PlaceholderWithDefault
operation to the graphinput
- The default value to produce when `output` is not fed.shape
- The (possibly partial) shape of the tensor.PlaceholderWithDefault
public Abort abort(Abort.Options... options)
Abort
operation to the graphoptions
- carries optional attributes valuesAbort
public <T extends Number> AvgPool<T> avgPool(Operand<T> value, List<Long> ksize, List<Long> strides, String padding, AvgPool.Options... options)
AvgPool
operation to the graphvalue
- 4-D with shape `[batch, height, width, channels]`.ksize
- The size of the sliding window for each dimension of `value`.strides
- The stride of the sliding window for each dimension of `value`.padding
- The type of padding algorithm to use.options
- carries optional attributes valuesAvgPool
public BatchIFFT batchIFFT(Operand<?> input)
BatchIFFT
operation to the graphinput
- BatchIFFT
public <T extends Number> NthElement<T> nthElement(Operand<T> input, Operand<Integer> n, NthElement.Options... options)
NthElement
operation to the graphinput
- 1-D or higher with last dimension at least `n+1`.n
- 0-D. Position of sorted vector to select along the last dimension (alongoptions
- carries optional attributes valuesNthElement
public EncodeJpeg encodeJpeg(Operand<UInt8> image, EncodeJpeg.Options... options)
EncodeJpeg
operation to the graphimage
- 3-D with shape `[height, width, channels]`.options
- carries optional attributes valuesEncodeJpeg
public <T,U extends Number> SegmentSum<T> segmentSum(Operand<T> data, Operand<U> segmentIds)
SegmentSum
operation to the graphdata
- segmentIds
- A 1-D tensor whose size is equal to the size of `data`'sSegmentSum
public <T> MaxPoolV2<T> maxPoolV2(Operand<T> input, Operand<Integer> ksize, Operand<Integer> strides, String padding, MaxPoolV2.Options... options)
MaxPoolV2
operation to the graphinput
- 4-D input to pool over.ksize
- The size of the window for each dimension of the input tensor.strides
- The stride of the sliding window for each dimension of thepadding
- The type of padding algorithm to use.options
- carries optional attributes valuesMaxPoolV2
public <T> MatMul<T> matMul(Operand<T> a, Operand<T> b, MatMul.Options... options)
MatMul
operation to the grapha
- b
- options
- carries optional attributes valuesMatMul
public <T> Acos<T> acos(Operand<T> x)
Acos
operation to the graphx
- Acos
public <T,U extends Number> TensorListScatter tensorListScatter(Operand<T> tensor, Operand<Integer> indices, Operand<U> elementShape)
TensorListScatter
operation to the graphtensor
- indices
- elementShape
- TensorListScatter
public BatchFFT2D batchFFT2D(Operand<?> input)
BatchFFT2D
operation to the graphinput
- BatchFFT2D
public <U,T> Requantize<U> requantize(Operand<T> input, Operand<Float> inputMin, Operand<Float> inputMax, Operand<Float> requestedOutputMin, Operand<Float> requestedOutputMax, Class<U> outType)
Requantize
operation to the graphinput
- inputMin
- The float value that the minimum quantized input value represents.inputMax
- The float value that the maximum quantized input value represents.requestedOutputMin
- The float value that the minimum quantized output value represents.requestedOutputMax
- The float value that the maximum quantized output value represents.outType
- The type of the output. Should be a lower bit depth than Tinput.Requantize
public <T extends Number> All all(Operand<Boolean> input, Operand<T> axis, All.Options... options)
All
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesAll
public <T,U extends Number> StridedSliceAssign<T> stridedSliceAssign(Operand<T> ref, Operand<U> begin, Operand<U> end, Operand<U> strides, Operand<T> value, StridedSliceAssign.Options... options)
StridedSliceAssign
operation to the graphref
- begin
- end
- strides
- value
- options
- carries optional attributes valuesStridedSliceAssign
public OrderedMapUnstage orderedMapUnstage(Operand<Long> key, Operand<Integer> indices, List<Class<?>> dtypes, OrderedMapUnstage.Options... options)
OrderedMapUnstage
operation to the graphkey
- indices
- dtypes
- options
- carries optional attributes valuesOrderedMapUnstage
public SparseReshape sparseReshape(Operand<Long> inputIndices, Operand<Long> inputShape, Operand<Long> newShape)
SparseReshape
operation to the graphinputIndices
- 2-D. `N x R_in` matrix with the indices of non-empty values in ainputShape
- 1-D. `R_in` vector with the input SparseTensor's dense shape.newShape
- 1-D. `R_out` vector with the requested new dense shape.SparseReshape
public <T> AssignAddVariableOp assignAddVariableOp(Operand<?> resource, Operand<T> value)
AssignAddVariableOp
operation to the graphresource
- handle to the resource in which to store the variable.value
- the value by which the variable will be incremented.AssignAddVariableOp
public <T extends Number> DataFormatDimMap<T> dataFormatDimMap(Operand<T> x, DataFormatDimMap.Options... options)
DataFormatDimMap
operation to the graphx
- A Tensor with each element as a dimension index in source data format.options
- carries optional attributes valuesDataFormatDimMap
public <T,U extends Number> ScatterNdSub<T> scatterNdSub(Operand<T> ref, Operand<U> indices, Operand<T> updates, ScatterNdSub.Options... options)
ScatterNdSub
operation to the graphref
- A mutable Tensor. Should be from a Variable node.indices
- A Tensor. Must be one of the following types: int32, int64.updates
- A Tensor. Must have the same type as ref. A tensor of updated valuesoptions
- carries optional attributes valuesScatterNdSub
public StringToHashBucketStrong stringToHashBucketStrong(Operand<String> input, Long numBuckets, List<Long> key)
StringToHashBucketStrong
operation to the graphinput
- The strings to assign a hash bucket.numBuckets
- The number of buckets.key
- The key for the keyed hash function passed as a list of two uint64StringToHashBucketStrong
public <T extends Number> Polygamma<T> polygamma(Operand<T> a, Operand<T> x)
Polygamma
operation to the grapha
- x
- Polygamma
public BigQueryReader bigQueryReader(String projectId, String datasetId, String tableId, List<String> columns, Long timestampMillis, BigQueryReader.Options... options)
BigQueryReader
operation to the graphprojectId
- GCP project ID.datasetId
- BigQuery Dataset ID.tableId
- Table to read.columns
- List of columns to read. Leave empty to read all columns.timestampMillis
- Table snapshot timestamp in millis since epoch. Relativeoptions
- carries optional attributes valuesBigQueryReader
public <T,U extends Number> SparseApplyFtrl<T> sparseApplyFtrl(Operand<T> var, Operand<T> accum, Operand<T> linear, Operand<T> grad, Operand<U> indices, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> lrPower, SparseApplyFtrl.Options... options)
SparseApplyFtrl
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().linear
- Should be from a Variable().grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.lr
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.lrPower
- Scaling factor. Must be a scalar.options
- carries optional attributes valuesSparseApplyFtrl
public <T extends Number,U extends Number> SparseSegmentSqrtN<T> sparseSegmentSqrtN(Operand<T> data, Operand<U> indices, Operand<Integer> segmentIds)
SparseSegmentSqrtN
operation to the graphdata
- indices
- A 1-D tensor. Has same rank as `segment_ids`.segmentIds
- A 1-D tensor. Values should be sorted and can be repeated.SparseSegmentSqrtN
public <T> AssignVariableOp assignVariableOp(Operand<?> resource, Operand<T> value)
AssignVariableOp
operation to the graphresource
- handle to the resource in which to store the variable.value
- the value to set the new tensor to use.AssignVariableOp
public <T> PreventGradient<T> preventGradient(Operand<T> input, PreventGradient.Options... options)
PreventGradient
operation to the graphinput
- any tensor.options
- carries optional attributes valuesPreventGradient
public FakeQuantWithMinMaxVars fakeQuantWithMinMaxVars(Operand<Float> inputs, Operand<Float> min, Operand<Float> max, FakeQuantWithMinMaxVars.Options... options)
FakeQuantWithMinMaxVars
operation to the graphinputs
- min
- max
- options
- carries optional attributes valuesFakeQuantWithMinMaxVars
public <T> TensorListPushBackBatch tensorListPushBackBatch(Operand<?> inputHandles, Operand<T> tensor)
TensorListPushBackBatch
operation to the graphinputHandles
- tensor
- TensorListPushBackBatch
public <T extends Number> BesselI0e<T> besselI0e(Operand<T> x)
BesselI0e
operation to the graphx
- BesselI0e
public Rpc rpc(Operand<String> address, Operand<String> method, Operand<String> request, Rpc.Options... options)
Rpc
operation to the graphaddress
- `0-D` or `1-D`. The address (i.e. host_name:port) of the RPC server.method
- `0-D` or `1-D`. The method address on the RPC server.request
- `0-D` or `1-D`. Serialized proto strings: the rpc request argument.options
- carries optional attributes valuesRpc
public <T extends Number> ResizeArea resizeArea(Operand<T> images, Operand<Integer> size, ResizeArea.Options... options)
ResizeArea
operation to the graphimages
- 4-D with shape `[batch, height, width, channels]`.size
- = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. Theoptions
- carries optional attributes valuesResizeArea
public Constant<Integer> constant(int[][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T> Asin<T> asin(Operand<T> x)
Asin
operation to the graphx
- Asin
public <T extends Number> SparseSoftmax<T> sparseSoftmax(Operand<Long> spIndices, Operand<T> spValues, Operand<Long> spShape)
SparseSoftmax
operation to the graphspIndices
- 2-D. `NNZ x R` matrix with the indices of non-empty values in aspValues
- 1-D. `NNZ` non-empty values corresponding to `sp_indices`.spShape
- 1-D. Shape of the input SparseTensor.SparseSoftmax
public Constant<Boolean> constant(boolean data)
Constant
operation to the graphdata
- The value to put into the new constant.Constant
public VariableShape<Integer> variableShape(Operand<?> input)
VariableShape
operation to the graphinput
- VariableShape
public TensorArrayGradWithShape tensorArrayGradWithShape(Operand<?> handle, Operand<Float> flowIn, Operand<Integer> shapeToPrepend, String source)
TensorArrayGradWithShape
operation to the graphhandle
- The handle to the forward TensorArray.flowIn
- A float scalar that enforces proper chaining of operations.shapeToPrepend
- An int32 vector representing a shape. Elements in the gradient accumulator willsource
- The gradient source string, used to decide which gradient TensorArrayTensorArrayGradWithShape
public <T> ApplyAdagradDA<T> applyAdagradDA(Operand<T> var, Operand<T> gradientAccumulator, Operand<T> gradientSquaredAccumulator, Operand<T> grad, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<Long> globalStep, ApplyAdagradDA.Options... options)
ApplyAdagradDA
operation to the graphvar
- Should be from a Variable().gradientAccumulator
- Should be from a Variable().gradientSquaredAccumulator
- Should be from a Variable().grad
- The gradient.lr
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.globalStep
- Training step number. Must be a scalar.options
- carries optional attributes valuesApplyAdagradDA
public <U extends Number,T> Angle<U> angle(Operand<T> input, Class<U> Tout)
Angle
operation to the graphinput
- Tout
- Angle
public <T extends Number> Betainc<T> betainc(Operand<T> a, Operand<T> b, Operand<T> x)
Betainc
operation to the grapha
- b
- x
- Betainc
public <T,U> MutableHashTable mutableHashTable(Class<T> keyDtype, Class<U> valueDtype, MutableHashTable.Options... options)
MutableHashTable
operation to the graphkeyDtype
- Type of the table keys.valueDtype
- Type of the table values.options
- carries optional attributes valuesMutableHashTable
public <T> IFFT3D<T> iFFT3D(Operand<T> input)
IFFT3D
operation to the graphinput
- A complex64 tensor.IFFT3D
public <T extends Number> Erfc<T> erfc(Operand<T> x)
Erfc
operation to the graphx
- Erfc
public <T> ApplyRMSProp<T> applyRMSProp(Operand<T> var, Operand<T> ms, Operand<T> mom, Operand<T> lr, Operand<T> rho, Operand<T> momentum, Operand<T> epsilon, Operand<T> grad, ApplyRMSProp.Options... options)
ApplyRMSProp
operation to the graphvar
- Should be from a Variable().ms
- Should be from a Variable().mom
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.rho
- Decay rate. Must be a scalar.momentum
- epsilon
- Ridge term. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesApplyRMSProp
public Constant<Long> constant(long[][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T> ApplyGradientDescent<T> applyGradientDescent(Operand<T> var, Operand<T> alpha, Operand<T> delta, ApplyGradientDescent.Options... options)
ApplyGradientDescent
operation to the graphvar
- Should be from a Variable().alpha
- Scaling factor. Must be a scalar.delta
- The change.options
- carries optional attributes valuesApplyGradientDescent
public <T> Atanh<T> atanh(Operand<T> x)
Atanh
operation to the graphx
- Atanh
public <T,U extends Number,V extends Number> SpaceToBatchND<T> spaceToBatchND(Operand<T> input, Operand<U> blockShape, Operand<V> paddings)
SpaceToBatchND
operation to the graphinput
- N-D with shape `input_shape = [batch] + spatial_shape + remaining_shape`,blockShape
- 1-D with shape `[M]`, all values must be >= 1.paddings
- 2-D with shape `[M, 2]`, all values must be >= 0.SpaceToBatchND
public <T> Tanh<T> tanh(Operand<T> x)
Tanh
operation to the graphx
- Tanh
public <T> TensorArrayUnpack tensorArrayUnpack(Operand<String> handle, Operand<T> value, Operand<Float> flowIn)
TensorArrayUnpack
operation to the graphhandle
- value
- flowIn
- TensorArrayUnpack
public <T> BarrierInsertMany barrierInsertMany(Operand<String> handle, Operand<String> keys, Operand<T> values, Long componentIndex)
BarrierInsertMany
operation to the graphhandle
- The handle to a barrier.keys
- A one-dimensional tensor of keys, with length n.values
- An any-dimensional tensor of values, which are associated with thecomponentIndex
- The component of the barrier elements that is being assigned.BarrierInsertMany
public <T extends Number> BitwiseXor<T> bitwiseXor(Operand<T> x, Operand<T> y)
BitwiseXor
operation to the graphx
- y
- BitwiseXor
public <T extends Number> ScalarSummary scalarSummary(Operand<String> tags, Operand<T> values)
ScalarSummary
operation to the graphtags
- Tags for the summary.values
- Same shape as `tags. Values for the summary.ScalarSummary
public <T> ApplyCenteredRMSProp<T> applyCenteredRMSProp(Operand<T> var, Operand<T> mg, Operand<T> ms, Operand<T> mom, Operand<T> lr, Operand<T> rho, Operand<T> momentum, Operand<T> epsilon, Operand<T> grad, ApplyCenteredRMSProp.Options... options)
ApplyCenteredRMSProp
operation to the graphvar
- Should be from a Variable().mg
- Should be from a Variable().ms
- Should be from a Variable().mom
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.rho
- Decay rate. Must be a scalar.momentum
- epsilon
- Ridge term. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesApplyCenteredRMSProp
public <T> Constant<T> constant(Object object, Class<T> type)
Constant
operation to the graphobject
- a Java object representing the constant.Tensor.create
,
Constant
public <T extends Number> MaxPoolWithArgmax<T,Long> maxPoolWithArgmax(Operand<T> input, List<Long> ksize, List<Long> strides, String padding)
MaxPoolWithArgmax
operation to the graphinput
- 4-D with shape `[batch, height, width, channels]`. Input to pool over.ksize
- The size of the window for each dimension of the input tensor.strides
- The stride of the sliding window for each dimension of thepadding
- The type of padding algorithm to use.MaxPoolWithArgmax
public <U,T extends Number> SparseToDense<U> sparseToDense(Operand<T> sparseIndices, Operand<T> outputShape, Operand<U> sparseValues, Operand<U> defaultValue, SparseToDense.Options... options)
SparseToDense
operation to the graphsparseIndices
- 0-D, 1-D, or 2-D. `sparse_indices[i]` contains the completeoutputShape
- 1-D. Shape of the dense output tensor.sparseValues
- 1-D. Values corresponding to each row of `sparse_indices`,defaultValue
- Scalar value to set for indices not specified inoptions
- carries optional attributes valuesSparseToDense
public StringStrip stringStrip(Operand<String> input)
StringStrip
operation to the graphinput
- A string `Tensor` of any shape.StringStrip
public <U,T> DeserializeSparse<U> deserializeSparse(Operand<T> serializedSparse, Class<U> dtype)
DeserializeSparse
operation to the graphserializedSparse
- The serialized `SparseTensor` objects. The last dimensiondtype
- The `dtype` of the serialized `SparseTensor` objects.DeserializeSparse
public <T> SparseConditionalAccumulator sparseConditionalAccumulator(Class<T> dtype, Shape shape, SparseConditionalAccumulator.Options... options)
SparseConditionalAccumulator
operation to the graphdtype
- The type of the value being accumulated.shape
- The shape of the values.options
- carries optional attributes valuesSparseConditionalAccumulator
public TextLineReader textLineReader(TextLineReader.Options... options)
TextLineReader
operation to the graphoptions
- carries optional attributes valuesTextLineReader
public <T> Unique<T,Integer> unique(Operand<T> x)
Unique
operation to the graphx
- 1-D.Unique
public <T extends Number> DivNoNan<T> divNoNan(Operand<T> x, Operand<T> y)
DivNoNan
operation to the graphx
- y
- DivNoNan
public <T> Diag<T> diag(Operand<T> diagonal)
Diag
operation to the graphdiagonal
- Rank k tensor where k is at most 1.Diag
public <T extends Number,U> ResourceScatterMax resourceScatterMax(Operand<?> resource, Operand<T> indices, Operand<U> updates)
ResourceScatterMax
operation to the graphresource
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to add to `ref`.ResourceScatterMax
public LMDBReader lMDBReader(LMDBReader.Options... options)
LMDBReader
operation to the graphoptions
- carries optional attributes valuesLMDBReader
public DecodeCompressed decodeCompressed(Operand<String> bytes, DecodeCompressed.Options... options)
DecodeCompressed
operation to the graphbytes
- A Tensor of string which is compressed.options
- carries optional attributes valuesDecodeCompressed
public QueueDequeueUpTo queueDequeueUpTo(Operand<?> handle, Operand<Integer> n, List<Class<?>> componentTypes, QueueDequeueUpTo.Options... options)
QueueDequeueUpTo
operation to the graphhandle
- The handle to a queue.n
- The number of tuples to dequeue.componentTypes
- The type of each component in a tuple.options
- carries optional attributes valuesQueueDequeueUpTo
public <T extends Number> TopK<T> topK(Operand<T> input, Operand<Integer> k, TopK.Options... options)
TopK
operation to the graphinput
- 1-D or higher with last dimension at least `k`.k
- 0-D. Number of top elements to look for along the last dimension (along eachoptions
- carries optional attributes valuesTopK
public <T> ResourceApplyProximalGradientDescent resourceApplyProximalGradientDescent(Operand<?> var, Operand<T> alpha, Operand<T> l1, Operand<T> l2, Operand<T> delta, ResourceApplyProximalGradientDescent.Options... options)
ResourceApplyProximalGradientDescent
operation to the graphvar
- Should be from a Variable().alpha
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.delta
- The change.options
- carries optional attributes valuesResourceApplyProximalGradientDescent
public TFRecordReader tFRecordReader(TFRecordReader.Options... options)
TFRecordReader
operation to the graphoptions
- carries optional attributes valuesTFRecordReader
public Stage stage(Iterable<Operand<?>> values, Stage.Options... options)
Stage
operation to the graphvalues
- a list of tensorsoptions
- carries optional attributes valuesStage
public TensorArrayClose tensorArrayClose(Operand<?> handle)
TensorArrayClose
operation to the graphhandle
- The handle to a TensorArray (output of TensorArray or TensorArrayGrad).TensorArrayClose
public <T extends Number> BatchSelfAdjointEigV2<T> batchSelfAdjointEigV2(Operand<T> input, BatchSelfAdjointEigV2.Options... options)
BatchSelfAdjointEigV2
operation to the graphinput
- options
- carries optional attributes valuesBatchSelfAdjointEigV2
public <T extends Number> HistogramFixedWidth<Integer> histogramFixedWidth(Operand<T> values, Operand<T> valueRange, Operand<Integer> nbins)
HistogramFixedWidth
operation to the graphvalues
- Numeric `Tensor`.valueRange
- Shape [2] `Tensor` of same `dtype` as `values`.nbins
- Scalar `int32 Tensor`. Number of histogram bins.HistogramFixedWidth
public NegTrain negTrain(Operand<Float> wIn, Operand<Float> wOut, Operand<Integer> examples, Operand<Integer> labels, Operand<Float> lr, List<Long> vocabCount, Long numNegativeSamples)
NegTrain
operation to the graphwIn
- input word embedding.wOut
- output word embedding.examples
- A vector of word ids.labels
- A vector of word ids.lr
- vocabCount
- Count of words in the vocabulary.numNegativeSamples
- Number of negative samples per example.NegTrain
public <T> SetSize setSize(Operand<Long> setIndices, Operand<T> setValues, Operand<Long> setShape, SetSize.Options... options)
SetSize
operation to the graphsetIndices
- 2D `Tensor`, indices of a `SparseTensor`.setValues
- 1D `Tensor`, values of a `SparseTensor`.setShape
- 1D `Tensor`, shape of a `SparseTensor`.options
- carries optional attributes valuesSetSize
public <T,U> InitializeTable initializeTable(Operand<?> tableHandle, Operand<T> keys, Operand<U> values)
InitializeTable
operation to the graphtableHandle
- Handle to a table which will be initialized.keys
- Keys of type Tkey.values
- Values of type Tval.InitializeTable
public <U extends Number,T extends Number> ParameterizedTruncatedNormal<U> parameterizedTruncatedNormal(Operand<T> shape, Operand<U> means, Operand<U> stdevs, Operand<U> minvals, Operand<U> maxvals, ParameterizedTruncatedNormal.Options... options)
ParameterizedTruncatedNormal
operation to the graphshape
- The shape of the output tensor. Batches are indexed by the 0th dimension.means
- The mean parameter of each batch.stdevs
- The standard deviation parameter of each batch. Must be greater than 0.minvals
- The minimum cutoff. May be -infinity.maxvals
- The maximum cutoff. May be +infinity, and must be more than the minvaloptions
- carries optional attributes valuesParameterizedTruncatedNormal
public <T,U extends Number> ScatterMul<T> scatterMul(Operand<T> ref, Operand<U> indices, Operand<T> updates, ScatterMul.Options... options)
ScatterMul
operation to the graphref
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to multiply to `ref`.options
- carries optional attributes valuesScatterMul
public <T,U extends Number> ScatterUpdate<T> scatterUpdate(Operand<T> ref, Operand<U> indices, Operand<T> updates, ScatterUpdate.Options... options)
ScatterUpdate
operation to the graphref
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to store in `ref`.options
- carries optional attributes valuesScatterUpdate
public StageSize stageSize(List<Class<?>> dtypes, StageSize.Options... options)
StageSize
operation to the graphdtypes
- options
- carries optional attributes valuesStageSize
public StringLength stringLength(Operand<String> input, StringLength.Options... options)
StringLength
operation to the graphinput
- The string for which to compute the length.options
- carries optional attributes valuesStringLength
public <T> QuantizedInstanceNorm<T> quantizedInstanceNorm(Operand<T> x, Operand<Float> xMin, Operand<Float> xMax, QuantizedInstanceNorm.Options... options)
QuantizedInstanceNorm
operation to the graphx
- A 4D input Tensor.xMin
- The value represented by the lowest quantized input.xMax
- The value represented by the highest quantized input.options
- carries optional attributes valuesQuantizedInstanceNorm
public MatchingFiles matchingFiles(Operand<String> pattern)
MatchingFiles
operation to the graphpattern
- Shell wildcard pattern(s). Scalar or vector of type string.MatchingFiles
public <T,U extends Number> ResourceSparseApplyKerasMomentum resourceSparseApplyKerasMomentum(Operand<?> var, Operand<?> accum, Operand<T> lr, Operand<T> grad, Operand<U> indices, Operand<T> momentum, ResourceSparseApplyKerasMomentum.Options... options)
ResourceSparseApplyKerasMomentum
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Learning rate. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.momentum
- Momentum. Must be a scalar.options
- carries optional attributes valuesResourceSparseApplyKerasMomentum
public QueueDequeueMany queueDequeueMany(Operand<?> handle, Operand<Integer> n, List<Class<?>> componentTypes, QueueDequeueMany.Options... options)
QueueDequeueMany
operation to the graphhandle
- The handle to a queue.n
- The number of tuples to dequeue.componentTypes
- The type of each component in a tuple.options
- carries optional attributes valuesQueueDequeueMany
public <T> AssignAdd<T> assignAdd(Operand<T> ref, Operand<T> value, AssignAdd.Options... options)
AssignAdd
operation to the graphref
- Should be from a `Variable` node.value
- The value to be added to the variable.options
- carries optional attributes valuesAssignAdd
public StringToHashBucket stringToHashBucket(Operand<String> stringTensor, Long numBuckets)
StringToHashBucket
operation to the graphstringTensor
- numBuckets
- The number of buckets.StringToHashBucket
public <T> RefSelect<T> refSelect(Operand<Integer> index, Operand<T> inputs)
RefSelect
operation to the graphindex
- A scalar that determines the input that gets selected.inputs
- A list of ref tensors, one of which will be forwarded to `output`.RefSelect
public <T> DestroyTemporaryVariable<T> destroyTemporaryVariable(Operand<T> ref, String varName)
DestroyTemporaryVariable
operation to the graphref
- A reference to the temporary variable tensor.varName
- Name of the temporary variable, usually the name of the matchingDestroyTemporaryVariable
public <T> SparseSparseMinimum<T> sparseSparseMinimum(Operand<Long> aIndices, Operand<T> aValues, Operand<Long> aShape, Operand<Long> bIndices, Operand<T> bValues, Operand<Long> bShape)
SparseSparseMinimum
operation to the graphaIndices
- 2-D. `N x R` matrix with the indices of non-empty values in aaValues
- 1-D. `N` non-empty values corresponding to `a_indices`.aShape
- 1-D. Shape of the input SparseTensor.bIndices
- counterpart to `a_indices` for the other operand.bValues
- counterpart to `a_values` for the other operand; must be of the same dtype.bShape
- counterpart to `a_shape` for the other operand; the two shapes must be equal.SparseSparseMinimum
public <T extends Number> BatchMatrixTriangularSolve<T> batchMatrixTriangularSolve(Operand<T> matrix, Operand<T> rhs, BatchMatrixTriangularSolve.Options... options)
BatchMatrixTriangularSolve
operation to the graphmatrix
- rhs
- options
- carries optional attributes valuesBatchMatrixTriangularSolve
public <T extends Number> Erf<T> erf(Operand<T> x)
Erf
operation to the graphx
- Erf
public GcsConfigureCredentials gcsConfigureCredentials(Operand<String> json)
GcsConfigureCredentials
operation to the graphjson
- GcsConfigureCredentials
public <V extends Number,T extends Number,U extends Number> StatelessMultinomial<V> statelessMultinomial(Operand<T> logits, Operand<Integer> numSamples, Operand<U> seed, Class<V> outputDtype)
StatelessMultinomial
operation to the graphlogits
- 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]`numSamples
- 0-D. Number of independent samples to draw for each row slice.seed
- 2 seeds (shape [2]).outputDtype
- StatelessMultinomial
public Fact fact()
Fact
operation to the graphFact
public <T> ResourceApplyAdagrad resourceApplyAdagrad(Operand<?> var, Operand<?> accum, Operand<T> lr, Operand<T> grad, ResourceApplyAdagrad.Options... options)
ResourceApplyAdagrad
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesResourceApplyAdagrad
public TryRpc tryRpc(Operand<String> address, Operand<String> method, Operand<String> request, TryRpc.Options... options)
TryRpc
operation to the graphaddress
- `0-D` or `1-D`. The address (i.e. host_name:port) of the RPC server.method
- `0-D` or `1-D`. The method address on the RPC server.request
- `0-D` or `1-D`. Serialized proto strings: the rpc request argument.options
- carries optional attributes valuesTryRpc
public <T> ResourceApplyFtrl resourceApplyFtrl(Operand<?> var, Operand<?> accum, Operand<?> linear, Operand<T> grad, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> lrPower, ResourceApplyFtrl.Options... options)
ResourceApplyFtrl
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().linear
- Should be from a Variable().grad
- The gradient.lr
- Scaling factor. Must be a scalar.l1
- L1 regulariation. Must be a scalar.l2
- L2 regulariation. Must be a scalar.lrPower
- Scaling factor. Must be a scalar.options
- carries optional attributes valuesResourceApplyFtrl
public <T> ApplyProximalAdagrad<T> applyProximalAdagrad(Operand<T> var, Operand<T> accum, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> grad, ApplyProximalAdagrad.Options... options)
ApplyProximalAdagrad
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesApplyProximalAdagrad
public <T extends Number> BroadcastDynamicShape<T> broadcastDynamicShape(Operand<T> s0, Operand<T> s1)
BroadcastDynamicShape
operation to the graphs0
- s1
- BroadcastDynamicShape
public <T extends Number,U extends Number,V extends Number> SparseSegmentMeanWithNumSegments<T> sparseSegmentMeanWithNumSegments(Operand<T> data, Operand<U> indices, Operand<Integer> segmentIds, Operand<V> numSegments)
SparseSegmentMeanWithNumSegments
operation to the graphdata
- indices
- A 1-D tensor. Has same rank as `segment_ids`.segmentIds
- A 1-D tensor. Values should be sorted and can be repeated.numSegments
- Should equal the number of distinct segment IDs.SparseSegmentMeanWithNumSegments
public ShardedFilespec shardedFilespec(Operand<String> basename, Operand<Integer> numShards)
ShardedFilespec
operation to the graphbasename
- numShards
- ShardedFilespec
public IteratorGetNextAsOptional iteratorGetNextAsOptional(Operand<?> iterator, List<Class<?>> outputTypes, List<Shape> outputShapes)
IteratorGetNextAsOptional
operation to the graphiterator
- outputTypes
- outputShapes
- IteratorGetNextAsOptional
public <T> SerializeSparse<String> serializeSparse(Operand<Long> sparseIndices, Operand<T> sparseValues, Operand<Long> sparseShape)
SerializeSparse
operation to the graphsparseIndices
- 2-D. The `indices` of the `SparseTensor`.sparseValues
- 1-D. The `values` of the `SparseTensor`.sparseShape
- 1-D. The `shape` of the `SparseTensor`.SerializeSparse
public <T extends Number> MaxPoolGradGrad<T> maxPoolGradGrad(Operand<T> origInput, Operand<T> origOutput, Operand<T> grad, List<Long> ksize, List<Long> strides, String padding, MaxPoolGradGrad.Options... options)
MaxPoolGradGrad
operation to the graphorigInput
- The original input tensor.origOutput
- The original output tensor.grad
- 4-D. Gradients of gradients w.r.t. the input of `max_pool`.ksize
- The size of the window for each dimension of the input tensor.strides
- The stride of the sliding window for each dimension of thepadding
- The type of padding algorithm to use.options
- carries optional attributes valuesMaxPoolGradGrad
public <T extends Number> QuantizeAndDequantizeV2<T> quantizeAndDequantizeV2(Operand<T> input, Operand<T> inputMin, Operand<T> inputMax, QuantizeAndDequantizeV2.Options... options)
QuantizeAndDequantizeV2
operation to the graphinput
- Tensor to quantize and then dequantize.inputMin
- If `range_given == True`, this specifies the minimum input value that needs toinputMax
- If `range_given == True`, this specifies the maximum input value that needs tooptions
- carries optional attributes valuesQuantizeAndDequantizeV2
public <T extends Number> GreaterEqual greaterEqual(Operand<T> x, Operand<T> y)
GreaterEqual
operation to the graphx
- y
- GreaterEqual
public <T> Sqrt<T> sqrt(Operand<T> x)
Sqrt
operation to the graphx
- Sqrt
public DecodeWav decodeWav(Operand<String> contents, DecodeWav.Options... options)
DecodeWav
operation to the graphcontents
- The WAV-encoded audio, usually from a file.options
- carries optional attributes valuesDecodeWav
public <T> SparseSlice<T> sparseSlice(Operand<Long> indices, Operand<T> values, Operand<Long> shape, Operand<Long> start, Operand<Long> size)
SparseSlice
operation to the graphindices
- 2-D tensor represents the indices of the sparse tensor.values
- 1-D tensor represents the values of the sparse tensor.shape
- 1-D. tensor represents the shape of the sparse tensor.start
- 1-D. tensor represents the start of the slice.size
- 1-D. tensor represents the size of the slice.SparseSlice
public DecodeProtoV2 decodeProtoV2(Operand<String> bytes, String messageType, List<String> fieldNames, List<Class<?>> outputTypes, DecodeProtoV2.Options... options)
DecodeProtoV2
operation to the graphbytes
- Tensor of serialized protos with shape `batch_shape`.messageType
- Name of the proto message type to decode.fieldNames
- List of strings containing proto field names.outputTypes
- List of TF types to use for the respective field in field_names.options
- carries optional attributes valuesDecodeProtoV2
public IteratorGetNext iteratorGetNext(Operand<?> iterator, List<Class<?>> outputTypes, List<Shape> outputShapes)
IteratorGetNext
operation to the graphiterator
- outputTypes
- outputShapes
- IteratorGetNext
public <T extends Number> BatchCholesky<T> batchCholesky(Operand<T> input)
BatchCholesky
operation to the graphinput
- BatchCholesky
public MergeV2Checkpoints mergeV2Checkpoints(Operand<String> checkpointPrefixes, Operand<String> destinationPrefix, MergeV2Checkpoints.Options... options)
MergeV2Checkpoints
operation to the graphcheckpointPrefixes
- prefixes of V2 checkpoints to merge.destinationPrefix
- scalar. The desired final prefix. Allowed to be the sameoptions
- carries optional attributes valuesMergeV2Checkpoints
public <T> TemporaryVariable<T> temporaryVariable(Shape shape, Class<T> dtype, TemporaryVariable.Options... options)
TemporaryVariable
operation to the graphshape
- The shape of the variable tensor.dtype
- The type of elements in the variable tensor.options
- carries optional attributes valuesTemporaryVariable
public <T> ApplyFtrlV2<T> applyFtrlV2(Operand<T> var, Operand<T> accum, Operand<T> linear, Operand<T> grad, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> l2Shrinkage, Operand<T> lrPower, ApplyFtrlV2.Options... options)
ApplyFtrlV2
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().linear
- Should be from a Variable().grad
- The gradient.lr
- Scaling factor. Must be a scalar.l1
- L1 regulariation. Must be a scalar.l2
- L2 shrinkage regulariation. Must be a scalar.l2Shrinkage
- lrPower
- Scaling factor. Must be a scalar.options
- carries optional attributes valuesApplyFtrlV2
public <T extends Number> MaxPool3D<T> maxPool3D(Operand<T> input, List<Long> ksize, List<Long> strides, String padding, MaxPool3D.Options... options)
MaxPool3D
operation to the graphinput
- Shape `[batch, depth, rows, cols, channels]` tensor to pool over.ksize
- 1-D tensor of length 5. The size of the window for each dimension ofstrides
- 1-D tensor of length 5. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesMaxPool3D
public <T extends Number> FusedBatchNorm<T> fusedBatchNorm(Operand<T> x, Operand<T> scale, Operand<T> offset, Operand<T> mean, Operand<T> variance, FusedBatchNorm.Options... options)
FusedBatchNorm
operation to the graphx
- A 4D Tensor for input data.scale
- A 1D Tensor for scaling factor, to scale the normalized x.offset
- A 1D Tensor for offset, to shift to the normalized x.mean
- A 1D Tensor for population mean. Used for inference only;variance
- A 1D Tensor for population variance. Used for inference only;options
- carries optional attributes valuesFusedBatchNorm
public <T extends Number,U extends Number> SegmentMin<T> segmentMin(Operand<T> data, Operand<U> segmentIds)
SegmentMin
operation to the graphdata
- segmentIds
- A 1-D tensor whose size is equal to the size of `data`'sSegmentMin
public PrintV2 printV2(Operand<String> input, PrintV2.Options... options)
PrintV2
operation to the graphinput
- The string scalar to print.options
- carries optional attributes valuesPrintV2
public GcsConfigureBlockCache gcsConfigureBlockCache(Operand<?> maxCacheSize, Operand<?> blockSize, Operand<?> maxStaleness)
GcsConfigureBlockCache
operation to the graphmaxCacheSize
- blockSize
- maxStaleness
- GcsConfigureBlockCache
public <T> BiasAdd<T> biasAdd(Operand<T> value, Operand<T> bias, BiasAdd.Options... options)
BiasAdd
operation to the graphvalue
- Any number of dimensions.bias
- 1-D with size the last dimension of `value`.options
- carries optional attributes valuesBiasAdd
public <T> MatrixSquareRoot<T> matrixSquareRoot(Operand<T> input)
MatrixSquareRoot
operation to the graphinput
- Shape is `[..., M, M]`.MatrixSquareRoot
public <T extends Number> Abs<T> abs(Operand<T> x)
Abs
operation to the graphx
- Abs
public <T> DynamicStitch<T> dynamicStitch(Iterable<Operand<Integer>> indices, Operand<T> data)
DynamicStitch
operation to the graphindices
- data
- DynamicStitch
public <T extends Number> Substr substr(Operand<String> input, Operand<T> pos, Operand<T> len, Substr.Options... options)
Substr
operation to the graphinput
- Tensor of stringspos
- Scalar defining the position of first character in each substringlen
- Scalar defining the number of characters to include in each substringoptions
- carries optional attributes valuesSubstr
public <T extends Number> ResizeBilinear resizeBilinear(Operand<T> images, Operand<Integer> size, ResizeBilinear.Options... options)
ResizeBilinear
operation to the graphimages
- 4-D with shape `[batch, height, width, channels]`.size
- = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. Theoptions
- carries optional attributes valuesResizeBilinear
public <T> Acosh<T> acosh(Operand<T> x)
Acosh
operation to the graphx
- Acosh
public Constant<Long> constant(long[][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T extends Number,U> EmptyTensorList emptyTensorList(Operand<T> elementShape, Operand<Integer> maxNumElements, Class<U> elementDtype)
EmptyTensorList
operation to the graphelementShape
- maxNumElements
- elementDtype
- EmptyTensorList
public QueueIsClosedV2 queueIsClosedV2(Operand<?> handle)
QueueIsClosedV2
operation to the graphhandle
- The handle to a queue.QueueIsClosedV2
public <T extends Number> Selu<T> selu(Operand<T> features)
Selu
operation to the graphfeatures
- Selu
public <T extends Number> QuantizeAndDequantizeV3<T> quantizeAndDequantizeV3(Operand<T> input, Operand<T> inputMin, Operand<T> inputMax, Operand<Integer> numBits, QuantizeAndDequantizeV3.Options... options)
QuantizeAndDequantizeV3
operation to the graphinput
- inputMin
- inputMax
- numBits
- options
- carries optional attributes valuesQuantizeAndDequantizeV3
public <T,U> SparseCross<T> sparseCross(Iterable<Operand<Long>> indices, Iterable<Operand<?>> values, Iterable<Operand<Long>> shapes, Iterable<Operand<?>> denseInputs, Boolean hashedOutput, Long numBuckets, Long hashKey, Class<T> outType, Class<U> internalType)
SparseCross
operation to the graphindices
- 2-D. Indices of each input `SparseTensor`.values
- 1-D. values of each `SparseTensor`.shapes
- 1-D. Shapes of each `SparseTensor`.denseInputs
- 2-D. Columns represented by dense `Tensor`.hashedOutput
- If true, returns the hash of the cross instead of the string.numBuckets
- It is used if hashed_output is true.hashKey
- Specify the hash_key that will be used by the `FingerprintCat64`outType
- internalType
- SparseCross
public Constant<Boolean> constant(boolean[] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T,U extends Number> ResourceSparseApplyMomentum resourceSparseApplyMomentum(Operand<?> var, Operand<?> accum, Operand<T> lr, Operand<T> grad, Operand<U> indices, Operand<T> momentum, ResourceSparseApplyMomentum.Options... options)
ResourceSparseApplyMomentum
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Learning rate. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.momentum
- Momentum. Must be a scalar.options
- carries optional attributes valuesResourceSparseApplyMomentum
public IRFFT iRFFT(Operand<?> input, Operand<Integer> fftLength)
IRFFT
operation to the graphinput
- A complex64 tensor.fftLength
- An int32 tensor of shape [1]. The FFT length.IRFFT
public <T> GetSessionTensor<T> getSessionTensor(Operand<String> handle, Class<T> dtype)
GetSessionTensor
operation to the graphhandle
- The handle for a tensor stored in the session state.dtype
- The type of the output value.GetSessionTensor
public <T,U extends Number> Zeros<T> zeros(Operand<U> dims, Class<T> type)
Zeros
operation to the graphdims
- a 1-D operand that represents the shape of the output tensortype
- the output tensor datatypeIllegalArgumentException
- if the tensor type or shape cannot be initialized with zeros.Zeros
public <T> Exp<T> exp(Operand<T> x)
Exp
operation to the graphx
- Exp
public <T,U extends Number> PadV2<T> padV2(Operand<T> input, Operand<U> paddings, Operand<T> constantValues)
PadV2
operation to the graphinput
- paddings
- constantValues
- PadV2
public <T> Mul<T> mul(Operand<T> x, Operand<T> y)
Mul
operation to the graphx
- y
- Mul
public <T,U extends Number> ResourceSparseApplyProximalGradientDescent resourceSparseApplyProximalGradientDescent(Operand<?> var, Operand<T> alpha, Operand<T> l1, Operand<T> l2, Operand<T> grad, Operand<U> indices, ResourceSparseApplyProximalGradientDescent.Options... options)
ResourceSparseApplyProximalGradientDescent
operation to the graphvar
- Should be from a Variable().alpha
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.options
- carries optional attributes valuesResourceSparseApplyProximalGradientDescent
public Constant<Boolean> constant(boolean[][][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T> IFFT<T> iFFT(Operand<T> input)
IFFT
operation to the graphinput
- A complex tensor.IFFT
public Constant<Float> constant(float[] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public IRFFT3D iRFFT3D(Operand<?> input, Operand<Integer> fftLength)
IRFFT3D
operation to the graphinput
- A complex64 tensor.fftLength
- An int32 tensor of shape [3]. The FFT length for each dimension.IRFFT3D
public <U extends Number,T extends Number> RandomUniformInt<U> randomUniformInt(Operand<T> shape, Operand<U> minval, Operand<U> maxval, RandomUniformInt.Options... options)
RandomUniformInt
operation to the graphshape
- The shape of the output tensor.minval
- 0-D. Inclusive lower bound on the generated integers.maxval
- 0-D. Exclusive upper bound on the generated integers.options
- carries optional attributes valuesRandomUniformInt
public ReduceJoin reduceJoin(Operand<String> inputs, Operand<Integer> reductionIndices, ReduceJoin.Options... options)
ReduceJoin
operation to the graphinputs
- The input to be joined. All reduced indices must have non-zero size.reductionIndices
- The dimensions to reduce over. Dimensions are reduced in theoptions
- carries optional attributes valuesReduceJoin
public UniformCandidateSampler uniformCandidateSampler(Operand<Long> trueClasses, Long numTrue, Long numSampled, Boolean unique, Long rangeMax, UniformCandidateSampler.Options... options)
UniformCandidateSampler
operation to the graphtrueClasses
- A batch_size * num_true matrix, in which each row contains thenumTrue
- Number of true labels per context.numSampled
- Number of candidates to randomly sample.unique
- If unique is true, we sample with rejection, so that all sampledrangeMax
- The sampler will sample integers from the interval [0, range_max).options
- carries optional attributes valuesUniformCandidateSampler
public <T> DebugGradientRefIdentity<T> debugGradientRefIdentity(Operand<T> input)
DebugGradientRefIdentity
operation to the graphinput
- DebugGradientRefIdentity
public <T extends Number> Dilation2DBackpropInput<T> dilation2DBackpropInput(Operand<T> input, Operand<T> filter, Operand<T> outBackprop, List<Long> strides, List<Long> rates, String padding)
Dilation2DBackpropInput
operation to the graphinput
- 4-D with shape `[batch, in_height, in_width, depth]`.filter
- 3-D with shape `[filter_height, filter_width, depth]`.outBackprop
- 4-D with shape `[batch, out_height, out_width, depth]`.strides
- 1-D of length 4. The stride of the sliding window for each dimension ofrates
- 1-D of length 4. The input stride for atrous morphological dilation.padding
- The type of padding algorithm to use.Dilation2DBackpropInput
public <T> GetSessionHandle getSessionHandle(Operand<T> value)
GetSessionHandle
operation to the graphvalue
- The tensor to be stored.GetSessionHandle
public <T> ApplyAddSign<T> applyAddSign(Operand<T> var, Operand<T> m, Operand<T> lr, Operand<T> alpha, Operand<T> signDecay, Operand<T> beta, Operand<T> grad, ApplyAddSign.Options... options)
ApplyAddSign
operation to the graphvar
- Should be from a Variable().m
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.alpha
- Must be a scalar.signDecay
- Must be a scalar.beta
- Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesApplyAddSign
public ReaderRead readerRead(Operand<?> readerHandle, Operand<?> queueHandle)
ReaderRead
operation to the graphreaderHandle
- Handle to a Reader.queueHandle
- Handle to a Queue, with string work items.ReaderRead
public IteratorFromStringHandle iteratorFromStringHandle(Operand<String> stringHandle, List<Class<?>> outputTypes, IteratorFromStringHandle.Options... options)
IteratorFromStringHandle
operation to the graphstringHandle
- A string representation of the given handle.outputTypes
- If specified, defines the type of each tuple component in anoptions
- carries optional attributes valuesIteratorFromStringHandle
public <T extends Number,U extends Number> ScatterMax<T> scatterMax(Operand<T> ref, Operand<U> indices, Operand<T> updates, ScatterMax.Options... options)
ScatterMax
operation to the graphref
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to reduce into `ref`.options
- carries optional attributes valuesScatterMax
public FixedUnigramCandidateSampler fixedUnigramCandidateSampler(Operand<Long> trueClasses, Long numTrue, Long numSampled, Boolean unique, Long rangeMax, FixedUnigramCandidateSampler.Options... options)
FixedUnigramCandidateSampler
operation to the graphtrueClasses
- A batch_size * num_true matrix, in which each row contains thenumTrue
- Number of true labels per context.numSampled
- Number of candidates to randomly sample.unique
- If unique is true, we sample with rejection, so that all sampledrangeMax
- The sampler will sample integers from the interval [0, range_max).options
- carries optional attributes valuesFixedUnigramCandidateSampler
public MapUnstageNoKey mapUnstageNoKey(Operand<Integer> indices, List<Class<?>> dtypes, MapUnstageNoKey.Options... options)
MapUnstageNoKey
operation to the graphindices
- dtypes
- options
- carries optional attributes valuesMapUnstageNoKey
public <T> AddSparseToTensorsMap addSparseToTensorsMap(Operand<Long> sparseIndices, Operand<T> sparseValues, Operand<Long> sparseShape, AddSparseToTensorsMap.Options... options)
AddSparseToTensorsMap
operation to the graphsparseIndices
- 2-D. The `indices` of the `SparseTensor`.sparseValues
- 1-D. The `values` of the `SparseTensor`.sparseShape
- 1-D. The `shape` of the `SparseTensor`.options
- carries optional attributes valuesAddSparseToTensorsMap
public LoadAndRemapMatrix loadAndRemapMatrix(Operand<String> ckptPath, Operand<String> oldTensorName, Operand<Long> rowRemapping, Operand<Long> colRemapping, Operand<Float> initializingValues, Long numRows, Long numCols, LoadAndRemapMatrix.Options... options)
LoadAndRemapMatrix
operation to the graphckptPath
- Path to the TensorFlow checkpoint (version 2, `TensorBundle`) fromoldTensorName
- Name of the 2-D `Tensor` to load from checkpoint.rowRemapping
- An int `Tensor` of row remappings (generally created bycolRemapping
- An int `Tensor` of column remappings (generally created byinitializingValues
- A float `Tensor` containing values to fill in for cellsnumRows
- Number of rows (length of the 1st dimension) in the output matrix.numCols
- Number of columns (length of the 2nd dimension) in the output matrix.options
- carries optional attributes valuesLoadAndRemapMatrix
public <U,T extends Number> ScatterNd<U> scatterNd(Operand<T> indices, Operand<U> updates, Operand<T> shape)
ScatterNd
operation to the graphindices
- Index tensor.updates
- Updates to scatter into output.shape
- 1-D. The shape of the resulting tensor.ScatterNd
public <T> TensorListSetItem tensorListSetItem(Operand<?> inputHandle, Operand<Integer> index, Operand<T> item)
TensorListSetItem
operation to the graphinputHandle
- index
- item
- TensorListSetItem
public <T> RefSwitch<T> refSwitch(Operand<T> data, Operand<Boolean> pred)
RefSwitch
operation to the graphdata
- The ref tensor to be forwarded to the appropriate output.pred
- A scalar that specifies which output port will receive data.RefSwitch
public SdcaOptimizer sdcaOptimizer(Iterable<Operand<Long>> sparseExampleIndices, Iterable<Operand<Long>> sparseFeatureIndices, Iterable<Operand<Float>> sparseFeatureValues, Iterable<Operand<Float>> denseFeatures, Operand<Float> exampleWeights, Operand<Float> exampleLabels, Iterable<Operand<Long>> sparseIndices, Iterable<Operand<Float>> sparseWeights, Iterable<Operand<Float>> denseWeights, Operand<Float> exampleStateData, String lossType, Float l1, Float l2, Long numLossPartitions, Long numInnerIterations, SdcaOptimizer.Options... options)
SdcaOptimizer
operation to the graphsparseExampleIndices
- a list of vectors which contain example indices.sparseFeatureIndices
- a list of vectors which contain feature indices.sparseFeatureValues
- a list of vectors which contains feature valuedenseFeatures
- a list of matrices which contains the dense feature values.exampleWeights
- a vector which contains the weight associated with eachexampleLabels
- a vector which contains the label/target associated with eachsparseIndices
- a list of vectors where each value is the indices which hassparseWeights
- a list of vectors where each value is the weight associated withdenseWeights
- a list of vectors where the values are the weights associatedexampleStateData
- a list of vectors containing the example state data.lossType
- Type of the primal loss. Currently SdcaSolver supports logistic,l1
- Symmetric l1 regularization strength.l2
- Symmetric l2 regularization strength.numLossPartitions
- Number of partitions of the global loss function.numInnerIterations
- Number of iterations per mini-batch.options
- carries optional attributes valuesSdcaOptimizer
public <T> SparseFillEmptyRowsGrad<T> sparseFillEmptyRowsGrad(Operand<Long> reverseIndexMap, Operand<T> gradValues)
SparseFillEmptyRowsGrad
operation to the graphreverseIndexMap
- 1-D. The reverse index map from SparseFillEmptyRows.gradValues
- 1-D. The gradients from backprop.SparseFillEmptyRowsGrad
public <T> Identity<T> identity(Operand<T> input)
Identity
operation to the graphinput
- Identity
public <T> Where3<T> where3(Operand<Boolean> condition, Operand<T> x, Operand<T> y)
Where3
operation to the graphcondition
- x
- = A `Tensor` which may have the same shape as `condition`.y
- = A `Tensor` with the same type and shape as `x`.Where3
public ReaderReadUpTo readerReadUpTo(Operand<?> readerHandle, Operand<?> queueHandle, Operand<Long> numRecords)
ReaderReadUpTo
operation to the graphreaderHandle
- Handle to a `Reader`.queueHandle
- Handle to a `Queue`, with string work items.numRecords
- number of records to read from `Reader`.ReaderReadUpTo
public <T extends Number> LRN<T> lRN(Operand<T> input, LRN.Options... options)
LRN
operation to the graphinput
- 4-D.options
- carries optional attributes valuesLRN
public <U,T> SerializeManySparse<U> serializeManySparse(Operand<Long> sparseIndices, Operand<T> sparseValues, Operand<Long> sparseShape, Class<U> outType)
SerializeManySparse
operation to the graphsparseIndices
- 2-D. The `indices` of the minibatch `SparseTensor`.sparseValues
- 1-D. The `values` of the minibatch `SparseTensor`.sparseShape
- 1-D. The `shape` of the minibatch `SparseTensor`.outType
- The `dtype` to use for serialization; the supported types are `string`SerializeManySparse
public AudioSpectrogram audioSpectrogram(Operand<Float> input, Long windowSize, Long stride, AudioSpectrogram.Options... options)
AudioSpectrogram
operation to the graphinput
- Float representation of audio data.windowSize
- How wide the input window is in samples. For the highest efficiencystride
- How widely apart the center of adjacent sample windows should be.options
- carries optional attributes valuesAudioSpectrogram
public <T,U extends Number> SparseApplyProximalAdagrad<T> sparseApplyProximalAdagrad(Operand<T> var, Operand<T> accum, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> grad, Operand<U> indices, SparseApplyProximalAdagrad.Options... options)
SparseApplyProximalAdagrad
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Learning rate. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.options
- carries optional attributes valuesSparseApplyProximalAdagrad
public <U,T> QuantizedRelu6<U> quantizedRelu6(Operand<T> features, Operand<Float> minFeatures, Operand<Float> maxFeatures, Class<U> outType)
QuantizedRelu6
operation to the graphfeatures
- minFeatures
- The float value that the lowest quantized value represents.maxFeatures
- The float value that the highest quantized value represents.outType
- QuantizedRelu6
public <T extends Number> Greater greater(Operand<T> x, Operand<T> y)
Greater
operation to the graphx
- y
- Greater
public EncodeBase64 encodeBase64(Operand<String> input, EncodeBase64.Options... options)
EncodeBase64
operation to the graphinput
- Strings to be encoded.options
- carries optional attributes valuesEncodeBase64
public <T> Square<T> square(Operand<T> x)
Square
operation to the graphx
- Square
public EncodeWav encodeWav(Operand<Float> audio, Operand<Integer> sampleRate)
EncodeWav
operation to the graphaudio
- 2-D with shape `[length, channels]`.sampleRate
- Scalar containing the sample frequency.EncodeWav
public <T> ResourceApplyFtrlV2 resourceApplyFtrlV2(Operand<?> var, Operand<?> accum, Operand<?> linear, Operand<T> grad, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> l2Shrinkage, Operand<T> lrPower, ResourceApplyFtrlV2.Options... options)
ResourceApplyFtrlV2
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().linear
- Should be from a Variable().grad
- The gradient.lr
- Scaling factor. Must be a scalar.l1
- L1 regulariation. Must be a scalar.l2
- L2 shrinkage regulariation. Must be a scalar.l2Shrinkage
- lrPower
- Scaling factor. Must be a scalar.options
- carries optional attributes valuesResourceApplyFtrlV2
public <T> SparseToSparseSetOperation<T> sparseToSparseSetOperation(Operand<Long> set1Indices, Operand<T> set1Values, Operand<Long> set1Shape, Operand<Long> set2Indices, Operand<T> set2Values, Operand<Long> set2Shape, String setOperation, SparseToSparseSetOperation.Options... options)
SparseToSparseSetOperation
operation to the graphset1Indices
- 2D `Tensor`, indices of a `SparseTensor`. Must be in row-majorset1Values
- 1D `Tensor`, values of a `SparseTensor`. Must be in row-majorset1Shape
- 1D `Tensor`, shape of a `SparseTensor`. `set1_shape[0...n-1]` mustset2Indices
- 2D `Tensor`, indices of a `SparseTensor`. Must be in row-majorset2Values
- 1D `Tensor`, values of a `SparseTensor`. Must be in row-majorset2Shape
- 1D `Tensor`, shape of a `SparseTensor`. `set2_shape[0...n-1]` mustsetOperation
- options
- carries optional attributes valuesSparseToSparseSetOperation
public Timestamp timestamp()
Timestamp
operation to the graphTimestamp
public <T extends Number> BatchMatrixSolveLs<T> batchMatrixSolveLs(Operand<T> matrix, Operand<T> rhs, Operand<Double> l2Regularizer, BatchMatrixSolveLs.Options... options)
BatchMatrixSolveLs
operation to the graphmatrix
- rhs
- l2Regularizer
- options
- carries optional attributes valuesBatchMatrixSolveLs
public <T extends Number,U extends Number> StatelessRandomUniform<Float> statelessRandomUniform(Operand<T> shape, Operand<U> seed)
StatelessRandomUniform
operation to the graphshape
- The shape of the output tensor.seed
- 2 seeds (shape [2]).StatelessRandomUniform
public Constant<Boolean> constant(boolean[][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T,U extends Number> SparseAdd<T> sparseAdd(Operand<Long> aIndices, Operand<T> aValues, Operand<Long> aShape, Operand<Long> bIndices, Operand<T> bValues, Operand<Long> bShape, Operand<U> thresh)
SparseAdd
operation to the graphaIndices
- 2-D. The `indices` of the first `SparseTensor`, size `[nnz, ndims]` Matrix.aValues
- 1-D. The `values` of the first `SparseTensor`, size `[nnz]` Vector.aShape
- 1-D. The `shape` of the first `SparseTensor`, size `[ndims]` Vector.bIndices
- 2-D. The `indices` of the second `SparseTensor`, size `[nnz, ndims]` Matrix.bValues
- 1-D. The `values` of the second `SparseTensor`, size `[nnz]` Vector.bShape
- 1-D. The `shape` of the second `SparseTensor`, size `[ndims]` Vector.thresh
- 0-D. The magnitude threshold that determines if an output value/indexSparseAdd
public <T extends Number,U extends Number> LinSpace<T> linSpace(Operand<T> start, Operand<T> stop, Operand<U> num)
LinSpace
operation to the graphstart
- 0-D tensor. First entry in the range.stop
- 0-D tensor. Last entry in the range.num
- 0-D tensor. Number of values to generate.LinSpace
public <T> AddManySparseToTensorsMap addManySparseToTensorsMap(Operand<Long> sparseIndices, Operand<T> sparseValues, Operand<Long> sparseShape, AddManySparseToTensorsMap.Options... options)
AddManySparseToTensorsMap
operation to the graphsparseIndices
- 2-D. The `indices` of the minibatch `SparseTensor`.sparseValues
- 1-D. The `values` of the minibatch `SparseTensor`.sparseShape
- 1-D. The `shape` of the minibatch `SparseTensor`.options
- carries optional attributes valuesAddManySparseToTensorsMap
public Constant<String> constant(String data)
Constant
operation to the graphdata
- The string to put into the new constant.Constant
public <T> InplaceSub<T> inplaceSub(Operand<T> x, Operand<Integer> i, Operand<T> v)
InplaceSub
operation to the graphx
- A `Tensor` of type T.i
- A vector. Indices into the left-most dimension of `x`.v
- A `Tensor` of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size.InplaceSub
public <T,U extends Number> Cumsum<T> cumsum(Operand<T> x, Operand<U> axis, Cumsum.Options... options)
Cumsum
operation to the graphx
- A `Tensor`. Must be one of the following types: `float32`, `float64`,axis
- A `Tensor` of type `int32` (default: 0). Must be in the rangeoptions
- carries optional attributes valuesCumsum
public StringToNumber<Float> stringToNumber(Operand<String> stringTensor)
StringToNumber
operation to the graphstringTensor
- StringToNumber
public <T> DebugGradientIdentity<T> debugGradientIdentity(Operand<T> input)
DebugGradientIdentity
operation to the graphinput
- DebugGradientIdentity
public <T> ApplyProximalGradientDescent<T> applyProximalGradientDescent(Operand<T> var, Operand<T> alpha, Operand<T> l1, Operand<T> l2, Operand<T> delta, ApplyProximalGradientDescent.Options... options)
ApplyProximalGradientDescent
operation to the graphvar
- Should be from a Variable().alpha
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.delta
- The change.options
- carries optional attributes valuesApplyProximalGradientDescent
public SdcaFprint sdcaFprint(Operand<String> input)
SdcaFprint
operation to the graphinput
- vector of strings to compute fingerprints on.SdcaFprint
public <T> FFT<T> fFT(Operand<T> input)
FFT
operation to the graphinput
- A complex tensor.FFT
public OptionalNone optionalNone()
OptionalNone
operation to the graphOptionalNone
public MapStage mapStage(Operand<Long> key, Operand<Integer> indices, Iterable<Operand<?>> values, List<Class<?>> dtypes, MapStage.Options... options)
MapStage
operation to the graphkey
- int64indices
- values
- a list of tensorsdtypes
- options
- carries optional attributes valuesMapStage
public <T,U extends Number> SparseApplyProximalGradientDescent<T> sparseApplyProximalGradientDescent(Operand<T> var, Operand<T> alpha, Operand<T> l1, Operand<T> l2, Operand<T> grad, Operand<U> indices, SparseApplyProximalGradientDescent.Options... options)
SparseApplyProximalGradientDescent
operation to the graphvar
- Should be from a Variable().alpha
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.options
- carries optional attributes valuesSparseApplyProximalGradientDescent
public <T> ImmutableConst<T> immutableConst(Class<T> dtype, Shape shape, String memoryRegionName)
ImmutableConst
operation to the graphdtype
- Type of the returned tensor.shape
- Shape of the returned tensor.memoryRegionName
- Name of readonly memory region used by the tensor, seeImmutableConst
public <T extends Number> ResizeNearestNeighbor<T> resizeNearestNeighbor(Operand<T> images, Operand<Integer> size, ResizeNearestNeighbor.Options... options)
ResizeNearestNeighbor
operation to the graphimages
- 4-D with shape `[batch, height, width, channels]`.size
- = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. Theoptions
- carries optional attributes valuesResizeNearestNeighbor
public Constant<String> constant(byte[] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. String elements areConstant
public <T,U extends Number> Max<T> max(Operand<T> input, Operand<U> axis, Max.Options... options)
Max
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesMax
public <T extends Number> SparseReduceMaxSparse<T> sparseReduceMaxSparse(Operand<Long> inputIndices, Operand<T> inputValues, Operand<Long> inputShape, Operand<Integer> reductionAxes, SparseReduceMaxSparse.Options... options)
SparseReduceMaxSparse
operation to the graphinputIndices
- 2-D. `N x R` matrix with the indices of non-empty values in ainputValues
- 1-D. `N` non-empty values corresponding to `input_indices`.inputShape
- 1-D. Shape of the input SparseTensor.reductionAxes
- 1-D. Length-`K` vector containing the reduction axes.options
- carries optional attributes valuesSparseReduceMaxSparse
public <U extends Number,T> Size<U> size(Operand<T> input, Class<U> outType)
Size
operation to the graphinput
- outType
- Size
public TensorArraySize tensorArraySize(Operand<?> handle, Operand<Float> flowIn)
TensorArraySize
operation to the graphhandle
- The handle to a TensorArray (output of TensorArray or TensorArrayGrad).flowIn
- A float scalar that enforces proper chaining of operations.TensorArraySize
public <T> TensorArrayWrite tensorArrayWrite(Operand<?> handle, Operand<Integer> index, Operand<T> value, Operand<Float> flowIn)
TensorArrayWrite
operation to the graphhandle
- The handle to a TensorArray.index
- The position to write to inside the TensorArray.value
- The tensor to write to the TensorArray.flowIn
- A float scalar that enforces proper chaining of operations.TensorArrayWrite
public <T> Where where(Operand<T> condition)
Where
operation to the graphcondition
- Where
public <T extends Number,U extends Number,V extends Number> SparseSegmentSqrtNWithNumSegments<T> sparseSegmentSqrtNWithNumSegments(Operand<T> data, Operand<U> indices, Operand<Integer> segmentIds, Operand<V> numSegments)
SparseSegmentSqrtNWithNumSegments
operation to the graphdata
- indices
- A 1-D tensor. Has same rank as `segment_ids`.segmentIds
- A 1-D tensor. Values should be sorted and can be repeated.numSegments
- Should equal the number of distinct segment IDs.SparseSegmentSqrtNWithNumSegments
public <T,U extends Number> SplitV<T> splitV(Operand<T> value, Operand<U> sizeSplits, Operand<Integer> axis, Long numSplit)
SplitV
operation to the graphvalue
- The tensor to split.sizeSplits
- list containing the sizes of each output tensor along the splitaxis
- 0-D. The dimension along which to split. Must be in the rangenumSplit
- SplitV
public <T,U extends Number> TensorScatterUpdate<T> tensorScatterUpdate(Operand<T> tensor, Operand<U> indices, Operand<T> updates)
TensorScatterUpdate
operation to the graphtensor
- Tensor to copy/update.indices
- Index tensor.updates
- Updates to scatter into output.TensorScatterUpdate
public OrderedMapSize orderedMapSize(List<Class<?>> dtypes, OrderedMapSize.Options... options)
OrderedMapSize
operation to the graphdtypes
- options
- carries optional attributes valuesOrderedMapSize
public QueueSize queueSize(Operand<?> handle)
QueueSize
operation to the graphhandle
- The handle to a queue.QueueSize
public <T> DepthToSpace<T> depthToSpace(Operand<T> input, Long blockSize, DepthToSpace.Options... options)
DepthToSpace
operation to the graphinput
- blockSize
- The size of the spatial block, same as in Space2Depth.options
- carries optional attributes valuesDepthToSpace
public DecodeBmp decodeBmp(Operand<String> contents, DecodeBmp.Options... options)
DecodeBmp
operation to the graphcontents
- 0-D. The BMP-encoded image.options
- carries optional attributes valuesDecodeBmp
public <T extends Number> Less less(Operand<T> x, Operand<T> y)
Less
operation to the graphx
- y
- Less
public <T> ResourceApplyAdam resourceApplyAdam(Operand<?> var, Operand<?> m, Operand<?> v, Operand<T> beta1Power, Operand<T> beta2Power, Operand<T> lr, Operand<T> beta1, Operand<T> beta2, Operand<T> epsilon, Operand<T> grad, ResourceApplyAdam.Options... options)
ResourceApplyAdam
operation to the graphvar
- Should be from a Variable().m
- Should be from a Variable().v
- Should be from a Variable().beta1Power
- Must be a scalar.beta2Power
- Must be a scalar.lr
- Scaling factor. Must be a scalar.beta1
- Momentum factor. Must be a scalar.beta2
- Momentum factor. Must be a scalar.epsilon
- Ridge term. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesResourceApplyAdam
public <T extends Number> Floor<T> floor(Operand<T> x)
Floor
operation to the graphx
- Floor
public <T> ResourceApplyMomentum resourceApplyMomentum(Operand<?> var, Operand<?> accum, Operand<T> lr, Operand<T> grad, Operand<T> momentum, ResourceApplyMomentum.Options... options)
ResourceApplyMomentum
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.grad
- The gradient.momentum
- Momentum. Must be a scalar.options
- carries optional attributes valuesResourceApplyMomentum
public <T extends Number> SparseReduceMax<T> sparseReduceMax(Operand<Long> inputIndices, Operand<T> inputValues, Operand<Long> inputShape, Operand<Integer> reductionAxes, SparseReduceMax.Options... options)
SparseReduceMax
operation to the graphinputIndices
- 2-D. `N x R` matrix with the indices of non-empty values in ainputValues
- 1-D. `N` non-empty values corresponding to `input_indices`.inputShape
- 1-D. Shape of the input SparseTensor.reductionAxes
- 1-D. Length-`K` vector containing the reduction axes.options
- carries optional attributes valuesSparseReduceMax
public <T> Placeholder<T> placeholder(Class<T> dtype, Placeholder.Options... options)
Placeholder
operation to the graphdtype
- The type of elements in the tensor.options
- carries optional attributes valuesPlaceholder
public <T,U extends Number> ReverseSequence<T> reverseSequence(Operand<T> input, Operand<U> seqLengths, Long seqDim, ReverseSequence.Options... options)
ReverseSequence
operation to the graphinput
- The input to reverse.seqLengths
- 1-D with length `input.dims(batch_dim)` andseqDim
- The dimension which is partially reversed.options
- carries optional attributes valuesReverseSequence
public <T extends Number,U extends Number> FusedBatchNormV2<T,U> fusedBatchNormV2(Operand<T> x, Operand<U> scale, Operand<U> offset, Operand<U> mean, Operand<U> variance, FusedBatchNormV2.Options... options)
FusedBatchNormV2
operation to the graphx
- A 4D Tensor for input data.scale
- A 1D Tensor for scaling factor, to scale the normalized x.offset
- A 1D Tensor for offset, to shift to the normalized x.mean
- A 1D Tensor for population mean. Used for inference only;variance
- A 1D Tensor for population variance. Used for inference only;options
- carries optional attributes valuesFusedBatchNormV2
public <T> TensorListGather<T> tensorListGather(Operand<?> inputHandle, Operand<Integer> indices, Class<T> elementDtype)
TensorListGather
operation to the graphinputHandle
- indices
- elementDtype
- TensorListGather
public <U extends Number,T extends Number> MaxPool3DGrad<U> maxPool3DGrad(Operand<T> origInput, Operand<T> origOutput, Operand<U> grad, List<Long> ksize, List<Long> strides, String padding, MaxPool3DGrad.Options... options)
MaxPool3DGrad
operation to the graphorigInput
- The original input tensor.origOutput
- The original output tensor.grad
- Output backprop of shape `[batch, depth, rows, cols, channels]`.ksize
- 1-D tensor of length 5. The size of the window for each dimension ofstrides
- 1-D tensor of length 5. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesMaxPool3DGrad
public DecodeCSV decodeCSV(Operand<String> records, Iterable<Operand<?>> recordDefaults, DecodeCSV.Options... options)
DecodeCSV
operation to the graphrecords
- Each string is a record/row in the csv and all records should haverecordDefaults
- One tensor per column of the input record, with either aoptions
- carries optional attributes valuesDecodeCSV
public <T extends Number> ResourceCountUpTo<T> resourceCountUpTo(Operand<?> resource, Long limit, Class<T> T)
ResourceCountUpTo
operation to the graphresource
- Should be from a scalar `Variable` node.limit
- If incrementing ref would bring it above limit, instead generates anT
- ResourceCountUpTo
public <T,U extends Number> Tile<T> tile(Operand<T> input, Operand<U> multiples)
Tile
operation to the graphinput
- 1-D or higher.multiples
- 1-D. Length must be the same as the number of dimensions in `input`Tile
public <T> Cholesky<T> cholesky(Operand<T> input)
Cholesky
operation to the graphinput
- Shape is `[..., M, M]`.Cholesky
public <U extends Number,T extends Number> Conv3DBackpropInputV2<U> conv3DBackpropInputV2(Operand<T> inputSizes, Operand<U> filter, Operand<U> outBackprop, List<Long> strides, String padding, Conv3DBackpropInputV2.Options... options)
Conv3DBackpropInputV2
operation to the graphinputSizes
- An integer vector representing the tensor shape of `input`,filter
- Shape `[depth, rows, cols, in_channels, out_channels]`.outBackprop
- Backprop signal of shape `[batch, out_depth, out_rows, out_cols,strides
- 1-D tensor of length 5. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesConv3DBackpropInputV2
public <T> SparseAddGrad<T> sparseAddGrad(Operand<T> backpropValGrad, Operand<Long> aIndices, Operand<Long> bIndices, Operand<Long> sumIndices)
SparseAddGrad
operation to the graphbackpropValGrad
- 1-D with shape `[nnz(sum)]`. The gradient with respect toaIndices
- 2-D. The `indices` of the `SparseTensor` A, size `[nnz(A), ndims]`.bIndices
- 2-D. The `indices` of the `SparseTensor` B, size `[nnz(B), ndims]`.sumIndices
- 2-D. The `indices` of the sum `SparseTensor`, sizeSparseAddGrad
public <T> Rank rank(Operand<T> input)
Rank
operation to the graphinput
- Rank
public <T> Negate<T> negate(Operand<T> x)
Negate
operation to the graphx
- Negate
public QueueEnqueueMany queueEnqueueMany(Operand<?> handle, Iterable<Operand<?>> components, QueueEnqueueMany.Options... options)
QueueEnqueueMany
operation to the graphhandle
- The handle to a queue.components
- One or more tensors from which the enqueued tensors shouldoptions
- carries optional attributes valuesQueueEnqueueMany
public <T extends Number> Multinomial<Long> multinomial(Operand<T> logits, Operand<Integer> numSamples, Multinomial.Options... options)
Multinomial
operation to the graphlogits
- 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]`numSamples
- 0-D. Number of independent samples to draw for each row slice.options
- carries optional attributes valuesMultinomial
public Constant<String> constant(String data, Charset charset)
Constant
operation to the graphcharset
- The encoding from String to bytes.data
- The string to put into the new constant.Constant
public <T> SpaceToDepth<T> spaceToDepth(Operand<T> input, Long blockSize, SpaceToDepth.Options... options)
SpaceToDepth
operation to the graphinput
- blockSize
- The size of the spatial block.options
- carries optional attributes valuesSpaceToDepth
public MapSize mapSize(List<Class<?>> dtypes, MapSize.Options... options)
MapSize
operation to the graphdtypes
- options
- carries optional attributes valuesMapSize
public Constant<Integer> constant(int[][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public OrderedMapIncompleteSize orderedMapIncompleteSize(List<Class<?>> dtypes, OrderedMapIncompleteSize.Options... options)
OrderedMapIncompleteSize
operation to the graphdtypes
- options
- carries optional attributes valuesOrderedMapIncompleteSize
public <T,U extends Number> SparseApplyCenteredRMSProp<T> sparseApplyCenteredRMSProp(Operand<T> var, Operand<T> mg, Operand<T> ms, Operand<T> mom, Operand<T> lr, Operand<T> rho, Operand<T> momentum, Operand<T> epsilon, Operand<T> grad, Operand<U> indices, SparseApplyCenteredRMSProp.Options... options)
SparseApplyCenteredRMSProp
operation to the graphvar
- Should be from a Variable().mg
- Should be from a Variable().ms
- Should be from a Variable().mom
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.rho
- Decay rate. Must be a scalar.momentum
- epsilon
- Ridge term. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var, ms and mom.options
- carries optional attributes valuesSparseApplyCenteredRMSProp
public <U extends Number,T extends Number> RandomUniform<U> randomUniform(Operand<T> shape, Class<U> dtype, RandomUniform.Options... options)
RandomUniform
operation to the graphshape
- The shape of the output tensor.dtype
- The type of the output.options
- carries optional attributes valuesRandomUniform
public <T,U extends Number> ResourceSparseApplyRMSProp resourceSparseApplyRMSProp(Operand<?> var, Operand<?> ms, Operand<?> mom, Operand<T> lr, Operand<T> rho, Operand<T> momentum, Operand<T> epsilon, Operand<T> grad, Operand<U> indices, ResourceSparseApplyRMSProp.Options... options)
ResourceSparseApplyRMSProp
operation to the graphvar
- Should be from a Variable().ms
- Should be from a Variable().mom
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.rho
- Decay rate. Must be a scalar.momentum
- epsilon
- Ridge term. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var, ms and mom.options
- carries optional attributes valuesResourceSparseApplyRMSProp
public <T> IsVariableInitialized isVariableInitialized(Operand<T> ref)
IsVariableInitialized
operation to the graphref
- Should be from a `Variable` node. May be uninitialized.IsVariableInitialized
public <T extends Number,U extends Number,V extends Number> UnsortedSegmentMin<T> unsortedSegmentMin(Operand<T> data, Operand<U> segmentIds, Operand<V> numSegments)
UnsortedSegmentMin
operation to the graphdata
- segmentIds
- A tensor whose shape is a prefix of `data.shape`.numSegments
- UnsortedSegmentMin
public <T extends Number> Igamma<T> igamma(Operand<T> a, Operand<T> x)
Igamma
operation to the grapha
- x
- Igamma
public RFFT rFFT(Operand<Float> input, Operand<Integer> fftLength)
RFFT
operation to the graphinput
- A float32 tensor.fftLength
- An int32 tensor of shape [1]. The FFT length.RFFT
public <T> VarHandleOp varHandleOp(Class<T> dtype, Shape shape, VarHandleOp.Options... options)
VarHandleOp
operation to the graphdtype
- the type of this variable. Must agree with the dtypesshape
- The (possibly partially specified) shape of this variable.options
- carries optional attributes valuesVarHandleOp
public QueueDequeue queueDequeue(Operand<?> handle, List<Class<?>> componentTypes, QueueDequeue.Options... options)
QueueDequeue
operation to the graphhandle
- The handle to a queue.componentTypes
- The type of each component in a tuple.options
- carries optional attributes valuesQueueDequeue
public <T extends Number> PopulationCount populationCount(Operand<T> x)
PopulationCount
operation to the graphx
- PopulationCount
public <T> ResourceApplyAdamWithAmsgrad resourceApplyAdamWithAmsgrad(Operand<?> var, Operand<?> m, Operand<?> v, Operand<?> vhat, Operand<T> beta1Power, Operand<T> beta2Power, Operand<T> lr, Operand<T> beta1, Operand<T> beta2, Operand<T> epsilon, Operand<T> grad, ResourceApplyAdamWithAmsgrad.Options... options)
ResourceApplyAdamWithAmsgrad
operation to the graphvar
- Should be from a Variable().m
- Should be from a Variable().v
- Should be from a Variable().vhat
- Should be from a Variable().beta1Power
- Must be a scalar.beta2Power
- Must be a scalar.lr
- Scaling factor. Must be a scalar.beta1
- Momentum factor. Must be a scalar.beta2
- Momentum factor. Must be a scalar.epsilon
- Ridge term. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesResourceApplyAdamWithAmsgrad
public ParseSequenceExample parseSequenceExample(Operand<String> serialized, Operand<String> debugName, Iterable<Operand<?>> contextDenseDefaults, List<String> featureListDenseMissingAssumedEmpty, List<String> contextSparseKeys, List<String> contextDenseKeys, List<String> featureListSparseKeys, List<String> featureListDenseKeys, List<Class<?>> contextSparseTypes, List<Class<?>> featureListDenseTypes, List<Class<?>> featureListSparseTypes, ParseSequenceExample.Options... options)
ParseSequenceExample
operation to the graphserialized
- A vector containing binary serialized SequenceExample protos.debugName
- A vector containing the names of the serialized protos.contextDenseDefaults
- A list of Ncontext_dense Tensors (some may be empty).featureListDenseMissingAssumedEmpty
- A vector listing thecontextSparseKeys
- A list of Ncontext_sparse string Tensors (scalars).contextDenseKeys
- A list of Ncontext_dense string Tensors (scalars).featureListSparseKeys
- A list of Nfeature_list_sparse string TensorsfeatureListDenseKeys
- A list of Nfeature_list_dense string Tensors (scalars).contextSparseTypes
- A list of Ncontext_sparse types; the data types of data infeatureListDenseTypes
- featureListSparseTypes
- A list of Nfeature_list_sparse types; the data typesoptions
- carries optional attributes valuesParseSequenceExample
public <U extends Number,T extends Number> Multinomial<U> multinomial(Operand<T> logits, Operand<Integer> numSamples, Class<U> outputDtype, Multinomial.Options... options)
Multinomial
operation to the graphlogits
- 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]`numSamples
- 0-D. Number of independent samples to draw for each row slice.outputDtype
- options
- carries optional attributes valuesMultinomial
public <T> TensorListStack<T> tensorListStack(Operand<?> inputHandle, Class<T> elementDtype, TensorListStack.Options... options)
TensorListStack
operation to the graphinputHandle
- elementDtype
- options
- carries optional attributes valuesTensorListStack
public <T,U extends Number> TensorListFromTensor tensorListFromTensor(Operand<T> tensor, Operand<U> elementShape)
TensorListFromTensor
operation to the graphtensor
- elementShape
- TensorListFromTensor
public Constant<Long> constant(long[][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T,U extends Number> ScatterSub<T> scatterSub(Operand<T> ref, Operand<U> indices, Operand<T> updates, ScatterSub.Options... options)
ScatterSub
operation to the graphref
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to subtract from `ref`.options
- carries optional attributes valuesScatterSub
public <T extends Number> Rint<T> rint(Operand<T> x)
Rint
operation to the graphx
- Rint
public <V,T,U> QuantizedAdd<V> quantizedAdd(Operand<T> x, Operand<U> y, Operand<Float> minX, Operand<Float> maxX, Operand<Float> minY, Operand<Float> maxY, Class<V> Toutput)
QuantizedAdd
operation to the graphx
- y
- minX
- The float value that the lowest quantized `x` value represents.maxX
- The float value that the highest quantized `x` value represents.minY
- The float value that the lowest quantized `y` value represents.maxY
- The float value that the highest quantized `y` value represents.Toutput
- QuantizedAdd
public <T> StopGradient<T> stopGradient(Operand<T> input)
StopGradient
operation to the graphinput
- StopGradient
public <T> AssignSub<T> assignSub(Operand<T> ref, Operand<T> value, AssignSub.Options... options)
AssignSub
operation to the graphref
- Should be from a `Variable` node.value
- The value to be subtracted to the variable.options
- carries optional attributes valuesAssignSub
public <T extends Number> AvgPool3D<T> avgPool3D(Operand<T> input, List<Long> ksize, List<Long> strides, String padding, AvgPool3D.Options... options)
AvgPool3D
operation to the graphinput
- Shape `[batch, depth, rows, cols, channels]` tensor to pool over.ksize
- 1-D tensor of length 5. The size of the window for each dimension ofstrides
- 1-D tensor of length 5. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesAvgPool3D
public <T extends Number> InTopK inTopK(Operand<Float> predictions, Operand<T> targets, Long k)
InTopK
operation to the graphpredictions
- A `batch_size` x `classes` tensor.targets
- A `batch_size` vector of class ids.k
- Number of top elements to look at for computing precision.InTopK
public <T> Restore<T> restore(Operand<String> filePattern, Operand<String> tensorName, Class<T> dt, Restore.Options... options)
Restore
operation to the graphfilePattern
- Must have a single element. The pattern of the files fromtensorName
- Must have a single element. The name of the tensor to bedt
- The type of the tensor to be restored.options
- carries optional attributes valuesRestore
public <T> MatrixTriangularSolve<T> matrixTriangularSolve(Operand<T> matrix, Operand<T> rhs, MatrixTriangularSolve.Options... options)
MatrixTriangularSolve
operation to the graphmatrix
- Shape is `[..., M, M]`.rhs
- Shape is `[..., M, K]`.options
- carries optional attributes valuesMatrixTriangularSolve
public <T extends Number> BatchSelfAdjointEig<T> batchSelfAdjointEig(Operand<T> input)
BatchSelfAdjointEig
operation to the graphinput
- BatchSelfAdjointEig
public <T> MatrixDiag<T> matrixDiag(Operand<T> diagonal)
MatrixDiag
operation to the graphdiagonal
- Rank `k`, where `k >= 1`.MatrixDiag
public Constant<Boolean> constant(boolean[][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public AudioSummary audioSummary(Operand<String> tag, Operand<Float> tensor, Operand<Float> sampleRate, AudioSummary.Options... options)
AudioSummary
operation to the graphtag
- Scalar. Used to build the `tag` attribute of the summary values.tensor
- 2-D of shape `[batch_size, frames]`.sampleRate
- The sample rate of the signal in hertz.options
- carries optional attributes valuesAudioSummary
public AllCandidateSampler allCandidateSampler(Operand<Long> trueClasses, Long numTrue, Long numSampled, Boolean unique, AllCandidateSampler.Options... options)
AllCandidateSampler
operation to the graphtrueClasses
- A batch_size * num_true matrix, in which each row contains thenumTrue
- Number of true labels per context.numSampled
- Number of candidates to produce.unique
- If unique is true, we sample with rejection, so that all sampledoptions
- carries optional attributes valuesAllCandidateSampler
public <T extends Number> ExtractVolumePatches<T> extractVolumePatches(Operand<T> input, List<Long> ksizes, List<Long> strides, String padding)
ExtractVolumePatches
operation to the graphinput
- 5-D Tensor with shape `[batch, in_planes, in_rows, in_cols, depth]`.ksizes
- The size of the sliding window for each dimension of `input`.strides
- 1-D of length 5. How far the centers of two consecutive patches are inpadding
- The type of padding algorithm to use.ExtractVolumePatches
public <T extends Number> DecodePng<T> decodePng(Operand<String> contents, Class<T> dtype, DecodePng.Options... options)
DecodePng
operation to the graphcontents
- 0-D. The PNG-encoded image.dtype
- options
- carries optional attributes valuesDecodePng
public <T> ApplyPowerSign<T> applyPowerSign(Operand<T> var, Operand<T> m, Operand<T> lr, Operand<T> logbase, Operand<T> signDecay, Operand<T> beta, Operand<T> grad, ApplyPowerSign.Options... options)
ApplyPowerSign
operation to the graphvar
- Should be from a Variable().m
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.logbase
- Must be a scalar.signDecay
- Must be a scalar.beta
- Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesApplyPowerSign
public DecodePng<UInt8> decodePng(Operand<String> contents, DecodePng.Options... options)
DecodePng
operation to the graphcontents
- 0-D. The PNG-encoded image.options
- carries optional attributes valuesDecodePng
public <T extends Number> VariableShape<T> variableShape(Operand<?> input, Class<T> outType)
VariableShape
operation to the graphinput
- outType
- VariableShape
public <T extends Number> ExtractImagePatches<T> extractImagePatches(Operand<T> images, List<Long> ksizes, List<Long> strides, List<Long> rates, String padding)
ExtractImagePatches
operation to the graphimages
- 4-D Tensor with shape `[batch, in_rows, in_cols, depth]`.ksizes
- The size of the sliding window for each dimension of `images`.strides
- 1-D of length 4. How far the centers of two consecutive patches are inrates
- 1-D of length 4. Must be: `[1, rate_rows, rate_cols, 1]`. This is thepadding
- The type of padding algorithm to use.ExtractImagePatches
public <U,T> QuantizeDownAndShrinkRange<U> quantizeDownAndShrinkRange(Operand<T> input, Operand<Float> inputMin, Operand<Float> inputMax, Class<U> outType)
QuantizeDownAndShrinkRange
operation to the graphinput
- inputMin
- The float value that the minimum quantized input value represents.inputMax
- The float value that the maximum quantized input value represents.outType
- The type of the output. Should be a lower bit depth than Tinput.QuantizeDownAndShrinkRange
public DecodeJSONExample decodeJSONExample(Operand<String> jsonExamples)
DecodeJSONExample
operation to the graphjsonExamples
- Each string is a JSON object serialized according to the JSONDecodeJSONExample
public <T extends Number> Bincount<T> bincount(Operand<Integer> arr, Operand<Integer> size, Operand<T> weights)
Bincount
operation to the grapharr
- int32 `Tensor`.size
- non-negative int32 scalar `Tensor`.weights
- is an int32, int64, float32, or float64 `Tensor` with the sameBincount
public <T,U extends Number> MatrixBandPart<T> matrixBandPart(Operand<T> input, Operand<U> numLower, Operand<U> numUpper)
MatrixBandPart
operation to the graphinput
- Rank `k` tensor.numLower
- 0-D tensor. Number of subdiagonals to keep. If negative, keep entirenumUpper
- 0-D tensor. Number of superdiagonals to keep. If negative, keepMatrixBandPart
public <U,T> QuantizedBatchNormWithGlobalNormalization<U> quantizedBatchNormWithGlobalNormalization(Operand<T> t, Operand<Float> tMin, Operand<Float> tMax, Operand<T> m, Operand<Float> mMin, Operand<Float> mMax, Operand<T> v, Operand<Float> vMin, Operand<Float> vMax, Operand<T> beta, Operand<Float> betaMin, Operand<Float> betaMax, Operand<T> gamma, Operand<Float> gammaMin, Operand<Float> gammaMax, Class<U> outType, Float varianceEpsilon, Boolean scaleAfterNormalization)
QuantizedBatchNormWithGlobalNormalization
operation to the grapht
- A 4D input Tensor.tMin
- The value represented by the lowest quantized input.tMax
- The value represented by the highest quantized input.m
- A 1D mean Tensor with size matching the last dimension of t.mMin
- The value represented by the lowest quantized mean.mMax
- The value represented by the highest quantized mean.v
- A 1D variance Tensor with size matching the last dimension of t.vMin
- The value represented by the lowest quantized variance.vMax
- The value represented by the highest quantized variance.beta
- A 1D beta Tensor with size matching the last dimension of t.betaMin
- The value represented by the lowest quantized offset.betaMax
- The value represented by the highest quantized offset.gamma
- A 1D gamma Tensor with size matching the last dimension of t.gammaMin
- The value represented by the lowest quantized gamma.gammaMax
- The value represented by the highest quantized gamma.outType
- varianceEpsilon
- A small float number to avoid dividing by 0.scaleAfterNormalization
- A bool indicating whether the resulted tensorQuantizedBatchNormWithGlobalNormalization
public <T,U extends Number> ResourceSparseApplyAdagradDA resourceSparseApplyAdagradDA(Operand<?> var, Operand<?> gradientAccumulator, Operand<?> gradientSquaredAccumulator, Operand<T> grad, Operand<U> indices, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<Long> globalStep, ResourceSparseApplyAdagradDA.Options... options)
ResourceSparseApplyAdagradDA
operation to the graphvar
- Should be from a Variable().gradientAccumulator
- Should be from a Variable().gradientSquaredAccumulator
- Should be from a Variable().grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.lr
- Learning rate. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.globalStep
- Training step number. Must be a scalar.options
- carries optional attributes valuesResourceSparseApplyAdagradDA
public MapIncompleteSize mapIncompleteSize(List<Class<?>> dtypes, MapIncompleteSize.Options... options)
MapIncompleteSize
operation to the graphdtypes
- options
- carries optional attributes valuesMapIncompleteSize
public <U,T extends Number> StridedSliceGrad<U> stridedSliceGrad(Operand<T> shape, Operand<T> begin, Operand<T> end, Operand<T> strides, Operand<U> dy, StridedSliceGrad.Options... options)
StridedSliceGrad
operation to the graphshape
- begin
- end
- strides
- dy
- options
- carries optional attributes valuesStridedSliceGrad
public <T extends Number> MaxPoolGradV2<T> maxPoolGradV2(Operand<T> origInput, Operand<T> origOutput, Operand<T> grad, Operand<Integer> ksize, Operand<Integer> strides, String padding, MaxPoolGradV2.Options... options)
MaxPoolGradV2
operation to the graphorigInput
- The original input tensor.origOutput
- The original output tensor.grad
- 4-D. Gradients w.r.t. the output of `max_pool`.ksize
- The size of the window for each dimension of the input tensor.strides
- The stride of the sliding window for each dimension of thepadding
- The type of padding algorithm to use.options
- carries optional attributes valuesMaxPoolGradV2
public <T,U extends Number> StridedSlice<T> stridedSlice(Operand<T> input, Operand<U> begin, Operand<U> end, Operand<U> strides, StridedSlice.Options... options)
StridedSlice
operation to the graphinput
- begin
- `begin[k]` specifies the offset into the `k`th range specification.end
- `end[i]` is like `begin` with the exception that `end_mask` isstrides
- `strides[i]` specifies the increment in the `i`th specificationoptions
- carries optional attributes valuesStridedSlice
public <T extends Number> DepthwiseConv2dNative<T> depthwiseConv2dNative(Operand<T> input, Operand<T> filter, List<Long> strides, String padding, DepthwiseConv2dNative.Options... options)
DepthwiseConv2dNative
operation to the graphinput
- filter
- strides
- 1-D of length 4. The stride of the sliding window for each dimensionpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesDepthwiseConv2dNative
public <T extends Number,U> ResourceScatterMul resourceScatterMul(Operand<?> resource, Operand<T> indices, Operand<U> updates)
ResourceScatterMul
operation to the graphresource
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to add to `ref`.ResourceScatterMul
public ControlTrigger controlTrigger()
ControlTrigger
operation to the graphControlTrigger
public <T extends Number> CudnnRNNBackprop<T> cudnnRNNBackprop(Operand<T> input, Operand<T> inputH, Operand<T> inputC, Operand<T> params, Operand<T> output, Operand<T> outputH, Operand<T> outputC, Operand<T> outputBackprop, Operand<T> outputHBackprop, Operand<T> outputCBackprop, Operand<T> reserveSpace, CudnnRNNBackprop.Options... options)
CudnnRNNBackprop
operation to the graphinput
- inputH
- inputC
- params
- output
- outputH
- outputC
- outputBackprop
- outputHBackprop
- outputCBackprop
- reserveSpace
- options
- carries optional attributes valuesCudnnRNNBackprop
public <U extends Number,T> Shape<U> shape(Operand<T> input, Class<U> outType)
Shape
operation to the graphinput
- outType
- Shape
public <T> TensorListPushBack tensorListPushBack(Operand<?> inputHandle, Operand<T> tensor)
TensorListPushBack
operation to the graphinputHandle
- tensor
- TensorListPushBack
public IdentityN identityN(Iterable<Operand<?>> input)
IdentityN
operation to the graphinput
- IdentityN
public <T> Reciprocal<T> reciprocal(Operand<T> x)
Reciprocal
operation to the graphx
- Reciprocal
public <T> DenseToDenseSetOperation<T> denseToDenseSetOperation(Operand<T> set1, Operand<T> set2, String setOperation, DenseToDenseSetOperation.Options... options)
DenseToDenseSetOperation
operation to the graphset1
- `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set2`.set2
- `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set1`.setOperation
- options
- carries optional attributes valuesDenseToDenseSetOperation
public <T,U extends Number> Reshape<T> reshape(Operand<T> tensor, Operand<U> shape)
Reshape
operation to the graphtensor
- shape
- Defines the shape of the output tensor.Reshape
public <T extends Number> SparseSparseMaximum<T> sparseSparseMaximum(Operand<Long> aIndices, Operand<T> aValues, Operand<Long> aShape, Operand<Long> bIndices, Operand<T> bValues, Operand<Long> bShape)
SparseSparseMaximum
operation to the graphaIndices
- 2-D. `N x R` matrix with the indices of non-empty values in aaValues
- 1-D. `N` non-empty values corresponding to `a_indices`.aShape
- 1-D. Shape of the input SparseTensor.bIndices
- counterpart to `a_indices` for the other operand.bValues
- counterpart to `a_values` for the other operand; must be of the same dtype.bShape
- counterpart to `a_shape` for the other operand; the two shapes must be equal.SparseSparseMaximum
public <T> ResourceApplyRMSProp resourceApplyRMSProp(Operand<?> var, Operand<?> ms, Operand<?> mom, Operand<T> lr, Operand<T> rho, Operand<T> momentum, Operand<T> epsilon, Operand<T> grad, ResourceApplyRMSProp.Options... options)
ResourceApplyRMSProp
operation to the graphvar
- Should be from a Variable().ms
- Should be from a Variable().mom
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.rho
- Decay rate. Must be a scalar.momentum
- epsilon
- Ridge term. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesResourceApplyRMSProp
public DestroyResourceOp destroyResourceOp(Operand<?> resource, DestroyResourceOp.Options... options)
DestroyResourceOp
operation to the graphresource
- handle to the resource to delete.options
- carries optional attributes valuesDestroyResourceOp
public <T extends Number> DrawBoundingBoxes<T> drawBoundingBoxes(Operand<T> images, Operand<Float> boxes)
DrawBoundingBoxes
operation to the graphimages
- 4-D with shape `[batch, height, width, depth]`. A batch of images.boxes
- 3-D with shape `[batch, num_bounding_boxes, 4]` containing boundingDrawBoundingBoxes
public <T,U> LookupTableExport<T,U> lookupTableExport(Operand<?> tableHandle, Class<T> Tkeys, Class<U> Tvalues)
LookupTableExport
operation to the graphtableHandle
- Handle to the table.Tkeys
- Tvalues
- LookupTableExport
public <U,T extends Number> SparseTensorDenseAdd<U> sparseTensorDenseAdd(Operand<T> aIndices, Operand<U> aValues, Operand<T> aShape, Operand<U> b)
SparseTensorDenseAdd
operation to the graphaIndices
- 2-D. The `indices` of the `SparseTensor`, with shape `[nnz, ndims]`.aValues
- 1-D. The `values` of the `SparseTensor`, with shape `[nnz]`.aShape
- 1-D. The `shape` of the `SparseTensor`, with shape `[ndims]`.b
- `ndims`-D Tensor. With shape `a_shape`.SparseTensorDenseAdd
public <T extends Number,U extends Number,V extends Number> UnsortedSegmentMax<T> unsortedSegmentMax(Operand<T> data, Operand<U> segmentIds, Operand<V> numSegments)
UnsortedSegmentMax
operation to the graphdata
- segmentIds
- A tensor whose shape is a prefix of `data.shape`.ENDnumSegments
- UnsortedSegmentMax
public <T extends Number> StringToNumber<T> stringToNumber(Operand<String> stringTensor, Class<T> outType)
StringToNumber
operation to the graphstringTensor
- outType
- The numeric type to interpret each string in `string_tensor` as.StringToNumber
public <T> TensorArrayRead<T> tensorArrayRead(Operand<?> handle, Operand<Integer> index, Operand<Float> flowIn, Class<T> dtype)
TensorArrayRead
operation to the graphhandle
- The handle to a TensorArray.index
- flowIn
- A float scalar that enforces proper chaining of operations.dtype
- The type of the elem that is returned.TensorArrayRead
public <T> QuantizedMaxPool<T> quantizedMaxPool(Operand<T> input, Operand<Float> minInput, Operand<Float> maxInput, List<Long> ksize, List<Long> strides, String padding)
QuantizedMaxPool
operation to the graphinput
- The 4D (batch x rows x cols x depth) Tensor to MaxReduce over.minInput
- The float value that the lowest quantized input value represents.maxInput
- The float value that the highest quantized input value represents.ksize
- The size of the window for each dimension of the input tensor.strides
- The stride of the sliding window for each dimension of the inputpadding
- The type of padding algorithm to use.QuantizedMaxPool
public SerializeIterator serializeIterator(Operand<?> resourceHandle)
SerializeIterator
operation to the graphresourceHandle
- A handle to an iterator resource.SerializeIterator
public Constant<Float> constant(long[] shape, FloatBuffer data)
Constant
operation to the graphshape
- the tensor shape.data
- a buffer containing the tensor data.IllegalArgumentException
- If the tensor shape is not compatible with the bufferConstant
public <T extends Number> CropAndResizeGradImage<T> cropAndResizeGradImage(Operand<Float> grads, Operand<Float> boxes, Operand<Integer> boxInd, Operand<Integer> imageSize, Class<T> T, CropAndResizeGradImage.Options... options)
CropAndResizeGradImage
operation to the graphgrads
- A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`.boxes
- A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensorboxInd
- A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`.imageSize
- A 1-D tensor with value `[batch, image_height, image_width, depth]`T
- options
- carries optional attributes valuesCropAndResizeGradImage
public <T> SparseAccumulatorApplyGradient sparseAccumulatorApplyGradient(Operand<String> handle, Operand<Long> localStep, Operand<Long> gradientIndices, Operand<T> gradientValues, Operand<Long> gradientShape, Boolean hasKnownShape)
SparseAccumulatorApplyGradient
operation to the graphhandle
- The handle to a accumulator.localStep
- The local_step value at which the sparse gradient was computed.gradientIndices
- Indices of the sparse gradient to be accumulated. Must be agradientValues
- Values are the non-zero slices of the gradient, and must havegradientShape
- Shape of the sparse gradient to be accumulated.hasKnownShape
- Boolean indicating whether gradient_shape is unknown, in whichSparseAccumulatorApplyGradient
public <T extends Number,U extends Number> SparseSegmentSum<T> sparseSegmentSum(Operand<T> data, Operand<U> indices, Operand<Integer> segmentIds)
SparseSegmentSum
operation to the graphdata
- indices
- A 1-D tensor. Has same rank as `segment_ids`.segmentIds
- A 1-D tensor. Values should be sorted and can be repeated.SparseSegmentSum
public QueueIsClosed queueIsClosed(Operand<String> handle)
QueueIsClosed
operation to the graphhandle
- The handle to a queue.QueueIsClosed
public <T,U extends Number> Lu<T,U> lu(Operand<T> input, Class<U> outputIdxType)
Lu
operation to the graphinput
- A tensor of shape `[..., M, M]` whose inner-most 2 dimensions form matrices ofoutputIdxType
- Lu
public <T,U extends Number> SegmentProd<T> segmentProd(Operand<T> data, Operand<U> segmentIds)
SegmentProd
operation to the graphdata
- segmentIds
- A 1-D tensor whose size is equal to the size of `data`'sSegmentProd
public IteratorToStringHandle iteratorToStringHandle(Operand<?> resourceHandle)
IteratorToStringHandle
operation to the graphresourceHandle
- A handle to an iterator resource.IteratorToStringHandle
public SdcaShrinkL1 sdcaShrinkL1(Iterable<Operand<Float>> weights, Float l1, Float l2)
SdcaShrinkL1
operation to the graphweights
- a list of vectors where each value is the weight associated with al1
- Symmetric l1 regularization strength.l2
- Symmetric l2 regularization strength. Should be a positive float.SdcaShrinkL1
public <T> BatchMatrixDiagPart<T> batchMatrixDiagPart(Operand<T> input)
BatchMatrixDiagPart
operation to the graphinput
- BatchMatrixDiagPart
public <T,U extends Number> Prod<T> prod(Operand<T> input, Operand<U> axis, Prod.Options... options)
Prod
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesProd
public <T extends Number> Conv3D<T> conv3D(Operand<T> input, Operand<T> filter, List<Long> strides, String padding, Conv3D.Options... options)
Conv3D
operation to the graphinput
- Shape `[batch, in_depth, in_height, in_width, in_channels]`.filter
- Shape `[filter_depth, filter_height, filter_width, in_channels,strides
- 1-D tensor of length 5. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesConv3D
public AdjustSaturation adjustSaturation(Operand<Float> images, Operand<Float> scale)
AdjustSaturation
operation to the graphimages
- Images to adjust. At least 3-D.scale
- A float scale to add to the saturation.AdjustSaturation
public <T> LogMatrixDeterminant<T> logMatrixDeterminant(Operand<T> input)
LogMatrixDeterminant
operation to the graphinput
- Shape is `[N, M, M]`.LogMatrixDeterminant
public <T extends Number,U> ResourceScatterSub resourceScatterSub(Operand<?> resource, Operand<T> indices, Operand<U> updates)
ResourceScatterSub
operation to the graphresource
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to add to `ref`.ResourceScatterSub
public ReaderReset readerReset(Operand<?> readerHandle)
ReaderReset
operation to the graphreaderHandle
- Handle to a Reader.ReaderReset
public <T> Relu<T> relu(Operand<T> features)
Relu
operation to the graphfeatures
- Relu
public <T extends Number> HSVToRGB<T> hSVToRGB(Operand<T> images)
HSVToRGB
operation to the graphimages
- 1-D or higher rank. HSV data to convert. Last dimension must be size 3.HSVToRGB
public <T extends Number,U extends Number> ScatterMin<T> scatterMin(Operand<T> ref, Operand<U> indices, Operand<T> updates, ScatterMin.Options... options)
ScatterMin
operation to the graphref
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to reduce into `ref`.options
- carries optional attributes valuesScatterMin
public <T> MatrixInverse<T> matrixInverse(Operand<T> input, MatrixInverse.Options... options)
MatrixInverse
operation to the graphinput
- Shape is `[..., M, M]`.options
- carries optional attributes valuesMatrixInverse
public <T> Stack<T> stack(Operand<T> values, Stack.Options... options)
Stack
operation to the graphvalues
- Must be of same shape and type.options
- carries optional attributes valuesStack
public <T> Add<T> add(Operand<T> x, Operand<T> y)
Add
operation to the graphx
- y
- Add
public CTCGreedyDecoder cTCGreedyDecoder(Operand<Float> inputs, Operand<Integer> sequenceLength, CTCGreedyDecoder.Options... options)
CTCGreedyDecoder
operation to the graphinputs
- 3-D, shape: `(max_time x batch_size x num_classes)`, the logits.sequenceLength
- A vector containing sequence lengths, size `(batch_size)`.options
- carries optional attributes valuesCTCGreedyDecoder
public <T,U> LookupTableImport lookupTableImport(Operand<?> tableHandle, Operand<T> keys, Operand<U> values)
LookupTableImport
operation to the graphtableHandle
- Handle to the table.keys
- Any shape. Keys to look up.values
- Values to associate with keys.LookupTableImport
public <T extends Number> IsInf isInf(Operand<T> x)
IsInf
operation to the graphx
- IsInf
public Constant<Double> constant(double[][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T> TensorArraySplit tensorArraySplit(Operand<?> handle, Operand<T> value, Operand<Long> lengths, Operand<Float> flowIn)
TensorArraySplit
operation to the graphhandle
- The handle to a TensorArray.value
- The concatenated tensor to write to the TensorArray.lengths
- The vector of lengths, how to split the rows of value into theflowIn
- A float scalar that enforces proper chaining of operations.TensorArraySplit
public ExtractJpegShape<Integer> extractJpegShape(Operand<String> contents)
ExtractJpegShape
operation to the graphcontents
- 0-D. The JPEG-encoded image.ExtractJpegShape
public <U extends Number,T extends Number> TruncatedNormal<U> truncatedNormal(Operand<T> shape, Class<U> dtype, TruncatedNormal.Options... options)
TruncatedNormal
operation to the graphshape
- The shape of the output tensor.dtype
- The type of the output.options
- carries optional attributes valuesTruncatedNormal
public MergeSummary mergeSummary(Iterable<Operand<String>> inputs)
MergeSummary
operation to the graphinputs
- Can be of any shape. Each must contain serialized `Summary` protocolMergeSummary
public <T extends Number> Conv2DBackpropFilter<T> conv2DBackpropFilter(Operand<T> input, Operand<Integer> filterSizes, Operand<T> outBackprop, List<Long> strides, String padding, Conv2DBackpropFilter.Options... options)
Conv2DBackpropFilter
operation to the graphinput
- 4-D with shape `[batch, in_height, in_width, in_channels]`.filterSizes
- An integer vector representing the tensor shape of `filter`,outBackprop
- 4-D with shape `[batch, out_height, out_width, out_channels]`.strides
- The stride of the sliding window for each dimension of the inputpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesConv2DBackpropFilter
public <T extends Number,U extends Number> MaxPoolWithArgmax<T,U> maxPoolWithArgmax(Operand<T> input, List<Long> ksize, List<Long> strides, Class<U> Targmax, String padding)
MaxPoolWithArgmax
operation to the graphinput
- 4-D with shape `[batch, height, width, channels]`. Input to pool over.ksize
- The size of the window for each dimension of the input tensor.strides
- The stride of the sliding window for each dimension of theTargmax
- padding
- The type of padding algorithm to use.MaxPoolWithArgmax
public RegexFullMatch regexFullMatch(Operand<String> input, Operand<String> pattern)
RegexFullMatch
operation to the graphinput
- A string tensor of the text to be processed.pattern
- A scalar string tensor containing the regular expression to match the input.RegexFullMatch
public <T extends Number> CropAndResize cropAndResize(Operand<T> image, Operand<Float> boxes, Operand<Integer> boxInd, Operand<Integer> cropSize, CropAndResize.Options... options)
CropAndResize
operation to the graphimage
- A 4-D tensor of shape `[batch, image_height, image_width, depth]`.boxes
- A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensorboxInd
- A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`.cropSize
- A 1-D tensor of 2 elements, `size = [crop_height, crop_width]`. Alloptions
- carries optional attributes valuesCropAndResize
public <V,T,U> QuantizedConv2D<V> quantizedConv2D(Operand<T> input, Operand<U> filter, Operand<Float> minInput, Operand<Float> maxInput, Operand<Float> minFilter, Operand<Float> maxFilter, Class<V> outType, List<Long> strides, String padding, QuantizedConv2D.Options... options)
QuantizedConv2D
operation to the graphinput
- filter
- filter's input_depth dimension must match input's depth dimensions.minInput
- The float value that the lowest quantized input value represents.maxInput
- The float value that the highest quantized input value represents.minFilter
- The float value that the lowest quantized filter value represents.maxFilter
- The float value that the highest quantized filter value represents.outType
- strides
- The stride of the sliding window for each dimension of the inputpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesQuantizedConv2D
public BarrierClose barrierClose(Operand<String> handle, BarrierClose.Options... options)
BarrierClose
operation to the graphhandle
- The handle to a barrier.options
- carries optional attributes valuesBarrierClose
public Constant<Double> constant(double[] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T,U extends Number> SpaceToBatch<T> spaceToBatch(Operand<T> input, Operand<U> paddings, Long blockSize)
SpaceToBatch
operation to the graphinput
- 4-D with shape `[batch, height, width, depth]`.paddings
- 2-D tensor of non-negative integers with shape `[2, 2]`. It specifiesblockSize
- SpaceToBatch
public <T> QuantizedAvgPool<T> quantizedAvgPool(Operand<T> input, Operand<Float> minInput, Operand<Float> maxInput, List<Long> ksize, List<Long> strides, String padding)
QuantizedAvgPool
operation to the graphinput
- 4-D with shape `[batch, height, width, channels]`.minInput
- The float value that the lowest quantized input value represents.maxInput
- The float value that the highest quantized input value represents.ksize
- The size of the window for each dimension of the input tensor.strides
- The stride of the sliding window for each dimension of the inputpadding
- The type of padding algorithm to use.QuantizedAvgPool
public DecodeAndCropJpeg decodeAndCropJpeg(Operand<String> contents, Operand<Integer> cropWindow, DecodeAndCropJpeg.Options... options)
DecodeAndCropJpeg
operation to the graphcontents
- 0-D. The JPEG-encoded image.cropWindow
- 1-D. The crop window: [crop_y, crop_x, crop_height, crop_width].options
- carries optional attributes valuesDecodeAndCropJpeg
public <U extends Number,T extends Number> HistogramFixedWidth<U> histogramFixedWidth(Operand<T> values, Operand<T> valueRange, Operand<Integer> nbins, Class<U> dtype)
HistogramFixedWidth
operation to the graphvalues
- Numeric `Tensor`.valueRange
- Shape [2] `Tensor` of same `dtype` as `values`.nbins
- Scalar `int32 Tensor`. Number of histogram bins.dtype
- HistogramFixedWidth
public <T extends Number> SampleDistortedBoundingBoxV2<T> sampleDistortedBoundingBoxV2(Operand<T> imageSize, Operand<Float> boundingBoxes, Operand<Float> minObjectCovered, SampleDistortedBoundingBoxV2.Options... options)
SampleDistortedBoundingBoxV2
operation to the graphimageSize
- 1-D, containing `[height, width, channels]`.boundingBoxes
- 3-D with shape `[batch, N, 4]` describing the N bounding boxesminObjectCovered
- The cropped area of the image must contain at least thisoptions
- carries optional attributes valuesSampleDistortedBoundingBoxV2
public Mfcc mfcc(Operand<Float> spectrogram, Operand<Integer> sampleRate, Mfcc.Options... options)
Mfcc
operation to the graphspectrogram
- Typically produced by the Spectrogram op, with magnitude_squaredsampleRate
- How many samples per second the source audio used.options
- carries optional attributes valuesMfcc
public <T> InplaceUpdate<T> inplaceUpdate(Operand<T> x, Operand<Integer> i, Operand<T> v)
InplaceUpdate
operation to the graphx
- A tensor of type `T`.i
- A vector. Indices into the left-most dimension of `x`.v
- A `Tensor` of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size.InplaceUpdate
public <T> InplaceAdd<T> inplaceAdd(Operand<T> x, Operand<Integer> i, Operand<T> v)
InplaceAdd
operation to the graphx
- A `Tensor` of type T.i
- A vector. Indices into the left-most dimension of `x`.v
- A `Tensor` of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size.InplaceAdd
public <T,U extends Number> ArgMin<Long> argMin(Operand<T> input, Operand<U> dimension)
ArgMin
operation to the graphinput
- dimension
- int32 or int64, must be in the range `[-rank(input), rank(input))`.ArgMin
public <T,U extends Number> ScatterNdUpdate<T> scatterNdUpdate(Operand<T> ref, Operand<U> indices, Operand<T> updates, ScatterNdUpdate.Options... options)
ScatterNdUpdate
operation to the graphref
- A mutable Tensor. Should be from a Variable node.indices
- A Tensor. Must be one of the following types: int32, int64.updates
- A Tensor. Must have the same type as ref. A tensor of updatedoptions
- carries optional attributes valuesScatterNdUpdate
public <T> SparseConcat<T> sparseConcat(Iterable<Operand<Long>> indices, Operand<T> values, Iterable<Operand<Long>> shapes, Long concatDim)
SparseConcat
operation to the graphindices
- 2-D. Indices of each input `SparseTensor`.values
- 1-D. Non-empty values of each `SparseTensor`.shapes
- 1-D. Shapes of each `SparseTensor`.concatDim
- Dimension to concatenate along. Must be in range [-rank, rank),SparseConcat
public <T,U extends Number> Gather<T> gather(Operand<T> params, Operand<U> indices, Gather.Options... options)
Gather
operation to the graphparams
- indices
- options
- carries optional attributes valuesGather
public <T extends Number,U extends Number> SegmentMax<T> segmentMax(Operand<T> data, Operand<U> segmentIds)
SegmentMax
operation to the graphdata
- segmentIds
- A 1-D tensor whose size is equal to the size of `data`'sSegmentMax
public <T extends Number> BatchMatrixInverse<T> batchMatrixInverse(Operand<T> input, BatchMatrixInverse.Options... options)
BatchMatrixInverse
operation to the graphinput
- options
- carries optional attributes valuesBatchMatrixInverse
public <T extends Number> Bucketize bucketize(Operand<T> input, List<Float> boundaries)
Bucketize
operation to the graphinput
- Any shape of Tensor contains with int or float type.boundaries
- A sorted list of floats gives the boundary of the buckets.Bucketize
public Constant<Integer> constant(int[][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public IRFFT2D iRFFT2D(Operand<?> input, Operand<Integer> fftLength)
IRFFT2D
operation to the graphinput
- A complex64 tensor.fftLength
- An int32 tensor of shape [2]. The FFT length for each dimension.IRFFT2D
public ReaderRestoreState readerRestoreState(Operand<?> readerHandle, Operand<String> state)
ReaderRestoreState
operation to the graphreaderHandle
- Handle to a Reader.state
- Result of a ReaderSerializeState of a Reader with typeReaderRestoreState
public NoOp noOp()
NoOp
operation to the graphNoOp
public <T,U extends Number> ConjugateTranspose<T> conjugateTranspose(Operand<T> x, Operand<U> perm)
ConjugateTranspose
operation to the graphx
- perm
- ConjugateTranspose
public <U,T> SerializeSparse<U> serializeSparse(Operand<Long> sparseIndices, Operand<T> sparseValues, Operand<Long> sparseShape, Class<U> outType)
SerializeSparse
operation to the graphsparseIndices
- 2-D. The `indices` of the `SparseTensor`.sparseValues
- 1-D. The `values` of the `SparseTensor`.sparseShape
- 1-D. The `shape` of the `SparseTensor`.outType
- The `dtype` to use for serialization; the supported types are `string`SerializeSparse
public <T> Round<T> round(Operand<T> x)
Round
operation to the graphx
- Round
public WriteFile writeFile(Operand<String> filename, Operand<String> contents)
WriteFile
operation to the graphfilename
- scalar. The name of the file to which we write the contents.contents
- scalar. The content to be written to the output file.WriteFile
public <T> MatrixSolve<T> matrixSolve(Operand<T> matrix, Operand<T> rhs, MatrixSolve.Options... options)
MatrixSolve
operation to the graphmatrix
- Shape is `[..., M, M]`.rhs
- Shape is `[..., M, K]`.options
- carries optional attributes valuesMatrixSolve
public NonMaxSuppression nonMaxSuppression(Operand<Float> boxes, Operand<Float> scores, Operand<Integer> maxOutputSize, NonMaxSuppression.Options... options)
NonMaxSuppression
operation to the graphboxes
- A 2-D float tensor of shape `[num_boxes, 4]`.scores
- A 1-D float tensor of shape `[num_boxes]` representing a singlemaxOutputSize
- A scalar integer tensor representing the maximum number ofoptions
- carries optional attributes valuesNonMaxSuppression
public <T extends Number> MaxPool3DGradGrad<T> maxPool3DGradGrad(Operand<T> origInput, Operand<T> origOutput, Operand<T> grad, List<Long> ksize, List<Long> strides, String padding, MaxPool3DGradGrad.Options... options)
MaxPool3DGradGrad
operation to the graphorigInput
- The original input tensor.origOutput
- The original output tensor.grad
- Output backprop of shape `[batch, depth, rows, cols, channels]`.ksize
- 1-D tensor of length 5. The size of the window for each dimension ofstrides
- 1-D tensor of length 5. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesMaxPool3DGradGrad
public <T> BatchMatrixDeterminant<T> batchMatrixDeterminant(Operand<T> input)
BatchMatrixDeterminant
operation to the graphinput
- BatchMatrixDeterminant
public <T extends Number> Cross<T> cross(Operand<T> a, Operand<T> b)
Cross
operation to the grapha
- A tensor containing 3-element vectors.b
- Another tensor, of same type and shape as `a`.Cross
public AnonymousIterator anonymousIterator(List<Class<?>> outputTypes, List<Shape> outputShapes)
AnonymousIterator
operation to the graphoutputTypes
- outputShapes
- AnonymousIterator
public <V,T,U> QuantizedBiasAdd<V> quantizedBiasAdd(Operand<T> input, Operand<U> bias, Operand<Float> minInput, Operand<Float> maxInput, Operand<Float> minBias, Operand<Float> maxBias, Class<V> outType)
QuantizedBiasAdd
operation to the graphinput
- bias
- A 1D bias Tensor with size matching the last dimension of 'input'.minInput
- The float value that the lowest quantized input value represents.maxInput
- The float value that the highest quantized input value represents.minBias
- The float value that the lowest quantized bias value represents.maxBias
- The float value that the highest quantized bias value represents.outType
- QuantizedBiasAdd
public <T extends Number> CudnnRNN<T> cudnnRNN(Operand<T> input, Operand<T> inputH, Operand<T> inputC, Operand<T> params, CudnnRNN.Options... options)
CudnnRNN
operation to the graphinput
- inputH
- inputC
- params
- options
- carries optional attributes valuesCudnnRNN
public <T extends Number> DecodeRaw<T> decodeRaw(Operand<String> bytes, Class<T> outType, DecodeRaw.Options... options)
DecodeRaw
operation to the graphbytes
- All the elements must have the same length.outType
- options
- carries optional attributes valuesDecodeRaw
public <T> SparseAccumulatorTakeGradient<T> sparseAccumulatorTakeGradient(Operand<String> handle, Operand<Integer> numRequired, Class<T> dtype)
SparseAccumulatorTakeGradient
operation to the graphhandle
- The handle to a SparseConditionalAccumulator.numRequired
- Number of gradients required before we return an aggregate.dtype
- The data type of accumulated gradients. Needs to correspond to the typeSparseAccumulatorTakeGradient
public <U extends Number,T> Imag<U> imag(Operand<T> input, Class<U> Tout)
Imag
operation to the graphinput
- Tout
- Imag
public <T> RealDiv<T> realDiv(Operand<T> x, Operand<T> y)
RealDiv
operation to the graphx
- y
- RealDiv
public <T extends Number> DepthwiseConv2dNativeBackpropInput<T> depthwiseConv2dNativeBackpropInput(Operand<Integer> inputSizes, Operand<T> filter, Operand<T> outBackprop, List<Long> strides, String padding, DepthwiseConv2dNativeBackpropInput.Options... options)
DepthwiseConv2dNativeBackpropInput
operation to the graphinputSizes
- An integer vector representing the shape of `input`, basedfilter
- 4-D with shapeoutBackprop
- 4-D with shape based on `data_format`.strides
- The stride of the sliding window for each dimension of the inputpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesDepthwiseConv2dNativeBackpropInput
public <T> Conj<T> conj(Operand<T> input)
Conj
operation to the graphinput
- Conj
public <T extends Number> NonMaxSuppressionV3 nonMaxSuppressionV3(Operand<T> boxes, Operand<T> scores, Operand<Integer> maxOutputSize, Operand<Float> iouThreshold, Operand<Float> scoreThreshold)
NonMaxSuppressionV3
operation to the graphboxes
- A 2-D float tensor of shape `[num_boxes, 4]`.scores
- A 1-D float tensor of shape `[num_boxes]` representing a singlemaxOutputSize
- A scalar integer tensor representing the maximum number ofiouThreshold
- A 0-D float tensor representing the threshold for deciding whetherscoreThreshold
- A 0-D float tensor representing the threshold for deciding when to removeNonMaxSuppressionV3
public <T extends Number,U> TensorListReserve tensorListReserve(Operand<T> elementShape, Operand<Integer> numElements, Class<U> elementDtype)
TensorListReserve
operation to the graphelementShape
- numElements
- elementDtype
- TensorListReserve
public BarrierIncompleteSize barrierIncompleteSize(Operand<String> handle)
BarrierIncompleteSize
operation to the graphhandle
- The handle to a barrier.BarrierIncompleteSize
public Constant<Double> constant(double[][][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public Constant<String> constant(byte[][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. String elements areConstant
public <T> ParseTensor<T> parseTensor(Operand<String> serialized, Class<T> outType)
ParseTensor
operation to the graphserialized
- A scalar string containing a serialized TensorProto proto.outType
- The type of the serialized tensor. The provided type must match theParseTensor
public <T extends Number> CountUpTo<T> countUpTo(Operand<T> ref, Long limit)
CountUpTo
operation to the graphref
- Should be from a scalar `Variable` node.limit
- If incrementing ref would bring it above limit, instead generates anCountUpTo
public <T extends Number> Mod<T> mod(Operand<T> x, Operand<T> y)
Mod
operation to the graphx
- y
- Mod
public <T,U extends Number> SparseApplyMomentum<T> sparseApplyMomentum(Operand<T> var, Operand<T> accum, Operand<T> lr, Operand<T> grad, Operand<U> indices, Operand<T> momentum, SparseApplyMomentum.Options... options)
SparseApplyMomentum
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Learning rate. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.momentum
- Momentum. Must be a scalar.options
- carries optional attributes valuesSparseApplyMomentum
public <T extends Number> FractionalAvgPool<T> fractionalAvgPool(Operand<T> value, List<Float> poolingRatio, FractionalAvgPool.Options... options)
FractionalAvgPool
operation to the graphvalue
- 4-D with shape `[batch, height, width, channels]`.poolingRatio
- Pooling ratio for each dimension of `value`, currently onlyoptions
- carries optional attributes valuesFractionalAvgPool
public <T,U extends Number> UniqueWithCountsV2<T,Integer> uniqueWithCountsV2(Operand<T> x, Operand<U> axis)
UniqueWithCountsV2
operation to the graphx
- A `Tensor`.axis
- A `Tensor` of type `int32` (default: None). The axis of the Tensor toUniqueWithCountsV2
public StageClear stageClear(List<Class<?>> dtypes, StageClear.Options... options)
StageClear
operation to the graphdtypes
- options
- carries optional attributes valuesStageClear
public <U,T extends Number> Fill<U> fill(Operand<T> dims, Operand<U> value)
Fill
operation to the graphdims
- 1-D. Represents the shape of the output tensor.value
- 0-D (scalar). Value to fill the returned tensor.Fill
public <T extends Number> IsNan isNan(Operand<T> x)
IsNan
operation to the graphx
- IsNan
public VarIsInitializedOp varIsInitializedOp(Operand<?> resource)
VarIsInitializedOp
operation to the graphresource
- the input resource handle.VarIsInitializedOp
public <T> Merge<T> merge(Operand<T> inputs)
Merge
operation to the graphinputs
- The input tensors, exactly one of which will become available.Merge
public <T extends Number> DepthwiseConv2dNativeBackpropFilter<T> depthwiseConv2dNativeBackpropFilter(Operand<T> input, Operand<Integer> filterSizes, Operand<T> outBackprop, List<Long> strides, String padding, DepthwiseConv2dNativeBackpropFilter.Options... options)
DepthwiseConv2dNativeBackpropFilter
operation to the graphinput
- 4-D with shape based on `data_format`. For example, iffilterSizes
- An integer vector representing the tensor shape of `filter`,outBackprop
- 4-D with shape based on `data_format`.strides
- The stride of the sliding window for each dimension of the inputpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesDepthwiseConv2dNativeBackpropFilter
public <T> BatchNormWithGlobalNormalizationGrad<T> batchNormWithGlobalNormalizationGrad(Operand<T> t, Operand<T> m, Operand<T> v, Operand<T> gamma, Operand<T> backprop, Float varianceEpsilon, Boolean scaleAfterNormalization)
BatchNormWithGlobalNormalizationGrad
operation to the grapht
- A 4D input Tensor.m
- A 1D mean Tensor with size matching the last dimension of t.v
- A 1D variance Tensor with size matching the last dimension of t.gamma
- A 1D gamma Tensor with size matching the last dimension of t.backprop
- 4D backprop Tensor.varianceEpsilon
- A small float number to avoid dividing by 0.scaleAfterNormalization
- A bool indicating whether the resulted tensorBatchNormWithGlobalNormalizationGrad
public <T extends Number> CudnnRNNCanonicalToParams<T> cudnnRNNCanonicalToParams(Operand<Integer> numLayers, Operand<Integer> numUnits, Operand<Integer> inputSize, Operand<T> weights, Iterable<Operand<T>> biases, CudnnRNNCanonicalToParams.Options... options)
CudnnRNNCanonicalToParams
operation to the graphnumLayers
- numUnits
- inputSize
- weights
- biases
- options
- carries optional attributes valuesCudnnRNNCanonicalToParams
public <T> DynamicPartition<T> dynamicPartition(Operand<T> data, Operand<Integer> partitions, Long numPartitions)
DynamicPartition
operation to the graphdata
- partitions
- Any shape. Indices in the range `[0, num_partitions)`.numPartitions
- The number of partitions to output.DynamicPartition
public <T> MaxPool<T> maxPool(Operand<T> input, List<Long> ksize, List<Long> strides, String padding, MaxPool.Options... options)
MaxPool
operation to the graphinput
- 4-D input to pool over.ksize
- The size of the window for each dimension of the input tensor.strides
- The stride of the sliding window for each dimension of thepadding
- The type of padding algorithm to use.options
- carries optional attributes valuesMaxPool
public <T> SetDiff1D<T,Integer> setDiff1D(Operand<T> x, Operand<T> y)
SetDiff1D
operation to the graphx
- 1-D. Values to keep.y
- 1-D. Values to remove.SetDiff1D
public Constant<Double> constant(long[] shape, DoubleBuffer data)
Constant
operation to the graphshape
- the tensor shape.data
- a buffer containing the tensor data.IllegalArgumentException
- If the tensor shape is not compatible with the bufferConstant
public <T> Neg<T> neg(Operand<T> x)
Neg
operation to the graphx
- Neg
public <T,U extends Number> BroadcastTo<T> broadcastTo(Operand<T> input, Operand<U> shape)
BroadcastTo
operation to the graphinput
- A Tensor to broadcast.shape
- An 1-D `int` Tensor. The shape of the desired output.BroadcastTo
public <T extends Number> Maximum<T> maximum(Operand<T> x, Operand<T> y)
Maximum
operation to the graphx
- y
- Maximum
public <T> GetSessionHandleV2 getSessionHandleV2(Operand<T> value)
GetSessionHandleV2
operation to the graphvalue
- The tensor to be stored.GetSessionHandleV2
public <T> ResourceApplyCenteredRMSProp resourceApplyCenteredRMSProp(Operand<?> var, Operand<?> mg, Operand<?> ms, Operand<?> mom, Operand<T> lr, Operand<T> rho, Operand<T> momentum, Operand<T> epsilon, Operand<T> grad, ResourceApplyCenteredRMSProp.Options... options)
ResourceApplyCenteredRMSProp
operation to the graphvar
- Should be from a Variable().mg
- Should be from a Variable().ms
- Should be from a Variable().mom
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.rho
- Decay rate. Must be a scalar.momentum
- epsilon
- Ridge term. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesResourceApplyCenteredRMSProp
public <T,U extends Number,V extends Number> UnsortedSegmentSum<T> unsortedSegmentSum(Operand<T> data, Operand<U> segmentIds, Operand<V> numSegments)
UnsortedSegmentSum
operation to the graphdata
- segmentIds
- A tensor whose shape is a prefix of `data.shape`.numSegments
- UnsortedSegmentSum
public FixedLengthRecordReader fixedLengthRecordReader(Long recordBytes, FixedLengthRecordReader.Options... options)
FixedLengthRecordReader
operation to the graphrecordBytes
- Number of bytes in the record.options
- carries optional attributes valuesFixedLengthRecordReader
public <T> AccumulatorApplyGradient accumulatorApplyGradient(Operand<String> handle, Operand<Long> localStep, Operand<T> gradient)
AccumulatorApplyGradient
operation to the graphhandle
- The handle to a accumulator.localStep
- The local_step value at which the gradient was computed.gradient
- A tensor of the gradient to be accumulated.AccumulatorApplyGradient
public <T> TensorArray tensorArray(Operand<Integer> size, Class<T> dtype, TensorArray.Options... options)
TensorArray
operation to the graphsize
- The size of the array.dtype
- The type of the elements on the tensor_array.options
- carries optional attributes valuesTensorArray
public Gradients gradients(Iterable<? extends Operand<?>> y, Iterable<? extends Operand<?>> x, Gradients.Options... options)
Gradients
operation to the graphy
- outputs of the function to derivex
- inputs of the function for which partial derivatives are computedoptions
- carries optional attributes valuesGradients
Gradients
public <T> Snapshot<T> snapshot(Operand<T> input)
Snapshot
operation to the graphinput
- Snapshot
public <T extends Number> FractionalMaxPool<T> fractionalMaxPool(Operand<T> value, List<Float> poolingRatio, FractionalMaxPool.Options... options)
FractionalMaxPool
operation to the graphvalue
- 4-D with shape `[batch, height, width, channels]`.poolingRatio
- Pooling ratio for each dimension of `value`, currently onlyoptions
- carries optional attributes valuesFractionalMaxPool
public ComputeAccidentalHits computeAccidentalHits(Operand<Long> trueClasses, Operand<Long> sampledCandidates, Long numTrue, ComputeAccidentalHits.Options... options)
ComputeAccidentalHits
operation to the graphtrueClasses
- The true_classes output of UnpackSparseLabels.sampledCandidates
- The sampled_candidates output of CandidateSampler.numTrue
- Number of true labels per context.options
- carries optional attributes valuesComputeAccidentalHits
public <T extends Number> CheckNumerics<T> checkNumerics(Operand<T> tensor, String message)
CheckNumerics
operation to the graphtensor
- message
- Prefix of the error message.CheckNumerics
public <T extends Number> CholeskyGrad<T> choleskyGrad(Operand<T> l, Operand<T> grad)
CholeskyGrad
operation to the graphl
- Output of batch Cholesky algorithm l = cholesky(A). Shape is `[..., M, M]`.grad
- df/dl where f is some scalar function. Shape is `[..., M, M]`.CholeskyGrad
public <T extends Number> LogSoftmax<T> logSoftmax(Operand<T> logits)
LogSoftmax
operation to the graphlogits
- 2-D with shape `[batch_size, num_classes]`.LogSoftmax
public Gradients gradients(Operand<?> y, Iterable<? extends Operand<?>> x, Gradients.Options... options)
Gradients
operation to the graphy
- output of the function to derivex
- inputs of the function for which partial derivatives are computedoptions
- carries optional attributes valuesGradients
Gradients
public <T,U extends Number> TensorScatterAdd<T> tensorScatterAdd(Operand<T> tensor, Operand<U> indices, Operand<T> updates)
TensorScatterAdd
operation to the graphtensor
- Tensor to copy/update.indices
- Index tensor.updates
- Updates to scatter into output.TensorScatterAdd
public SaveSlices saveSlices(Operand<String> filename, Operand<String> tensorNames, Operand<String> shapesAndSlices, Iterable<Operand<?>> data)
SaveSlices
operation to the graphfilename
- Must have a single element. The name of the file to which we write thetensorNames
- Shape `[N]`. The names of the tensors to be saved.shapesAndSlices
- Shape `[N]`. The shapes and slice specifications to use whendata
- `N` tensors to save.SaveSlices
public <U,T extends Number> SparseTensorDenseMatMul<U> sparseTensorDenseMatMul(Operand<T> aIndices, Operand<U> aValues, Operand<Long> aShape, Operand<U> b, SparseTensorDenseMatMul.Options... options)
SparseTensorDenseMatMul
operation to the graphaIndices
- 2-D. The `indices` of the `SparseTensor`, size `[nnz, 2]` Matrix.aValues
- 1-D. The `values` of the `SparseTensor`, size `[nnz]` Vector.aShape
- 1-D. The `shape` of the `SparseTensor`, size `[2]` Vector.b
- 2-D. A dense Matrix.options
- carries optional attributes valuesSparseTensorDenseMatMul
public Constant<Float> constant(float data)
Constant
operation to the graphdata
- The value to put into the new constant.Constant
public <T> SparseDenseCwiseAdd<T> sparseDenseCwiseAdd(Operand<Long> spIndices, Operand<T> spValues, Operand<Long> spShape, Operand<T> dense)
SparseDenseCwiseAdd
operation to the graphspIndices
- 2-D. `N x R` matrix with the indices of non-empty values in aspValues
- 1-D. `N` non-empty values corresponding to `sp_indices`.spShape
- 1-D. Shape of the input SparseTensor.dense
- `R`-D. The dense Tensor operand.SparseDenseCwiseAdd
public <T,U extends Number> ResourceSparseApplyFtrl resourceSparseApplyFtrl(Operand<?> var, Operand<?> accum, Operand<?> linear, Operand<T> grad, Operand<U> indices, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> lrPower, ResourceSparseApplyFtrl.Options... options)
ResourceSparseApplyFtrl
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().linear
- Should be from a Variable().grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.lr
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.lrPower
- Scaling factor. Must be a scalar.options
- carries optional attributes valuesResourceSparseApplyFtrl
public <T> TensorListPopBack<T> tensorListPopBack(Operand<?> inputHandle, Class<T> elementDtype)
TensorListPopBack
operation to the graphinputHandle
- elementDtype
- TensorListPopBack
public <T extends Number> NonMaxSuppressionV2 nonMaxSuppressionV2(Operand<T> boxes, Operand<T> scores, Operand<Integer> maxOutputSize, Operand<Float> iouThreshold)
NonMaxSuppressionV2
operation to the graphboxes
- A 2-D float tensor of shape `[num_boxes, 4]`.scores
- A 1-D float tensor of shape `[num_boxes]` representing a singlemaxOutputSize
- A scalar integer tensor representing the maximum number ofiouThreshold
- A 0-D float tensor representing the threshold for deciding whetherNonMaxSuppressionV2
public <T> Variable<T> variable(Shape shape, Class<T> dtype, Variable.Options... options)
Variable
operation to the graphshape
- The shape of the variable tensor.dtype
- The type of elements in the variable tensor.options
- carries optional attributes valuesVariable
public <T> TensorArrayConcat<T> tensorArrayConcat(Operand<?> handle, Operand<Float> flowIn, Class<T> dtype, TensorArrayConcat.Options... options)
TensorArrayConcat
operation to the graphhandle
- The handle to a TensorArray.flowIn
- A float scalar that enforces proper chaining of operations.dtype
- The type of the elem that is returned.options
- carries optional attributes valuesTensorArrayConcat
public <U extends Number,T extends Number> RandomGamma<U> randomGamma(Operand<T> shape, Operand<U> alpha, RandomGamma.Options... options)
RandomGamma
operation to the graphshape
- 1-D integer tensor. Shape of independent samples to draw from eachalpha
- A tensor in which each scalar is a "shape" parameter describing theoptions
- carries optional attributes valuesRandomGamma
public <T,U extends Number> Reverse<T> reverse(Operand<T> tensor, Operand<U> axis)
Reverse
operation to the graphtensor
- Up to 8-D.axis
- 1-D. The indices of the dimensions to reverse. Must be in the rangeReverse
public <T,U extends Number,V extends Number> BatchToSpaceND<T> batchToSpaceND(Operand<T> input, Operand<U> blockShape, Operand<V> crops)
BatchToSpaceND
operation to the graphinput
- N-D with shape `input_shape = [batch] + spatial_shape + remaining_shape`,blockShape
- 1-D with shape `[M]`, all values must be >= 1.crops
- 2-D with shape `[M, 2]`, all values must be >= 0.BatchToSpaceND
public Constant<String> constant(byte[][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. String elements areConstant
public <T> TakeManySparseFromTensorsMap<T> takeManySparseFromTensorsMap(Operand<Long> sparseHandles, Class<T> dtype, TakeManySparseFromTensorsMap.Options... options)
TakeManySparseFromTensorsMap
operation to the graphsparseHandles
- 1-D, The `N` serialized `SparseTensor` objects.dtype
- The `dtype` of the `SparseTensor` objects stored in theoptions
- carries optional attributes valuesTakeManySparseFromTensorsMap
public Constant<String> constant(byte[][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. String elements areConstant
public ConsumeMutexLock consumeMutexLock(Operand<?> mutexLock)
ConsumeMutexLock
operation to the graphmutexLock
- A tensor returned by `MutexLock`.ConsumeMutexLock
public <T extends Number> Softplus<T> softplus(Operand<T> features)
Softplus
operation to the graphfeatures
- Softplus
public CTCBeamSearchDecoder cTCBeamSearchDecoder(Operand<Float> inputs, Operand<Integer> sequenceLength, Long beamWidth, Long topPaths, CTCBeamSearchDecoder.Options... options)
CTCBeamSearchDecoder
operation to the graphinputs
- 3-D, shape: `(max_time x batch_size x num_classes)`, the logits.sequenceLength
- A vector containing sequence lengths, size `(batch)`.beamWidth
- A scalar >= 0 (beam search beam width).topPaths
- A scalar >= 0, <= beam_width (controls output size).options
- carries optional attributes valuesCTCBeamSearchDecoder
public <T> ApplyAdagrad<T> applyAdagrad(Operand<T> var, Operand<T> accum, Operand<T> lr, Operand<T> grad, ApplyAdagrad.Options... options)
ApplyAdagrad
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesApplyAdagrad
public <T,U extends Number> SparseApplyAdagradDA<T> sparseApplyAdagradDA(Operand<T> var, Operand<T> gradientAccumulator, Operand<T> gradientSquaredAccumulator, Operand<T> grad, Operand<U> indices, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<Long> globalStep, SparseApplyAdagradDA.Options... options)
SparseApplyAdagradDA
operation to the graphvar
- Should be from a Variable().gradientAccumulator
- Should be from a Variable().gradientSquaredAccumulator
- Should be from a Variable().grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.lr
- Learning rate. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.globalStep
- Training step number. Must be a scalar.options
- carries optional attributes valuesSparseApplyAdagradDA
public <U extends Number,T> ComplexAbs<U> complexAbs(Operand<T> x, Class<U> Tout)
ComplexAbs
operation to the graphx
- Tout
- ComplexAbs
public MakeIterator makeIterator(Operand<?> dataset, Operand<?> iterator)
MakeIterator
operation to the graphdataset
- iterator
- MakeIterator
public <T> SparseSplit<T> sparseSplit(Operand<Long> splitDim, Operand<Long> indices, Operand<T> values, Operand<Long> shape, Long numSplit)
SparseSplit
operation to the graphsplitDim
- 0-D. The dimension along which to split. Must be in the rangeindices
- 2-D tensor represents the indices of the sparse tensor.values
- 1-D tensor represents the values of the sparse tensor.shape
- 1-D. tensor represents the shape of the sparse tensor.numSplit
- The number of ways to split.SparseSplit
public ReaderNumWorkUnitsCompleted readerNumWorkUnitsCompleted(Operand<?> readerHandle)
ReaderNumWorkUnitsCompleted
operation to the graphreaderHandle
- Handle to a Reader.ReaderNumWorkUnitsCompleted
public <T> BatchMatrixBandPart<T> batchMatrixBandPart(Operand<T> input, Operand<Long> numLower, Operand<Long> numUpper)
BatchMatrixBandPart
operation to the graphinput
- numLower
- numUpper
- BatchMatrixBandPart
public OptionalFromValue optionalFromValue(Iterable<Operand<?>> components)
OptionalFromValue
operation to the graphcomponents
- OptionalFromValue
public <T extends Number> ReduceAll reduceAll(Operand<Boolean> input, Operand<T> axis, ReduceAll.Options... options)
ReduceAll
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesReduceAll
public <T> Div<T> div(Operand<T> x, Operand<T> y)
Div
operation to the graphx
- y
- Div
public <T,U extends Number> Concat<T> concat(Operand<T> values, Operand<U> axis)
Concat
operation to the graphvalues
- List of `N` Tensors to concatenate. Their ranks and types must match,axis
- 0-D. The dimension along which to concatenate. Must be in theConcat
public <T> ResourceApplyAdadelta resourceApplyAdadelta(Operand<?> var, Operand<?> accum, Operand<?> accumUpdate, Operand<T> lr, Operand<T> rho, Operand<T> epsilon, Operand<T> grad, ResourceApplyAdadelta.Options... options)
ResourceApplyAdadelta
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().accumUpdate
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.rho
- Decay factor. Must be a scalar.epsilon
- Constant factor. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesResourceApplyAdadelta
public <T> RandomShuffle<T> randomShuffle(Operand<T> value, RandomShuffle.Options... options)
RandomShuffle
operation to the graphvalue
- The tensor to be shuffled.options
- carries optional attributes valuesRandomShuffle
public <T,U> MutableHashTableOfTensors mutableHashTableOfTensors(Class<T> keyDtype, Class<U> valueDtype, MutableHashTableOfTensors.Options... options)
MutableHashTableOfTensors
operation to the graphkeyDtype
- Type of the table keys.valueDtype
- Type of the table values.options
- carries optional attributes valuesMutableHashTableOfTensors
public <T> SparseDenseCwiseDiv<T> sparseDenseCwiseDiv(Operand<Long> spIndices, Operand<T> spValues, Operand<Long> spShape, Operand<T> dense)
SparseDenseCwiseDiv
operation to the graphspIndices
- 2-D. `N x R` matrix with the indices of non-empty values in aspValues
- 1-D. `N` non-empty values corresponding to `sp_indices`.spShape
- 1-D. Shape of the input SparseTensor.dense
- `R`-D. The dense Tensor operand.SparseDenseCwiseDiv
public EncodeProto encodeProto(Operand<Integer> sizes, Iterable<Operand<?>> values, List<String> fieldNames, String messageType, EncodeProto.Options... options)
EncodeProto
operation to the graphsizes
- Tensor of int32 with shape `[batch_shape, len(field_names)]`.values
- List of tensors containing values for the corresponding field.fieldNames
- List of strings containing proto field names.messageType
- Name of the proto message type to decode.options
- carries optional attributes valuesEncodeProto
public <T> SparseReorder<T> sparseReorder(Operand<Long> inputIndices, Operand<T> inputValues, Operand<Long> inputShape)
SparseReorder
operation to the graphinputIndices
- 2-D. `N x R` matrix with the indices of non-empty values in ainputValues
- 1-D. `N` non-empty values corresponding to `input_indices`.inputShape
- 1-D. Shape of the input SparseTensor.SparseReorder
public <T,V extends Number,U extends Number> UniqueWithCountsV2<T,V> uniqueWithCountsV2(Operand<T> x, Operand<U> axis, Class<V> outIdx)
UniqueWithCountsV2
operation to the graphx
- A `Tensor`.axis
- A `Tensor` of type `int32` (default: None). The axis of the Tensor tooutIdx
- UniqueWithCountsV2
public <T> BatchMatMul<T> batchMatMul(Operand<T> x, Operand<T> y, BatchMatMul.Options... options)
BatchMatMul
operation to the graphx
- 2-D or higher with shape `[..., r_x, c_x]`.y
- 2-D or higher with shape `[..., r_y, c_y]`.options
- carries optional attributes valuesBatchMatMul
public UnicodeTranscode unicodeTranscode(Operand<String> input, String inputEncoding, String outputEncoding, UnicodeTranscode.Options... options)
UnicodeTranscode
operation to the graphinput
- The text to be processed. Can have any shape.inputEncoding
- Text encoding of the input strings. This is any of the encodings supportedoutputEncoding
- The unicode encoding to use in the output. Must be one ofoptions
- carries optional attributes valuesUnicodeTranscode
public <T,U extends Number> ResourceSparseApplyAdagrad resourceSparseApplyAdagrad(Operand<?> var, Operand<?> accum, Operand<T> lr, Operand<T> grad, Operand<U> indices, ResourceSparseApplyAdagrad.Options... options)
ResourceSparseApplyAdagrad
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Learning rate. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.options
- carries optional attributes valuesResourceSparseApplyAdagrad
public <T> Squeeze<T> squeeze(Operand<T> input, Squeeze.Options... options)
Squeeze
operation to the graphinput
- The `input` to squeeze.options
- carries optional attributes valuesSqueeze
public <T> DeepCopy<T> deepCopy(Operand<T> x)
DeepCopy
operation to the graphx
- The source tensor of type `T`.DeepCopy
public Constant<Integer> constant(int data)
Constant
operation to the graphdata
- The value to put into the new constant.Constant
public <T extends Number> Conv3DBackpropFilterV2<T> conv3DBackpropFilterV2(Operand<T> input, Operand<Integer> filterSizes, Operand<T> outBackprop, List<Long> strides, String padding, Conv3DBackpropFilterV2.Options... options)
Conv3DBackpropFilterV2
operation to the graphinput
- Shape `[batch, depth, rows, cols, in_channels]`.filterSizes
- An integer vector representing the tensor shape of `filter`,outBackprop
- Backprop signal of shape `[batch, out_depth, out_rows, out_cols,strides
- 1-D tensor of length 5. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesConv3DBackpropFilterV2
public Constant<Long> constant(long[] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public Constant<String> constant(byte[][][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. String elements areConstant
public <T,U extends Number> ReduceMin<T> reduceMin(Operand<T> input, Operand<U> axis, ReduceMin.Options... options)
ReduceMin
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesReduceMin
public RegexReplace regexReplace(Operand<String> input, Operand<String> pattern, Operand<String> rewrite, RegexReplace.Options... options)
RegexReplace
operation to the graphinput
- The text to be processed.pattern
- The regular expression to match the input.rewrite
- The rewrite to be applied to the matched expresion.options
- carries optional attributes valuesRegexReplace
public <V,T,U,W> QuantizedMatMul<V> quantizedMatMul(Operand<T> a, Operand<U> b, Operand<Float> minA, Operand<Float> maxA, Operand<Float> minB, Operand<Float> maxB, Class<V> Toutput, Class<W> Tactivation, QuantizedMatMul.Options... options)
QuantizedMatMul
operation to the grapha
- Must be a two-dimensional tensor.b
- Must be a two-dimensional tensor.minA
- The float value that the lowest quantized `a` value represents.maxA
- The float value that the highest quantized `a` value represents.minB
- The float value that the lowest quantized `b` value represents.maxB
- The float value that the highest quantized `b` value represents.Toutput
- Tactivation
- The type of output produced by activation functionoptions
- carries optional attributes valuesQuantizedMatMul
public DeleteSessionTensor deleteSessionTensor(Operand<String> handle)
DeleteSessionTensor
operation to the graphhandle
- The handle for a tensor stored in the session state.DeleteSessionTensor
public <T,U extends Number> ResourceSparseApplyCenteredRMSProp resourceSparseApplyCenteredRMSProp(Operand<?> var, Operand<?> mg, Operand<?> ms, Operand<?> mom, Operand<T> lr, Operand<T> rho, Operand<T> momentum, Operand<T> epsilon, Operand<T> grad, Operand<U> indices, ResourceSparseApplyCenteredRMSProp.Options... options)
ResourceSparseApplyCenteredRMSProp
operation to the graphvar
- Should be from a Variable().mg
- Should be from a Variable().ms
- Should be from a Variable().mom
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.rho
- Decay rate. Must be a scalar.momentum
- epsilon
- Ridge term. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var, ms and mom.options
- carries optional attributes valuesResourceSparseApplyCenteredRMSProp
public <T> MatrixDeterminant<T> matrixDeterminant(Operand<T> input)
MatrixDeterminant
operation to the graphinput
- Shape is `[..., M, M]`.MatrixDeterminant
public <T> TileGrad<T> tileGrad(Operand<T> input, Operand<Integer> multiples)
TileGrad
operation to the graphinput
- multiples
- TileGrad
public <T extends Number> RightShift<T> rightShift(Operand<T> x, Operand<T> y)
RightShift
operation to the graphx
- y
- RightShift
public ReaderSerializeState readerSerializeState(Operand<?> readerHandle)
ReaderSerializeState
operation to the graphreaderHandle
- Handle to a Reader.ReaderSerializeState
public Save save(Operand<String> filename, Operand<String> tensorNames, Iterable<Operand<?>> data)
Save
operation to the graphfilename
- Must have a single element. The name of the file to which we writetensorNames
- Shape `[N]`. The names of the tensors to be saved.data
- `N` tensors to save.Save
public <T> Xlogy<T> xlogy(Operand<T> x, Operand<T> y)
Xlogy
operation to the graphx
- y
- Xlogy
public <T> TensorListConcat<T> tensorListConcat(Operand<?> inputHandle, Class<T> elementDtype)
TensorListConcat
operation to the graphinputHandle
- elementDtype
- TensorListConcat
public <T extends Number> ImageSummary imageSummary(Operand<String> tag, Operand<T> tensor, ImageSummary.Options... options)
ImageSummary
operation to the graphtag
- Scalar. Used to build the `tag` attribute of the summary values.tensor
- 4-D of shape `[batch_size, height, width, channels]` whereoptions
- carries optional attributes valuesImageSummary
public <T,U extends Number> TensorListSplit tensorListSplit(Operand<T> tensor, Operand<U> elementShape, Operand<Long> lengths)
TensorListSplit
operation to the graphtensor
- elementShape
- lengths
- TensorListSplit
public <T> NextIteration<T> nextIteration(Operand<T> data)
NextIteration
operation to the graphdata
- The tensor to be made available to the next iteration.NextIteration
public <T,U> MutableDenseHashTable mutableDenseHashTable(Operand<T> emptyKey, Operand<T> deletedKey, Class<U> valueDtype, MutableDenseHashTable.Options... options)
MutableDenseHashTable
operation to the graphemptyKey
- The key used to represent empty key buckets internally. Must notdeletedKey
- valueDtype
- Type of the table values.options
- carries optional attributes valuesMutableDenseHashTable
public Constant<Integer> constant(long[] shape, IntBuffer data)
Constant
operation to the graphshape
- the tensor shape.data
- a buffer containing the tensor data.IllegalArgumentException
- If the tensor shape is not compatible with the bufferConstant
public <T> QuantizedResizeBilinear<T> quantizedResizeBilinear(Operand<T> images, Operand<Integer> size, Operand<Float> min, Operand<Float> max, QuantizedResizeBilinear.Options... options)
QuantizedResizeBilinear
operation to the graphimages
- 4-D with shape `[batch, height, width, channels]`.size
- = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. Themin
- max
- options
- carries optional attributes valuesQuantizedResizeBilinear
public <T extends Number> RandomCrop<T> randomCrop(Operand<T> image, Operand<Long> size, RandomCrop.Options... options)
RandomCrop
operation to the graphimage
- 3-D of shape `[height, width, channels]`.size
- 1-D of length 2 containing: `crop_height`, `crop_width`..options
- carries optional attributes valuesRandomCrop
public Constant<Double> constant(double[][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T> SelfAdjointEig<T> selfAdjointEig(Operand<T> input, SelfAdjointEig.Options... options)
SelfAdjointEig
operation to the graphinput
- `Tensor` input of shape `[N, N]`.options
- carries optional attributes valuesSelfAdjointEig
public <T extends Number,U extends Number> MaxPoolGradGradWithArgmax<T> maxPoolGradGradWithArgmax(Operand<T> input, Operand<T> grad, Operand<U> argmax, List<Long> ksize, List<Long> strides, String padding)
MaxPoolGradGradWithArgmax
operation to the graphinput
- The original input.grad
- 4-D with shape `[batch, height, width, channels]`. Gradients w.r.t. theargmax
- The indices of the maximum values chosen for each output of `max_pool`.ksize
- The size of the window for each dimension of the input tensor.strides
- The stride of the sliding window for each dimension of thepadding
- The type of padding algorithm to use.MaxPoolGradGradWithArgmax
public <T extends Number> Minimum<T> minimum(Operand<T> x, Operand<T> y)
Minimum
operation to the graphx
- y
- Minimum
public Constant<Integer> constant(int[][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T extends Number> Atan2<T> atan2(Operand<T> y, Operand<T> x)
Atan2
operation to the graphy
- x
- Atan2
public <T> Empty<T> empty(Operand<Integer> shape, Class<T> dtype, Empty.Options... options)
Empty
operation to the graphshape
- 1-D. Represents the shape of the output tensor.dtype
- options
- carries optional attributes valuesEmpty
public <T,U extends Number> ResourceSparseApplyFtrlV2 resourceSparseApplyFtrlV2(Operand<?> var, Operand<?> accum, Operand<?> linear, Operand<T> grad, Operand<U> indices, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> l2Shrinkage, Operand<T> lrPower, ResourceSparseApplyFtrlV2.Options... options)
ResourceSparseApplyFtrlV2
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().linear
- Should be from a Variable().grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.lr
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 shrinkage regulariation. Must be a scalar.l2Shrinkage
- lrPower
- Scaling factor. Must be a scalar.options
- carries optional attributes valuesResourceSparseApplyFtrlV2
public <T> FFT2D<T> fFT2D(Operand<T> input)
FFT2D
operation to the graphinput
- A complex tensor.FFT2D
public <T extends Number,U extends Number> StatelessRandomNormal<Float> statelessRandomNormal(Operand<T> shape, Operand<U> seed)
StatelessRandomNormal
operation to the graphshape
- The shape of the output tensor.seed
- 2 seeds (shape [2]).StatelessRandomNormal
public MapPeek mapPeek(Operand<Long> key, Operand<Integer> indices, List<Class<?>> dtypes, MapPeek.Options... options)
MapPeek
operation to the graphkey
- indices
- dtypes
- options
- carries optional attributes valuesMapPeek
public OrderedMapUnstageNoKey orderedMapUnstageNoKey(Operand<Integer> indices, List<Class<?>> dtypes, OrderedMapUnstageNoKey.Options... options)
OrderedMapUnstageNoKey
operation to the graphindices
- dtypes
- options
- carries optional attributes valuesOrderedMapUnstageNoKey
public <T> Dequantize dequantize(Operand<T> input, Operand<Float> minRange, Operand<Float> maxRange, Dequantize.Options... options)
Dequantize
operation to the graphinput
- minRange
- The minimum scalar value possibly produced for the input.maxRange
- The maximum scalar value possibly produced for the input.options
- carries optional attributes valuesDequantize
public <T extends Number,U extends Number> SparseSegmentMean<T> sparseSegmentMean(Operand<T> data, Operand<U> indices, Operand<Integer> segmentIds)
SparseSegmentMean
operation to the graphdata
- indices
- A 1-D tensor. Has same rank as `segment_ids`.segmentIds
- A 1-D tensor. Values should be sorted and can be repeated.SparseSegmentMean
public <T> AccumulatorTakeGradient<T> accumulatorTakeGradient(Operand<String> handle, Operand<Integer> numRequired, Class<T> dtype)
AccumulatorTakeGradient
operation to the graphhandle
- The handle to an accumulator.numRequired
- Number of gradients required before we return an aggregate.dtype
- The data type of accumulated gradients. Needs to correspond to the typeAccumulatorTakeGradient
public <T,U extends Number> Slice<T> slice(Operand<T> input, Operand<U> begin, Operand<U> size)
Slice
operation to the graphinput
- begin
- begin[i] specifies the offset into the 'i'th dimension ofsize
- size[i] specifies the number of elements of the 'i'th dimensionSlice
public Skipgram skipgram(String filename, Long batchSize, Skipgram.Options... options)
Skipgram
operation to the graphfilename
- The corpus's text file name.batchSize
- The size of produced batch.options
- carries optional attributes valuesSkipgram
public GenerateVocabRemapping generateVocabRemapping(Operand<String> newVocabFile, Operand<String> oldVocabFile, Long newVocabOffset, Long numNewVocab, GenerateVocabRemapping.Options... options)
GenerateVocabRemapping
operation to the graphnewVocabFile
- Path to the new vocab file.oldVocabFile
- Path to the old vocab file.newVocabOffset
- How many entries into the new vocab file to start reading.numNewVocab
- Number of entries in the new vocab file to remap.options
- carries optional attributes valuesGenerateVocabRemapping
public <T> NotEqual notEqual(Operand<T> x, Operand<T> y)
NotEqual
operation to the graphx
- y
- NotEqual
public <T> UniqueWithCounts<T,Integer> uniqueWithCounts(Operand<T> x)
UniqueWithCounts
operation to the graphx
- 1-D.UniqueWithCounts
public FakeQuantWithMinMaxArgsGradient fakeQuantWithMinMaxArgsGradient(Operand<Float> gradients, Operand<Float> inputs, FakeQuantWithMinMaxArgsGradient.Options... options)
FakeQuantWithMinMaxArgsGradient
operation to the graphgradients
- Backpropagated gradients above the FakeQuantWithMinMaxArgs operation.inputs
- Values passed as inputs to the FakeQuantWithMinMaxArgs operation.options
- carries optional attributes valuesFakeQuantWithMinMaxArgsGradient
public <T extends Number,U> ResourceScatterNdAdd resourceScatterNdAdd(Operand<?> ref, Operand<T> indices, Operand<U> updates, ResourceScatterNdAdd.Options... options)
ResourceScatterNdAdd
operation to the graphref
- A resource handle. Must be from a VarHandleOp.indices
- A Tensor. Must be one of the following types: int32, int64.updates
- A Tensor. Must have the same type as ref. A tensor ofoptions
- carries optional attributes valuesResourceScatterNdAdd
public OrderedMapStage orderedMapStage(Operand<Long> key, Operand<Integer> indices, Iterable<Operand<?>> values, List<Class<?>> dtypes, OrderedMapStage.Options... options)
OrderedMapStage
operation to the graphkey
- int64indices
- values
- a list of tensorsdtypes
- options
- carries optional attributes valuesOrderedMapStage
public <V extends Number,T extends Number,U extends Number> StatelessRandomUniform<V> statelessRandomUniform(Operand<T> shape, Operand<U> seed, Class<V> dtype)
StatelessRandomUniform
operation to the graphshape
- The shape of the output tensor.seed
- 2 seeds (shape [2]).dtype
- The type of the output.StatelessRandomUniform
public <T extends Number> SoftmaxCrossEntropyWithLogits<T> softmaxCrossEntropyWithLogits(Operand<T> features, Operand<T> labels)
SoftmaxCrossEntropyWithLogits
operation to the graphfeatures
- batch_size x num_classes matrixlabels
- batch_size x num_classes matrixSoftmaxCrossEntropyWithLogits
public <U extends Number,T> ShapeN<U> shapeN(Operand<T> input, Class<U> outType)
ShapeN
operation to the graphinput
- outType
- ShapeN
public <T extends Number> ExtractJpegShape<T> extractJpegShape(Operand<String> contents, Class<T> outputType)
ExtractJpegShape
operation to the graphcontents
- 0-D. The JPEG-encoded image.outputType
- (Optional) The output type of the operation (int32 or int64).ExtractJpegShape
public <T> Print<T> print(Operand<T> input, Iterable<Operand<?>> data, Print.Options... options)
Print
operation to the graphinput
- The tensor passed to `output`data
- A list of tensors to print out when op is evaluated.options
- carries optional attributes valuesPrint
public <T> ResourceApplyProximalAdagrad resourceApplyProximalAdagrad(Operand<?> var, Operand<?> accum, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> grad, ResourceApplyProximalAdagrad.Options... options)
ResourceApplyProximalAdagrad
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesResourceApplyProximalAdagrad
public IdentityReader identityReader(IdentityReader.Options... options)
IdentityReader
operation to the graphoptions
- carries optional attributes valuesIdentityReader
public <T,U extends Number,V extends Number> UnsortedSegmentProd<T> unsortedSegmentProd(Operand<T> data, Operand<U> segmentIds, Operand<V> numSegments)
UnsortedSegmentProd
operation to the graphdata
- segmentIds
- A tensor whose shape is a prefix of `data.shape`.numSegments
- UnsortedSegmentProd
public <T> Tan<T> tan(Operand<T> x)
Tan
operation to the graphx
- Tan
public LoopCond loopCond(Operand<Boolean> input)
LoopCond
operation to the graphinput
- A boolean scalar, representing the branch predicate of the Switch op.LoopCond
public <V extends Number,T,U extends Number> ArgMin<V> argMin(Operand<T> input, Operand<U> dimension, Class<V> outputType)
ArgMin
operation to the graphinput
- dimension
- int32 or int64, must be in the range `[-rank(input), rank(input))`.outputType
- ArgMin
public <T,U extends Number> BatchToSpace<T> batchToSpace(Operand<T> input, Operand<U> crops, Long blockSize)
BatchToSpace
operation to the graphinput
- 4-D tensor with shapecrops
- 2-D tensor of non-negative integers with shape `[2, 2]`. It specifiesblockSize
- BatchToSpace
public <U,T> QuantizedRelu<U> quantizedRelu(Operand<T> features, Operand<Float> minFeatures, Operand<Float> maxFeatures, Class<U> outType)
QuantizedRelu
operation to the graphfeatures
- minFeatures
- The float value that the lowest quantized value represents.maxFeatures
- The float value that the highest quantized value represents.outType
- QuantizedRelu
public BarrierReadySize barrierReadySize(Operand<String> handle)
BarrierReadySize
operation to the graphhandle
- The handle to a barrier.BarrierReadySize
public <T,U extends Number> SegmentMean<T> segmentMean(Operand<T> data, Operand<U> segmentIds)
SegmentMean
operation to the graphdata
- segmentIds
- A 1-D tensor whose size is equal to the size of `data`'sSegmentMean
public <T extends Number> Conv3DBackpropInput<T> conv3DBackpropInput(Operand<T> input, Operand<T> filter, Operand<T> outBackprop, List<Long> strides, String padding, Conv3DBackpropInput.Options... options)
Conv3DBackpropInput
operation to the graphinput
- Shape `[batch, depth, rows, cols, in_channels]`.filter
- Shape `[depth, rows, cols, in_channels, out_channels]`.outBackprop
- Backprop signal of shape `[batch, out_depth, out_rows, out_cols,strides
- 1-D tensor of length 5. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesConv3DBackpropInput
public <T extends Number> CropAndResizeGradBoxes cropAndResizeGradBoxes(Operand<Float> grads, Operand<T> image, Operand<Float> boxes, Operand<Integer> boxInd, CropAndResizeGradBoxes.Options... options)
CropAndResizeGradBoxes
operation to the graphgrads
- A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`.image
- A 4-D tensor of shape `[batch, image_height, image_width, depth]`.boxes
- A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensorboxInd
- A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`.options
- carries optional attributes valuesCropAndResizeGradBoxes
public <T extends Number> Igammac<T> igammac(Operand<T> a, Operand<T> x)
Igammac
operation to the grapha
- x
- Igammac
public Barrier barrier(List<Class<?>> componentTypes, Barrier.Options... options)
Barrier
operation to the graphcomponentTypes
- The type of each component in a value.options
- carries optional attributes valuesBarrier
public <T,U extends Number> ScatterAdd<T> scatterAdd(Operand<T> ref, Operand<U> indices, Operand<T> updates, ScatterAdd.Options... options)
ScatterAdd
operation to the graphref
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to add to `ref`.options
- carries optional attributes valuesScatterAdd
public Constant<Float> constant(float[][][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public ShardedFilename shardedFilename(Operand<String> basename, Operand<Integer> shard, Operand<Integer> numShards)
ShardedFilename
operation to the graphbasename
- shard
- numShards
- ShardedFilename
public <T,U extends Number> Mean<T> mean(Operand<T> input, Operand<U> axis, Mean.Options... options)
Mean
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesMean
public AdjustHue adjustHue(Operand<Float> images, Operand<Float> delta)
AdjustHue
operation to the graphimages
- Images to adjust. At least 3-D.delta
- A float delta to add to the hue.AdjustHue
public <T> ParallelConcat<T> parallelConcat(Operand<T> values, Shape shape)
ParallelConcat
operation to the graphvalues
- Tensors to be concatenated. All must have size 1 in the first dimensionshape
- the final shape of the result; should be equal to the shapes of any inputParallelConcat
public <U,T extends Number> ResourceGather<U> resourceGather(Operand<?> resource, Operand<T> indices, Class<U> dtype, ResourceGather.Options... options)
ResourceGather
operation to the graphresource
- indices
- dtype
- options
- carries optional attributes valuesResourceGather
public Constant<Boolean> constant(boolean[][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public LogicalAnd logicalAnd(Operand<Boolean> x, Operand<Boolean> y)
LogicalAnd
operation to the graphx
- y
- LogicalAnd
public DecodeBase64 decodeBase64(Operand<String> input)
DecodeBase64
operation to the graphinput
- Base64 strings to decode.DecodeBase64
public <T> ShapeN<Integer> shapeN(Operand<T> input)
ShapeN
operation to the graphinput
- ShapeN
public <T> RequantizationRange requantizationRange(Operand<T> input, Operand<Float> inputMin, Operand<Float> inputMax)
RequantizationRange
operation to the graphinput
- inputMin
- The float value that the minimum quantized input value represents.inputMax
- The float value that the maximum quantized input value represents.RequantizationRange
public <T> ConditionalAccumulator conditionalAccumulator(Class<T> dtype, Shape shape, ConditionalAccumulator.Options... options)
ConditionalAccumulator
operation to the graphdtype
- The type of the value being accumulated.shape
- The shape of the values, can be [], in which case shape is unknown.options
- carries optional attributes valuesConditionalAccumulator
public <T> ApplyFtrl<T> applyFtrl(Operand<T> var, Operand<T> accum, Operand<T> linear, Operand<T> grad, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> lrPower, ApplyFtrl.Options... options)
ApplyFtrl
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().linear
- Should be from a Variable().grad
- The gradient.lr
- Scaling factor. Must be a scalar.l1
- L1 regulariation. Must be a scalar.l2
- L2 regulariation. Must be a scalar.lrPower
- Scaling factor. Must be a scalar.options
- carries optional attributes valuesApplyFtrl
public <T extends Number> TruncateMod<T> truncateMod(Operand<T> x, Operand<T> y)
TruncateMod
operation to the graphx
- y
- TruncateMod
public Constant<Float> constant(float[][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T extends Number,U extends Number> SparseMatMul sparseMatMul(Operand<T> a, Operand<U> b, SparseMatMul.Options... options)
SparseMatMul
operation to the grapha
- b
- options
- carries optional attributes valuesSparseMatMul
public <T> UnbatchGrad<T> unbatchGrad(Operand<T> originalInput, Operand<Long> batchIndex, Operand<T> grad, Operand<Long> id, UnbatchGrad.Options... options)
UnbatchGrad
operation to the graphoriginalInput
- batchIndex
- grad
- id
- options
- carries optional attributes valuesUnbatchGrad
public <U extends Number,T extends Number> CudnnRNNParamsSize<U> cudnnRNNParamsSize(Operand<Integer> numLayers, Operand<Integer> numUnits, Operand<Integer> inputSize, Class<T> T, Class<U> S, CudnnRNNParamsSize.Options... options)
CudnnRNNParamsSize
operation to the graphnumLayers
- numUnits
- inputSize
- T
- S
- options
- carries optional attributes valuesCudnnRNNParamsSize
public <T> QuantizedConcat<T> quantizedConcat(Operand<Integer> concatDim, Operand<T> values, Iterable<Operand<Float>> inputMins, Iterable<Operand<Float>> inputMaxes)
QuantizedConcat
operation to the graphconcatDim
- 0-D. The dimension along which to concatenate. Must be in thevalues
- The `N` Tensors to concatenate. Their ranks and types must match,inputMins
- The minimum scalar values for each of the input tensors.inputMaxes
- The maximum scalar values for each of the input tensors.QuantizedConcat
public <T> Xdivy<T> xdivy(Operand<T> x, Operand<T> y)
Xdivy
operation to the graphx
- y
- Xdivy
public <T> BatchMatrixSetDiag<T> batchMatrixSetDiag(Operand<T> input, Operand<T> diagonal)
BatchMatrixSetDiag
operation to the graphinput
- diagonal
- BatchMatrixSetDiag
public <T> Qr<T> qr(Operand<T> input, Qr.Options... options)
Qr
operation to the graphinput
- A tensor of shape `[..., M, N]` whose inner-most 2 dimensionsoptions
- carries optional attributes valuesQr
public <T> Log<T> log(Operand<T> x)
Log
operation to the graphx
- Log
public <T,U extends Number> TensorScatterSub<T> tensorScatterSub(Operand<T> tensor, Operand<U> indices, Operand<T> updates)
TensorScatterSub
operation to the graphtensor
- Tensor to copy/update.indices
- Index tensor.updates
- Updates to scatter into output.TensorScatterSub
public <T extends Number> InvertPermutation<T> invertPermutation(Operand<T> x)
InvertPermutation
operation to the graphx
- 1-D.InvertPermutation
public <T> ApplyAdam<T> applyAdam(Operand<T> var, Operand<T> m, Operand<T> v, Operand<T> beta1Power, Operand<T> beta2Power, Operand<T> lr, Operand<T> beta1, Operand<T> beta2, Operand<T> epsilon, Operand<T> grad, ApplyAdam.Options... options)
ApplyAdam
operation to the graphvar
- Should be from a Variable().m
- Should be from a Variable().v
- Should be from a Variable().beta1Power
- Must be a scalar.beta2Power
- Must be a scalar.lr
- Scaling factor. Must be a scalar.beta1
- Momentum factor. Must be a scalar.beta2
- Momentum factor. Must be a scalar.epsilon
- Ridge term. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesApplyAdam
public FakeQuantWithMinMaxVarsGradient fakeQuantWithMinMaxVarsGradient(Operand<Float> gradients, Operand<Float> inputs, Operand<Float> min, Operand<Float> max, FakeQuantWithMinMaxVarsGradient.Options... options)
FakeQuantWithMinMaxVarsGradient
operation to the graphgradients
- Backpropagated gradients above the FakeQuantWithMinMaxVars operation.inputs
- Values passed as inputs to the FakeQuantWithMinMaxVars operation.min
- max
- options
- carries optional attributes valuesFakeQuantWithMinMaxVarsGradient
public <T> SparseFillEmptyRows<T> sparseFillEmptyRows(Operand<Long> indices, Operand<T> values, Operand<Long> denseShape, Operand<T> defaultValue)
SparseFillEmptyRows
operation to the graphindices
- 2-D. the indices of the sparse tensor.values
- 1-D. the values of the sparse tensor.denseShape
- 1-D. the shape of the sparse tensor.defaultValue
- 0-D. default value to insert into location `[row, 0, ..., 0]`SparseFillEmptyRows
public <T extends Number> SampleDistortedBoundingBox<T> sampleDistortedBoundingBox(Operand<T> imageSize, Operand<Float> boundingBoxes, SampleDistortedBoundingBox.Options... options)
SampleDistortedBoundingBox
operation to the graphimageSize
- 1-D, containing `[height, width, channels]`.boundingBoxes
- 3-D with shape `[batch, N, 4]` describing the N bounding boxesoptions
- carries optional attributes valuesSampleDistortedBoundingBox
public <T extends Number> Ceil<T> ceil(Operand<T> x)
Ceil
operation to the graphx
- Ceil
public <T> ComplexAbs<Float> complexAbs(Operand<T> x)
ComplexAbs
operation to the graphx
- ComplexAbs
public StringJoin stringJoin(Iterable<Operand<String>> inputs, StringJoin.Options... options)
StringJoin
operation to the graphinputs
- A list of string tensors. The tensors must all have the same shape,options
- carries optional attributes valuesStringJoin
public ReadFile readFile(Operand<String> filename)
ReadFile
operation to the graphfilename
- ReadFile
public MutexV2 mutexV2(MutexV2.Options... options)
MutexV2
operation to the graphoptions
- carries optional attributes valuesMutexV2
public <T extends Number> Invert<T> invert(Operand<T> x)
Invert
operation to the graphx
- Invert
public <T> SparseDenseCwiseMul<T> sparseDenseCwiseMul(Operand<Long> spIndices, Operand<T> spValues, Operand<Long> spShape, Operand<T> dense)
SparseDenseCwiseMul
operation to the graphspIndices
- 2-D. `N x R` matrix with the indices of non-empty values in aspValues
- 1-D. `N` non-empty values corresponding to `sp_indices`.spShape
- 1-D. Shape of the input SparseTensor.dense
- `R`-D. The dense Tensor operand.SparseDenseCwiseMul
public <T,U extends Number> SparseApplyAdagrad<T> sparseApplyAdagrad(Operand<T> var, Operand<T> accum, Operand<T> lr, Operand<T> grad, Operand<U> indices, SparseApplyAdagrad.Options... options)
SparseApplyAdagrad
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Learning rate. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.options
- carries optional attributes valuesSparseApplyAdagrad
public <T,U extends Number> ReduceProd<T> reduceProd(Operand<T> input, Operand<U> axis, ReduceProd.Options... options)
ReduceProd
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesReduceProd
public <T extends Number,U> ResourceScatterDiv resourceScatterDiv(Operand<?> resource, Operand<T> indices, Operand<U> updates)
ResourceScatterDiv
operation to the graphresource
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to add to `ref`.ResourceScatterDiv
public <V extends Number,T extends Number,U extends Number> RandomPoissonV2<V> randomPoissonV2(Operand<T> shape, Operand<U> rate, Class<V> dtype, RandomPoissonV2.Options... options)
RandomPoissonV2
operation to the graphshape
- 1-D integer tensor. Shape of independent samples to draw from eachrate
- A tensor in which each scalar is a "rate" parameter describing thedtype
- options
- carries optional attributes valuesRandomPoissonV2
public <T extends Number> Conv3DBackpropFilter<T> conv3DBackpropFilter(Operand<T> input, Operand<T> filter, Operand<T> outBackprop, List<Long> strides, String padding, Conv3DBackpropFilter.Options... options)
Conv3DBackpropFilter
operation to the graphinput
- Shape `[batch, depth, rows, cols, in_channels]`.filter
- Shape `[depth, rows, cols, in_channels, out_channels]`.outBackprop
- Backprop signal of shape `[batch, out_depth, out_rows, out_cols,strides
- 1-D tensor of length 5. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesConv3DBackpropFilter
public PaddingFIFOQueue paddingFIFOQueue(List<Class<?>> componentTypes, PaddingFIFOQueue.Options... options)
PaddingFIFOQueue
operation to the graphcomponentTypes
- The type of each component in a value.options
- carries optional attributes valuesPaddingFIFOQueue
public <T> TensorSummary tensorSummary(Operand<T> tensor, TensorSummary.Options... options)
TensorSummary
operation to the graphtensor
- A tensor to serialize.options
- carries optional attributes valuesTensorSummary
public <T> ParallelDynamicStitch<T> parallelDynamicStitch(Iterable<Operand<Integer>> indices, Operand<T> data)
ParallelDynamicStitch
operation to the graphindices
- data
- ParallelDynamicStitch
public <T extends Number> Lgamma<T> lgamma(Operand<T> x)
Lgamma
operation to the graphx
- Lgamma
public <T> ApplyAdadelta<T> applyAdadelta(Operand<T> var, Operand<T> accum, Operand<T> accumUpdate, Operand<T> lr, Operand<T> rho, Operand<T> epsilon, Operand<T> grad, ApplyAdadelta.Options... options)
ApplyAdadelta
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().accumUpdate
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.rho
- Decay factor. Must be a scalar.epsilon
- Constant factor. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesApplyAdadelta
public <T> ResourceApplyKerasMomentum resourceApplyKerasMomentum(Operand<?> var, Operand<?> accum, Operand<T> lr, Operand<T> grad, Operand<T> momentum, ResourceApplyKerasMomentum.Options... options)
ResourceApplyKerasMomentum
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.grad
- The gradient.momentum
- Momentum. Must be a scalar.options
- carries optional attributes valuesResourceApplyKerasMomentum
public <T,U> HashTable hashTable(Class<T> keyDtype, Class<U> valueDtype, HashTable.Options... options)
HashTable
operation to the graphkeyDtype
- Type of the table keys.valueDtype
- Type of the table values.options
- carries optional attributes valuesHashTable
public Constant<Boolean> constant(boolean[][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T extends Number> FusedResizeAndPadConv2D<T> fusedResizeAndPadConv2D(Operand<T> input, Operand<Integer> size, Operand<Integer> paddings, Operand<T> filter, String mode, List<Long> strides, String padding, FusedResizeAndPadConv2D.Options... options)
FusedResizeAndPadConv2D
operation to the graphinput
- 4-D with shape `[batch, in_height, in_width, in_channels]`.size
- A 1-D int32 Tensor of 2 elements: `new_height, new_width`. Thepaddings
- A two-column matrix specifying the padding sizes. The number offilter
- 4-D with shapemode
- strides
- 1-D of length 4. The stride of the sliding window for each dimensionpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesFusedResizeAndPadConv2D
public <T extends Number> NonMaxSuppressionV4 nonMaxSuppressionV4(Operand<T> boxes, Operand<T> scores, Operand<Integer> maxOutputSize, Operand<Float> iouThreshold, Operand<Float> scoreThreshold, NonMaxSuppressionV4.Options... options)
NonMaxSuppressionV4
operation to the graphboxes
- A 2-D float tensor of shape `[num_boxes, 4]`.scores
- A 1-D float tensor of shape `[num_boxes]` representing a singlemaxOutputSize
- A scalar integer tensor representing the maximum number ofiouThreshold
- A 0-D float tensor representing the threshold for deciding whetherscoreThreshold
- A 0-D float tensor representing the threshold for deciding when to removeoptions
- carries optional attributes valuesNonMaxSuppressionV4
public <T> Unstack<T> unstack(Operand<T> value, Long num, Unstack.Options... options)
Unstack
operation to the graphvalue
- 1-D or higher, with `axis` dimension size equal to `num`.num
- options
- carries optional attributes valuesUnstack
public <T extends Number> Softmax<T> softmax(Operand<T> logits)
Softmax
operation to the graphlogits
- 2-D with shape `[batch_size, num_classes]`.Softmax
public BatchIFFT2D batchIFFT2D(Operand<?> input)
BatchIFFT2D
operation to the graphinput
- BatchIFFT2D
public <T,U extends Number> ExpandDims<T> expandDims(Operand<T> input, Operand<U> axis)
ExpandDims
operation to the graphinput
- axis
- 0-D (scalar). Specifies the dimension index at which toExpandDims
public <T extends Number> ReduceAny reduceAny(Operand<Boolean> input, Operand<T> axis, ReduceAny.Options... options)
ReduceAny
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesReduceAny
public RFFT3D rFFT3D(Operand<Float> input, Operand<Integer> fftLength)
RFFT3D
operation to the graphinput
- A float32 tensor.fftLength
- An int32 tensor of shape [3]. The FFT length for each dimension.RFFT3D
public QueueEnqueue queueEnqueue(Operand<?> handle, Iterable<Operand<?>> components, QueueEnqueue.Options... options)
QueueEnqueue
operation to the graphhandle
- The handle to a queue.components
- One or more tensors from which the enqueued tensors should be taken.options
- carries optional attributes valuesQueueEnqueue
public <T> Multiply<T> multiply(Operand<T> x, Operand<T> y)
Multiply
operation to the graphx
- y
- Multiply
public <T,U extends Number> ReduceSum<T> reduceSum(Operand<T> input, Operand<U> axis, ReduceSum.Options... options)
ReduceSum
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesReduceSum
public <T,U extends Number> SparseApplyRMSProp<T> sparseApplyRMSProp(Operand<T> var, Operand<T> ms, Operand<T> mom, Operand<T> lr, Operand<T> rho, Operand<T> momentum, Operand<T> epsilon, Operand<T> grad, Operand<U> indices, SparseApplyRMSProp.Options... options)
SparseApplyRMSProp
operation to the graphvar
- Should be from a Variable().ms
- Should be from a Variable().mom
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.rho
- Decay rate. Must be a scalar.momentum
- epsilon
- Ridge term. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var, ms and mom.options
- carries optional attributes valuesSparseApplyRMSProp
public LogUniformCandidateSampler logUniformCandidateSampler(Operand<Long> trueClasses, Long numTrue, Long numSampled, Boolean unique, Long rangeMax, LogUniformCandidateSampler.Options... options)
LogUniformCandidateSampler
operation to the graphtrueClasses
- A batch_size * num_true matrix, in which each row contains thenumTrue
- Number of true labels per context.numSampled
- Number of candidates to randomly sample.unique
- If unique is true, we sample with rejection, so that all sampledrangeMax
- The sampler will sample integers from the interval [0, range_max).options
- carries optional attributes valuesLogUniformCandidateSampler
public StringFormat stringFormat(Iterable<Operand<?>> inputs, StringFormat.Options... options)
StringFormat
operation to the graphinputs
- The list of tensors to format into the placeholder string.options
- carries optional attributes valuesStringFormat
public <T> ReadVariableOp<T> readVariableOp(Operand<?> resource, Class<T> dtype)
ReadVariableOp
operation to the graphresource
- handle to the resource in which to store the variable.dtype
- the dtype of the value.ReadVariableOp
public <V extends Number,T extends Number,U extends Number> StatelessTruncatedNormal<V> statelessTruncatedNormal(Operand<T> shape, Operand<U> seed, Class<V> dtype)
StatelessTruncatedNormal
operation to the graphshape
- The shape of the output tensor.seed
- 2 seeds (shape [2]).dtype
- The type of the output.StatelessTruncatedNormal
public GenerateBigQueryReaderPartitions generateBigQueryReaderPartitions(String projectId, String datasetId, String tableId, List<String> columns, Long timestampMillis, Long numPartitions, GenerateBigQueryReaderPartitions.Options... options)
GenerateBigQueryReaderPartitions
operation to the graphprojectId
- GCP project ID.datasetId
- BigQuery Dataset ID.tableId
- Table to read.columns
- List of columns to read. Leave empty to read all columns.timestampMillis
- Table snapshot timestamp in millis since epoch. RelativenumPartitions
- Number of partitions to split the table into.options
- carries optional attributes valuesGenerateBigQueryReaderPartitions
public <T> FFT3D<T> fFT3D(Operand<T> input)
FFT3D
operation to the graphinput
- A complex64 tensor.FFT3D
public <T> MatrixSetDiag<T> matrixSetDiag(Operand<T> input, Operand<T> diagonal)
MatrixSetDiag
operation to the graphinput
- Rank `k+1`, where `k >= 1`.diagonal
- Rank `k`, where `k >= 1`.MatrixSetDiag
public LogicalNot logicalNot(Operand<Boolean> x)
LogicalNot
operation to the graphx
- LogicalNot
public AdjustContrast adjustContrast(Operand<Float> images, Operand<Float> contrastFactor)
AdjustContrast
operation to the graphimages
- Images to adjust. At least 3-D.contrastFactor
- A float multiplier for adjusting contrast.AdjustContrast
public <T> ResourceApplyAdagradDA resourceApplyAdagradDA(Operand<?> var, Operand<?> gradientAccumulator, Operand<?> gradientSquaredAccumulator, Operand<T> grad, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<Long> globalStep, ResourceApplyAdagradDA.Options... options)
ResourceApplyAdagradDA
operation to the graphvar
- Should be from a Variable().gradientAccumulator
- Should be from a Variable().gradientSquaredAccumulator
- Should be from a Variable().grad
- The gradient.lr
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.globalStep
- Training step number. Must be a scalar.options
- carries optional attributes valuesResourceApplyAdagradDA
public RestoreV2 restoreV2(Operand<String> prefix, Operand<String> tensorNames, Operand<String> shapeAndSlices, List<Class<?>> dtypes)
RestoreV2
operation to the graphprefix
- Must have a single element. The prefix of a V2 checkpoint.tensorNames
- shape {N}. The names of the tensors to be restored.shapeAndSlices
- shape {N}. The slice specs of the tensors to be restored.dtypes
- shape {N}. The list of expected dtype for the tensors. Must matchRestoreV2
public LookupTableSize lookupTableSize(Operand<?> tableHandle)
LookupTableSize
operation to the graphtableHandle
- Handle to the table.LookupTableSize
public <T extends Number> Zeta<T> zeta(Operand<T> x, Operand<T> q)
Zeta
operation to the graphx
- q
- Zeta
public <T extends Number,U extends Number> SparseSegmentMeanGrad<T> sparseSegmentMeanGrad(Operand<T> grad, Operand<U> indices, Operand<Integer> segmentIds, Operand<Integer> outputDim0)
SparseSegmentMeanGrad
operation to the graphgrad
- gradient propagated to the SparseSegmentMean op.indices
- indices passed to the corresponding SparseSegmentMean op.segmentIds
- segment_ids passed to the corresponding SparseSegmentMean op.outputDim0
- dimension 0 of "data" passed to SparseSegmentMean op.SparseSegmentMeanGrad
public <T extends Number> Digamma<T> digamma(Operand<T> x)
Digamma
operation to the graphx
- Digamma
public StringToHashBucketFast stringToHashBucketFast(Operand<String> input, Long numBuckets)
StringToHashBucketFast
operation to the graphinput
- The strings to assign a hash bucket.numBuckets
- The number of buckets.StringToHashBucketFast
public <T extends Number> FloorMod<T> floorMod(Operand<T> x, Operand<T> y)
FloorMod
operation to the graphx
- y
- FloorMod
public ParseSingleExample parseSingleExample(Operand<String> serialized, Iterable<Operand<?>> denseDefaults, Long numSparse, List<String> sparseKeys, List<String> denseKeys, List<Class<?>> sparseTypes, List<Shape> denseShapes)
ParseSingleExample
operation to the graphserialized
- A vector containing a batch of binary serialized Example protos.denseDefaults
- A list of Tensors (some may be empty), whose length matchesnumSparse
- The number of sparse features to be parsed from the example. ThissparseKeys
- A list of `num_sparse` strings.denseKeys
- The keys expected in the Examples' features associated with densesparseTypes
- A list of `num_sparse` types; the data types of data in eachdenseShapes
- The shapes of data in each Feature given in dense_keys.ParseSingleExample
public <T,U extends Number> GatherNd<T> gatherNd(Operand<T> params, Operand<U> indices)
GatherNd
operation to the graphparams
- The tensor from which to gather values.indices
- Index tensor.GatherNd
public AccumulatorNumAccumulated accumulatorNumAccumulated(Operand<String> handle)
AccumulatorNumAccumulated
operation to the graphhandle
- The handle to an accumulator.AccumulatorNumAccumulated
public <T extends Number> ResizeBicubic resizeBicubic(Operand<T> images, Operand<Integer> size, ResizeBicubic.Options... options)
ResizeBicubic
operation to the graphimages
- 4-D with shape `[batch, height, width, channels]`.size
- = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. Theoptions
- carries optional attributes valuesResizeBicubic
public <T> RefNextIteration<T> refNextIteration(Operand<T> data)
RefNextIteration
operation to the graphdata
- The tensor to be made available to the next iteration.RefNextIteration
public <T> Rsqrt<T> rsqrt(Operand<T> x)
Rsqrt
operation to the graphx
- Rsqrt
public <T extends Number> FusedPadConv2D<T> fusedPadConv2D(Operand<T> input, Operand<Integer> paddings, Operand<T> filter, String mode, List<Long> strides, String padding)
FusedPadConv2D
operation to the graphinput
- 4-D with shape `[batch, in_height, in_width, in_channels]`.paddings
- A two-column matrix specifying the padding sizes. The number offilter
- 4-D with shapemode
- strides
- 1-D of length 4. The stride of the sliding window for each dimensionpadding
- The type of padding algorithm to use.FusedPadConv2D
public Unstage unstage(List<Class<?>> dtypes, Unstage.Options... options)
Unstage
operation to the graphdtypes
- options
- carries optional attributes valuesUnstage
public <U,T> Cast<U> cast(Operand<T> x, Class<U> DstT, Cast.Options... options)
Cast
operation to the graphx
- DstT
- options
- carries optional attributes valuesCast
public <T> EditDistance editDistance(Operand<Long> hypothesisIndices, Operand<T> hypothesisValues, Operand<Long> hypothesisShape, Operand<Long> truthIndices, Operand<T> truthValues, Operand<Long> truthShape, EditDistance.Options... options)
EditDistance
operation to the graphhypothesisIndices
- The indices of the hypothesis list SparseTensor.hypothesisValues
- The values of the hypothesis list SparseTensor.hypothesisShape
- The shape of the hypothesis list SparseTensor.truthIndices
- The indices of the truth list SparseTensor.truthValues
- The values of the truth list SparseTensor.truthShape
- truth indices, vector.options
- carries optional attributes valuesEditDistance
public <T extends Number> Relu6<T> relu6(Operand<T> features)
Relu6
operation to the graphfeatures
- Relu6
public <T> Shape<Integer> shape(Operand<T> input)
Shape
operation to the graphinput
- Shape
public MapUnstage mapUnstage(Operand<Long> key, Operand<Integer> indices, List<Class<?>> dtypes, MapUnstage.Options... options)
MapUnstage
operation to the graphkey
- indices
- dtypes
- options
- carries optional attributes valuesMapUnstage
public OrderedMapClear orderedMapClear(List<Class<?>> dtypes, OrderedMapClear.Options... options)
OrderedMapClear
operation to the graphdtypes
- options
- carries optional attributes valuesOrderedMapClear
public FakeQuantWithMinMaxVarsPerChannelGradient fakeQuantWithMinMaxVarsPerChannelGradient(Operand<Float> gradients, Operand<Float> inputs, Operand<Float> min, Operand<Float> max, FakeQuantWithMinMaxVarsPerChannelGradient.Options... options)
FakeQuantWithMinMaxVarsPerChannelGradient
operation to the graphgradients
- Backpropagated gradients above the FakeQuantWithMinMaxVars operation,inputs
- Values passed as inputs to the FakeQuantWithMinMaxVars operation, shapemin
- max
- options
- carries optional attributes valuesFakeQuantWithMinMaxVarsPerChannelGradient
public <T extends Number> BitwiseOr<T> bitwiseOr(Operand<T> x, Operand<T> y)
BitwiseOr
operation to the graphx
- y
- BitwiseOr
public ReaderNumRecordsProduced readerNumRecordsProduced(Operand<?> readerHandle)
ReaderNumRecordsProduced
operation to the graphreaderHandle
- Handle to a Reader.ReaderNumRecordsProduced
public <T extends Number> TensorListElementShape<T> tensorListElementShape(Operand<?> inputHandle, Class<T> shapeType)
TensorListElementShape
operation to the graphinputHandle
- shapeType
- TensorListElementShape
public <T extends Number> Softsign<T> softsign(Operand<T> features)
Softsign
operation to the graphfeatures
- Softsign
public <T> SquaredDifference<T> squaredDifference(Operand<T> x, Operand<T> y)
SquaredDifference
operation to the graphx
- y
- SquaredDifference
public <T> BatchMatrixDiag<T> batchMatrixDiag(Operand<T> diagonal)
BatchMatrixDiag
operation to the graphdiagonal
- BatchMatrixDiag
public <T,U extends Number> ScatterDiv<T> scatterDiv(Operand<T> ref, Operand<U> indices, Operand<T> updates, ScatterDiv.Options... options)
ScatterDiv
operation to the graphref
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of values that `ref` is divided by.options
- carries optional attributes valuesScatterDiv
public <T,U extends Number> QuantizedReshape<T> quantizedReshape(Operand<T> tensor, Operand<U> shape, Operand<Float> inputMin, Operand<Float> inputMax)
QuantizedReshape
operation to the graphtensor
- shape
- Defines the shape of the output tensor.inputMin
- The minimum value of the input.inputMax
- The maximum value of the input.QuantizedReshape
public LogicalOr logicalOr(Operand<Boolean> x, Operand<Boolean> y)
LogicalOr
operation to the graphx
- y
- LogicalOr
public BarrierTakeMany barrierTakeMany(Operand<String> handle, Operand<Integer> numElements, List<Class<?>> componentTypes, BarrierTakeMany.Options... options)
BarrierTakeMany
operation to the graphhandle
- The handle to a barrier.numElements
- A single-element tensor containing the number of elements tocomponentTypes
- The type of each component in a value.options
- carries optional attributes valuesBarrierTakeMany
public <T> Real<Float> real(Operand<T> input)
Real
operation to the graphinput
- Real
public <T,U extends Number> Cumprod<T> cumprod(Operand<T> x, Operand<U> axis, Cumprod.Options... options)
Cumprod
operation to the graphx
- A `Tensor`. Must be one of the following types: `float32`, `float64`,axis
- A `Tensor` of type `int32` (default: 0). Must be in the rangeoptions
- carries optional attributes valuesCumprod
public <U extends Number,T> Real<U> real(Operand<T> input, Class<U> Tout)
Real
operation to the graphinput
- Tout
- Real
public <T> ResourceApplyGradientDescent resourceApplyGradientDescent(Operand<?> var, Operand<T> alpha, Operand<T> delta, ResourceApplyGradientDescent.Options... options)
ResourceApplyGradientDescent
operation to the graphvar
- Should be from a Variable().alpha
- Scaling factor. Must be a scalar.delta
- The change.options
- carries optional attributes valuesResourceApplyGradientDescent
public <T extends Number> MaxPoolGradGradV2<T> maxPoolGradGradV2(Operand<T> origInput, Operand<T> origOutput, Operand<T> grad, Operand<Integer> ksize, Operand<Integer> strides, String padding, MaxPoolGradGradV2.Options... options)
MaxPoolGradGradV2
operation to the graphorigInput
- The original input tensor.origOutput
- The original output tensor.grad
- 4-D. Gradients of gradients w.r.t. the input of `max_pool`.ksize
- The size of the window for each dimension of the input tensor.strides
- The stride of the sliding window for each dimension of thepadding
- The type of padding algorithm to use.options
- carries optional attributes valuesMaxPoolGradGradV2
public OptionalGetValue optionalGetValue(Operand<?> optional, List<Class<?>> outputTypes, List<Shape> outputShapes)
OptionalGetValue
operation to the graphoptional
- outputTypes
- outputShapes
- OptionalGetValue
public <T> TensorListGetItem<T> tensorListGetItem(Operand<?> inputHandle, Operand<Integer> index, Class<T> elementDtype)
TensorListGetItem
operation to the graphinputHandle
- index
- elementDtype
- TensorListGetItem
public NonMaxSuppressionWithOverlaps nonMaxSuppressionWithOverlaps(Operand<Float> overlaps, Operand<Float> scores, Operand<Integer> maxOutputSize, Operand<Float> overlapThreshold, Operand<Float> scoreThreshold)
NonMaxSuppressionWithOverlaps
operation to the graphoverlaps
- A 2-D float tensor of shape `[num_boxes, num_boxes]` representingscores
- A 1-D float tensor of shape `[num_boxes]` representing a singlemaxOutputSize
- A scalar integer tensor representing the maximum number ofoverlapThreshold
- A 0-D float tensor representing the threshold for deciding whetherscoreThreshold
- A 0-D float tensor representing the threshold for deciding when to removeNonMaxSuppressionWithOverlaps
public <T> ResourceApplyPowerSign resourceApplyPowerSign(Operand<?> var, Operand<?> m, Operand<T> lr, Operand<T> logbase, Operand<T> signDecay, Operand<T> beta, Operand<T> grad, ResourceApplyPowerSign.Options... options)
ResourceApplyPowerSign
operation to the graphvar
- Should be from a Variable().m
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.logbase
- Must be a scalar.signDecay
- Must be a scalar.beta
- Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesResourceApplyPowerSign
public <T> ApplyMomentum<T> applyMomentum(Operand<T> var, Operand<T> accum, Operand<T> lr, Operand<T> grad, Operand<T> momentum, ApplyMomentum.Options... options)
ApplyMomentum
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.grad
- The gradient.momentum
- Momentum. Must be a scalar.options
- carries optional attributes valuesApplyMomentum
public <T> TensorArrayScatter tensorArrayScatter(Operand<?> handle, Operand<Integer> indices, Operand<T> value, Operand<Float> flowIn)
TensorArrayScatter
operation to the graphhandle
- The handle to a TensorArray.indices
- The locations at which to write the tensor elements.value
- The concatenated tensor to write to the TensorArray.flowIn
- A float scalar that enforces proper chaining of operations.TensorArrayScatter
public BatchIFFT3D batchIFFT3D(Operand<?> input)
BatchIFFT3D
operation to the graphinput
- BatchIFFT3D
public <T extends Number,U extends Number> SparseSegmentSqrtNGrad<T> sparseSegmentSqrtNGrad(Operand<T> grad, Operand<U> indices, Operand<Integer> segmentIds, Operand<Integer> outputDim0)
SparseSegmentSqrtNGrad
operation to the graphgrad
- gradient propagated to the SparseSegmentSqrtN op.indices
- indices passed to the corresponding SparseSegmentSqrtN op.segmentIds
- segment_ids passed to the corresponding SparseSegmentSqrtN op.outputDim0
- dimension 0 of "data" passed to SparseSegmentSqrtN op.SparseSegmentSqrtNGrad
public <V,T,U> QuantizedMul<V> quantizedMul(Operand<T> x, Operand<U> y, Operand<Float> minX, Operand<Float> maxX, Operand<Float> minY, Operand<Float> maxY, Class<V> Toutput)
QuantizedMul
operation to the graphx
- y
- minX
- The float value that the lowest quantized `x` value represents.maxX
- The float value that the highest quantized `x` value represents.minY
- The float value that the lowest quantized `y` value represents.maxY
- The float value that the highest quantized `y` value represents.Toutput
- QuantizedMul
public <T> IFFT2D<T> iFFT2D(Operand<T> input)
IFFT2D
operation to the graphinput
- A complex tensor.IFFT2D
public <T> Inv<T> inv(Operand<T> x)
Inv
operation to the graphx
- Inv
public ExtractGlimpse extractGlimpse(Operand<Float> input, Operand<Integer> size, Operand<Float> offsets, ExtractGlimpse.Options... options)
ExtractGlimpse
operation to the graphinput
- A 4-D float tensor of shape `[batch_size, height, width, channels]`.size
- A 1-D tensor of 2 elements containing the size of the glimpsesoffsets
- A 2-D integer tensor of shape `[batch_size, 2]` containingoptions
- carries optional attributes valuesExtractGlimpse
public <T extends Number> CudnnRNNParamsToCanonical<T> cudnnRNNParamsToCanonical(Operand<Integer> numLayers, Operand<Integer> numUnits, Operand<Integer> inputSize, Operand<T> params, Long numParams, CudnnRNNParamsToCanonical.Options... options)
CudnnRNNParamsToCanonical
operation to the graphnumLayers
- numUnits
- inputSize
- params
- numParams
- options
- carries optional attributes valuesCudnnRNNParamsToCanonical
public <T extends Number> InTopKV2 inTopKV2(Operand<Float> predictions, Operand<T> targets, Operand<T> k)
InTopKV2
operation to the graphpredictions
- A `batch_size` x `classes` tensor.targets
- A `batch_size` vector of class ids.k
- Number of top elements to look at for computing precision.InTopKV2
public <U,T> Bitcast<U> bitcast(Operand<T> input, Class<U> type)
Bitcast
operation to the graphinput
- type
- Bitcast
public <T> AssignSubVariableOp assignSubVariableOp(Operand<?> resource, Operand<T> value)
AssignSubVariableOp
operation to the graphresource
- handle to the resource in which to store the variable.value
- the value by which the variable will be incremented.AssignSubVariableOp
public <T,U extends Number,V extends Number> Roll<T> roll(Operand<T> input, Operand<U> shift, Operand<V> axis)
Roll
operation to the graphinput
- shift
- Dimension must be 0-D or 1-D. `shift[i]` specifies the number of places by whichaxis
- Dimension must be 0-D or 1-D. `axis[i]` specifies the dimension that the shiftRoll
public <T extends Number> HistogramSummary histogramSummary(Operand<String> tag, Operand<T> values)
HistogramSummary
operation to the graphtag
- Scalar. Tag to use for the `Summary.Value`.values
- Any shape. Values to use to build the histogram.HistogramSummary
public <T extends Number> FusedBatchNormGrad<T> fusedBatchNormGrad(Operand<T> yBackprop, Operand<T> x, Operand<T> scale, Operand<T> reserveSpace1, Operand<T> reserveSpace2, FusedBatchNormGrad.Options... options)
FusedBatchNormGrad
operation to the graphyBackprop
- A 4D Tensor for the gradient with respect to y.x
- A 4D Tensor for input data.scale
- A 1D Tensor for scaling factor, to scale the normalized x.reserveSpace1
- When is_training is True, a 1D Tensor for the computed batchreserveSpace2
- When is_training is True, a 1D Tensor for the computed batchoptions
- carries optional attributes valuesFusedBatchNormGrad
public <T extends Number> EncodePng encodePng(Operand<T> image, EncodePng.Options... options)
EncodePng
operation to the graphimage
- 3-D with shape `[height, width, channels]`.options
- carries optional attributes valuesEncodePng
public <T extends Number,U extends Number> SparseSoftmaxCrossEntropyWithLogits<T> sparseSoftmaxCrossEntropyWithLogits(Operand<T> features, Operand<U> labels)
SparseSoftmaxCrossEntropyWithLogits
operation to the graphfeatures
- batch_size x num_classes matrixlabels
- batch_size vector with values in [0, num_classes).SparseSoftmaxCrossEntropyWithLogits
public <T> DeserializeManySparse<T> deserializeManySparse(Operand<String> serializedSparse, Class<T> dtype)
DeserializeManySparse
operation to the graphserializedSparse
- 2-D, The `N` serialized `SparseTensor` objects.dtype
- The `dtype` of the serialized `SparseTensor` objects.DeserializeManySparse
public <T> MatrixSolveLs<T> matrixSolveLs(Operand<T> matrix, Operand<T> rhs, Operand<Double> l2Regularizer, MatrixSolveLs.Options... options)
MatrixSolveLs
operation to the graphmatrix
- Shape is `[..., M, N]`.rhs
- Shape is `[..., M, K]`.l2Regularizer
- Scalar tensor.options
- carries optional attributes valuesMatrixSolveLs
public EagerPyFunc eagerPyFunc(Iterable<Operand<?>> input, String token, List<Class<?>> Tout)
EagerPyFunc
operation to the graphinput
- token
- Tout
- EagerPyFunc
public <T> EnsureShape<T> ensureShape(Operand<T> input, Shape shape)
EnsureShape
operation to the graphinput
- A tensor, whose shape is to be validated.shape
- The expected (possibly partially specified) shape of the input tensor.EnsureShape
public <T> Subtract<T> subtract(Operand<T> x, Operand<T> y)
Subtract
operation to the graphx
- y
- Subtract
public RandomShuffleQueue randomShuffleQueue(List<Class<?>> componentTypes, RandomShuffleQueue.Options... options)
RandomShuffleQueue
operation to the graphcomponentTypes
- The type of each component in a value.options
- carries optional attributes valuesRandomShuffleQueue
public StringSplitV2 stringSplitV2(Operand<String> input, Operand<String> sep, StringSplitV2.Options... options)
StringSplitV2
operation to the graphinput
- `1-D` string `Tensor`, the strings to split.sep
- `0-D` string `Tensor`, the delimiter character.options
- carries optional attributes valuesStringSplitV2
public <T> SparseReduceSum<T> sparseReduceSum(Operand<Long> inputIndices, Operand<T> inputValues, Operand<Long> inputShape, Operand<Integer> reductionAxes, SparseReduceSum.Options... options)
SparseReduceSum
operation to the graphinputIndices
- 2-D. `N x R` matrix with the indices of non-empty values in ainputValues
- 1-D. `N` non-empty values corresponding to `input_indices`.inputShape
- 1-D. Shape of the input SparseTensor.reductionAxes
- 1-D. Length-`K` vector containing the reduction axes.options
- carries optional attributes valuesSparseReduceSum
public <T> Equal equal(Operand<T> x, Operand<T> y)
Equal
operation to the graphx
- y
- Equal
public RemoteFusedGraphExecute remoteFusedGraphExecute(Iterable<Operand<?>> inputs, List<Class<?>> Toutputs, String serializedRemoteFusedGraphExecuteInfo)
RemoteFusedGraphExecute
operation to the graphinputs
- Arbitrary number of tensors with arbitrary data typesToutputs
- serializedRemoteFusedGraphExecuteInfo
- Serialized protocol bufferRemoteFusedGraphExecute
public <T,U extends Number> MirrorPad<T> mirrorPad(Operand<T> input, Operand<U> paddings, String mode)
MirrorPad
operation to the graphinput
- The input tensor to be padded.paddings
- A two-column matrix specifying the padding sizes. The number ofmode
- Either `REFLECT` or `SYMMETRIC`. In reflect mode the padded regionsMirrorPad
public <T> ResourceApplyAddSign resourceApplyAddSign(Operand<?> var, Operand<?> m, Operand<T> lr, Operand<T> alpha, Operand<T> signDecay, Operand<T> beta, Operand<T> grad, ResourceApplyAddSign.Options... options)
ResourceApplyAddSign
operation to the graphvar
- Should be from a Variable().m
- Should be from a Variable().lr
- Scaling factor. Must be a scalar.alpha
- Must be a scalar.signDecay
- Must be a scalar.beta
- Must be a scalar.grad
- The gradient.options
- carries optional attributes valuesResourceApplyAddSign
public <U,T extends Number> Complex<U> complex(Operand<T> real, Operand<T> imag, Class<U> Tout)
Complex
operation to the graphreal
- imag
- Tout
- Complex
public FakeQuantWithMinMaxVarsPerChannel fakeQuantWithMinMaxVarsPerChannel(Operand<Float> inputs, Operand<Float> min, Operand<Float> max, FakeQuantWithMinMaxVarsPerChannel.Options... options)
FakeQuantWithMinMaxVarsPerChannel
operation to the graphinputs
- min
- max
- options
- carries optional attributes valuesFakeQuantWithMinMaxVarsPerChannel
public Constant<Long> constant(long[] shape, LongBuffer data)
Constant
operation to the graphshape
- the tensor shape.data
- a buffer containing the tensor data.IllegalArgumentException
- If the tensor shape is not compatible with the bufferConstant
public <U,T extends Number> OneHot<U> oneHot(Operand<T> indices, Operand<Integer> depth, Operand<U> onValue, Operand<U> offValue, OneHot.Options... options)
OneHot
operation to the graphindices
- A tensor of indices.depth
- A scalar defining the depth of the one hot dimension.onValue
- A scalar defining the value to fill in output when `indices[j] = i`.offValue
- A scalar defining the value to fill in output when `indices[j] != i`.options
- carries optional attributes valuesOneHot
public <T,U extends Number> SparseApplyFtrlV2<T> sparseApplyFtrlV2(Operand<T> var, Operand<T> accum, Operand<T> linear, Operand<T> grad, Operand<U> indices, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> l2Shrinkage, Operand<T> lrPower, SparseApplyFtrlV2.Options... options)
SparseApplyFtrlV2
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().linear
- Should be from a Variable().grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.lr
- Scaling factor. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 shrinkage regulariation. Must be a scalar.l2Shrinkage
- lrPower
- Scaling factor. Must be a scalar.options
- carries optional attributes valuesSparseApplyFtrlV2
public DecodeJpeg decodeJpeg(Operand<String> contents, DecodeJpeg.Options... options)
DecodeJpeg
operation to the graphcontents
- 0-D. The JPEG-encoded image.options
- carries optional attributes valuesDecodeJpeg
public Constant<Float> constant(float[][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T> BiasAddGrad<T> biasAddGrad(Operand<T> outBackprop, BiasAddGrad.Options... options)
BiasAddGrad
operation to the graphoutBackprop
- Any number of dimensions.options
- carries optional attributes valuesBiasAddGrad
public UnicodeScript unicodeScript(Operand<Integer> input)
UnicodeScript
operation to the graphinput
- A Tensor of int32 Unicode code points.UnicodeScript
public Constant<Long> constant(long data)
Constant
operation to the graphdata
- The value to put into the new constant.Constant
public OptionalHasValue optionalHasValue(Operand<?> optional)
OptionalHasValue
operation to the graphoptional
- OptionalHasValue
public <T extends Number,U> ResourceScatterUpdate resourceScatterUpdate(Operand<?> resource, Operand<T> indices, Operand<U> updates)
ResourceScatterUpdate
operation to the graphresource
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to add to `ref`.ResourceScatterUpdate
public <T> Imag<Float> imag(Operand<T> input)
Imag
operation to the graphinput
- Imag
public <T> DiagPart<T> diagPart(Operand<T> input)
DiagPart
operation to the graphinput
- Rank k tensor where k is even and not zero.DiagPart
public <T,U> LookupTableInsert lookupTableInsert(Operand<?> tableHandle, Operand<T> keys, Operand<U> values)
LookupTableInsert
operation to the graphtableHandle
- Handle to the table.keys
- Any shape. Keys to look up.values
- Values to associate with keys.LookupTableInsert
public <T,V extends Number,U extends Number> UniqueV2<T,V> uniqueV2(Operand<T> x, Operand<U> axis, Class<V> outIdx)
UniqueV2
operation to the graphx
- A `Tensor`.axis
- A `Tensor` of type `int32` (default: None). The axis of the Tensor tooutIdx
- UniqueV2
public <T> QuantizeV2<T> quantizeV2(Operand<Float> input, Operand<Float> minRange, Operand<Float> maxRange, Class<T> T, QuantizeV2.Options... options)
QuantizeV2
operation to the graphinput
- minRange
- The minimum scalar value possibly produced for the input.maxRange
- The maximum scalar value possibly produced for the input.T
- options
- carries optional attributes valuesQuantizeV2
public LearnedUnigramCandidateSampler learnedUnigramCandidateSampler(Operand<Long> trueClasses, Long numTrue, Long numSampled, Boolean unique, Long rangeMax, LearnedUnigramCandidateSampler.Options... options)
LearnedUnigramCandidateSampler
operation to the graphtrueClasses
- A batch_size * num_true matrix, in which each row contains thenumTrue
- Number of true labels per context.numSampled
- Number of candidates to randomly sample.unique
- If unique is true, we sample with rejection, so that all sampledrangeMax
- The sampler will sample integers from the interval [0, range_max).options
- carries optional attributes valuesLearnedUnigramCandidateSampler
public <T> TruncateDiv<T> truncateDiv(Operand<T> x, Operand<T> y)
TruncateDiv
operation to the graphx
- y
- TruncateDiv
public <V extends Number,T extends Number,U extends Number> StatelessRandomNormal<V> statelessRandomNormal(Operand<T> shape, Operand<U> seed, Class<V> dtype)
StatelessRandomNormal
operation to the graphshape
- The shape of the output tensor.seed
- 2 seeds (shape [2]).dtype
- The type of the output.StatelessRandomNormal
public Constant<Double> constant(double[][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T,U extends Number> SparseApplyAdadelta<T> sparseApplyAdadelta(Operand<T> var, Operand<T> accum, Operand<T> accumUpdate, Operand<T> lr, Operand<T> rho, Operand<T> epsilon, Operand<T> grad, Operand<U> indices, SparseApplyAdadelta.Options... options)
SparseApplyAdadelta
operation to the graphvar
- accum
- Should be from a Variable().accumUpdate
- : Should be from a Variable().lr
- Learning rate. Must be a scalar.rho
- Decay factor. Must be a scalar.epsilon
- Constant factor. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.options
- carries optional attributes valuesSparseApplyAdadelta
public <T> AsString asString(Operand<T> input, AsString.Options... options)
AsString
operation to the graphinput
- options
- carries optional attributes valuesAsString
public <T> AddV2<T> addV2(Operand<T> x, Operand<T> y)
AddV2
operation to the graphx
- y
- AddV2
public FIFOQueue fIFOQueue(List<Class<?>> componentTypes, FIFOQueue.Options... options)
FIFOQueue
operation to the graphcomponentTypes
- The type of each component in a value.options
- carries optional attributes valuesFIFOQueue
public <T extends Number> BesselI1e<T> besselI1e(Operand<T> x)
BesselI1e
operation to the graphx
- BesselI1e
public <T extends Number> BitwiseAnd<T> bitwiseAnd(Operand<T> x, Operand<T> y)
BitwiseAnd
operation to the graphx
- y
- BitwiseAnd
public <T> Sub<T> sub(Operand<T> x, Operand<T> y)
Sub
operation to the graphx
- y
- Sub
public <T> BatchNormWithGlobalNormalization<T> batchNormWithGlobalNormalization(Operand<T> t, Operand<T> m, Operand<T> v, Operand<T> beta, Operand<T> gamma, Float varianceEpsilon, Boolean scaleAfterNormalization)
BatchNormWithGlobalNormalization
operation to the grapht
- A 4D input Tensor.m
- A 1D mean Tensor with size matching the last dimension of t.v
- A 1D variance Tensor with size matching the last dimension of t.beta
- A 1D beta Tensor with size matching the last dimension of t.gamma
- A 1D gamma Tensor with size matching the last dimension of t.varianceEpsilon
- A small float number to avoid dividing by 0.scaleAfterNormalization
- A bool indicating whether the resulted tensorBatchNormWithGlobalNormalization
public MapClear mapClear(List<Class<?>> dtypes, MapClear.Options... options)
MapClear
operation to the graphdtypes
- options
- carries optional attributes valuesMapClear
public <T> SerializeTensor serializeTensor(Operand<T> tensor)
SerializeTensor
operation to the graphtensor
- A Tensor of type `T`.SerializeTensor
public <T> Size<Integer> size(Operand<T> input)
Size
operation to the graphinput
- Size
public <T> SerializeManySparse<String> serializeManySparse(Operand<Long> sparseIndices, Operand<T> sparseValues, Operand<Long> sparseShape)
SerializeManySparse
operation to the graphsparseIndices
- 2-D. The `indices` of the minibatch `SparseTensor`.sparseValues
- 1-D. The `values` of the minibatch `SparseTensor`.sparseShape
- 1-D. The `shape` of the minibatch `SparseTensor`.SerializeManySparse
public Constant<Float> constant(float[][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public StagePeek stagePeek(Operand<Integer> index, List<Class<?>> dtypes, StagePeek.Options... options)
StagePeek
operation to the graphindex
- dtypes
- options
- carries optional attributes valuesStagePeek
public IteratorGetNextSync iteratorGetNextSync(Operand<?> iterator, List<Class<?>> outputTypes, List<Shape> outputShapes)
IteratorGetNextSync
operation to the graphiterator
- outputTypes
- outputShapes
- IteratorGetNextSync
public <T> Sign<T> sign(Operand<T> x)
Sign
operation to the graphx
- Sign
public <T> ZerosLike<T> zerosLike(Operand<T> x)
ZerosLike
operation to the graphx
- a tensor of type T.ZerosLike
public <T> TensorArrayPack<T> tensorArrayPack(Operand<String> handle, Operand<Float> flowIn, Class<T> dtype, TensorArrayPack.Options... options)
TensorArrayPack
operation to the graphhandle
- flowIn
- dtype
- options
- carries optional attributes valuesTensorArrayPack
public <T,U extends Number> ReduceMean<T> reduceMean(Operand<T> input, Operand<U> axis, ReduceMean.Options... options)
ReduceMean
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesReduceMean
public BatchFFT batchFFT(Operand<?> input)
BatchFFT
operation to the graphinput
- BatchFFT
public BatchFFT3D batchFFT3D(Operand<?> input)
BatchFFT3D
operation to the graphinput
- BatchFFT3D
public <T> Log1p<T> log1p(Operand<T> x)
Log1p
operation to the graphx
- Log1p
public <T,U extends Number> ArgMax<Long> argMax(Operand<T> input, Operand<U> dimension)
ArgMax
operation to the graphinput
- dimension
- int32 or int64, must be in the range `[-rank(input), rank(input))`.ArgMax
public ParseExample parseExample(Operand<String> serialized, Operand<String> names, Iterable<Operand<String>> sparseKeys, Iterable<Operand<String>> denseKeys, Iterable<Operand<?>> denseDefaults, List<Class<?>> sparseTypes, List<Shape> denseShapes)
ParseExample
operation to the graphserialized
- A vector containing a batch of binary serialized Example protos.names
- A vector containing the names of the serialized protos.sparseKeys
- A list of Nsparse string Tensors (scalars).denseKeys
- A list of Ndense string Tensors (scalars).denseDefaults
- A list of Ndense Tensors (some may be empty).sparseTypes
- A list of Nsparse types; the data types of data in each FeaturedenseShapes
- A list of Ndense shapes; the shapes of data in each FeatureParseExample
public <T> Lu<T,Integer> lu(Operand<T> input)
Lu
operation to the graphinput
- A tensor of shape `[..., M, M]` whose inner-most 2 dimensions form matrices ofLu
public FakeQuantWithMinMaxArgs fakeQuantWithMinMaxArgs(Operand<Float> inputs, FakeQuantWithMinMaxArgs.Options... options)
FakeQuantWithMinMaxArgs
operation to the graphinputs
- options
- carries optional attributes valuesFakeQuantWithMinMaxArgs
public <T> Pow<T> pow(Operand<T> x, Operand<T> y)
Pow
operation to the graphx
- y
- Pow
public <T extends Number,U extends Number> StatelessMultinomial<Long> statelessMultinomial(Operand<T> logits, Operand<Integer> numSamples, Operand<U> seed)
StatelessMultinomial
operation to the graphlogits
- 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]`numSamples
- 0-D. Number of independent samples to draw for each row slice.seed
- 2 seeds (shape [2]).StatelessMultinomial
public <T> BatchSvd<T> batchSvd(Operand<T> input, BatchSvd.Options... options)
BatchSvd
operation to the graphinput
- options
- carries optional attributes valuesBatchSvd
public QueueClose queueClose(Operand<?> handle, QueueClose.Options... options)
QueueClose
operation to the graphhandle
- The handle to a queue.options
- carries optional attributes valuesQueueClose
public <T> Atan<T> atan(Operand<T> x)
Atan
operation to the graphx
- Atan
public <T,U extends Number> ReduceMax<T> reduceMax(Operand<T> input, Operand<U> axis, ReduceMax.Options... options)
ReduceMax
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesReduceMax
public TensorListLength tensorListLength(Operand<?> inputHandle)
TensorListLength
operation to the graphinputHandle
- TensorListLength
public Constant<Integer> constant(int[] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public OrderedMapPeek orderedMapPeek(Operand<Long> key, Operand<Integer> indices, List<Class<?>> dtypes, OrderedMapPeek.Options... options)
OrderedMapPeek
operation to the graphkey
- indices
- dtypes
- options
- carries optional attributes valuesOrderedMapPeek
public InitializeTableFromTextFile initializeTableFromTextFile(Operand<?> tableHandle, Operand<String> filename, Long keyIndex, Long valueIndex, InitializeTableFromTextFile.Options... options)
InitializeTableFromTextFile
operation to the graphtableHandle
- Handle to a table which will be initialized.filename
- Filename of a vocabulary text file.keyIndex
- Column index in a line to get the table `key` values from.valueIndex
- Column index that represents information of a line to get the tableoptions
- carries optional attributes valuesInitializeTableFromTextFile
public <T> Expm1<T> expm1(Operand<T> x)
Expm1
operation to the graphx
- Expm1
public <T extends Number> L2Loss<T> l2Loss(Operand<T> t)
L2Loss
operation to the grapht
- Typically 2-D, but may have any dimensions.L2Loss
public <T extends Number> Any any(Operand<Boolean> input, Operand<T> axis, Any.Options... options)
Any
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesAny
public <T extends Number,U> ResourceScatterNdUpdate resourceScatterNdUpdate(Operand<?> ref, Operand<T> indices, Operand<U> updates, ResourceScatterNdUpdate.Options... options)
ResourceScatterNdUpdate
operation to the graphref
- A resource handle. Must be from a VarHandleOp.indices
- A Tensor. Must be one of the following types: int32, int64.updates
- A Tensor. Must have the same type as ref. A tensor of updatedoptions
- carries optional attributes valuesResourceScatterNdUpdate
public <T,U extends Number> UniqueV2<T,Integer> uniqueV2(Operand<T> x, Operand<U> axis)
UniqueV2
operation to the graphx
- A `Tensor`.axis
- A `Tensor` of type `int32` (default: None). The axis of the Tensor toUniqueV2
public <U extends Number,T extends Number> RandomNormal<U> randomNormal(Operand<T> shape, Class<U> dtype, RandomNormal.Options... options)
RandomNormal
operation to the graphshape
- The shape of the output tensor.dtype
- The type of the output.options
- carries optional attributes valuesRandomNormal
public <T> ClipByValue<T> clipByValue(Operand<T> t, Operand<T> clipValueMin, Operand<T> clipValueMax)
ClipByValue
operation to the grapht
- A `Tensor`.clipValueMin
- A 0-D (scalar) `Tensor`, or a `Tensor` with the same shapeclipValueMax
- A 0-D (scalar) `Tensor`, or a `Tensor` with the same shapeClipByValue
public <T> Svd<T> svd(Operand<T> input, Svd.Options... options)
Svd
operation to the graphinput
- A tensor of shape `[..., M, N]` whose inner-most 2 dimensionsoptions
- carries optional attributes valuesSvd
public <T> SparseReduceSumSparse<T> sparseReduceSumSparse(Operand<Long> inputIndices, Operand<T> inputValues, Operand<Long> inputShape, Operand<Integer> reductionAxes, SparseReduceSumSparse.Options... options)
SparseReduceSumSparse
operation to the graphinputIndices
- 2-D. `N x R` matrix with the indices of non-empty values in ainputValues
- 1-D. `N` non-empty values corresponding to `input_indices`.inputShape
- 1-D. Shape of the input SparseTensor.reductionAxes
- 1-D. Length-`K` vector containing the reduction axes.options
- carries optional attributes valuesSparseReduceSumSparse
public <T> Asinh<T> asinh(Operand<T> x)
Asinh
operation to the graphx
- Asinh
public <T extends Number> RGBToHSV<T> rGBToHSV(Operand<T> images)
RGBToHSV
operation to the graphimages
- 1-D or higher rank. RGB data to convert. Last dimension must be size 3.RGBToHSV
public <T extends Number> Elu<T> elu(Operand<T> features)
Elu
operation to the graphfeatures
- Elu
public Batch batch(Iterable<Operand<?>> inTensors, Long numBatchThreads, Long maxBatchSize, Long batchTimeoutMicros, Long gradTimeoutMicros, Batch.Options... options)
Batch
operation to the graphinTensors
- numBatchThreads
- maxBatchSize
- batchTimeoutMicros
- gradTimeoutMicros
- options
- carries optional attributes valuesBatch
public RecordInput recordInput(String filePattern, RecordInput.Options... options)
RecordInput
operation to the graphfilePattern
- Glob pattern for the data files.options
- carries optional attributes valuesRecordInput
public <T extends Number> Dilation2DBackpropFilter<T> dilation2DBackpropFilter(Operand<T> input, Operand<T> filter, Operand<T> outBackprop, List<Long> strides, List<Long> rates, String padding)
Dilation2DBackpropFilter
operation to the graphinput
- 4-D with shape `[batch, in_height, in_width, depth]`.filter
- 3-D with shape `[filter_height, filter_width, depth]`.outBackprop
- 4-D with shape `[batch, out_height, out_width, depth]`.strides
- 1-D of length 4. The stride of the sliding window for each dimension ofrates
- 1-D of length 4. The input stride for atrous morphological dilation.padding
- The type of padding algorithm to use.Dilation2DBackpropFilter
public <T extends Number> AvgPool3DGrad<T> avgPool3DGrad(Operand<Integer> origInputShape, Operand<T> grad, List<Long> ksize, List<Long> strides, String padding, AvgPool3DGrad.Options... options)
AvgPool3DGrad
operation to the graphorigInputShape
- The original input dimensions.grad
- Output backprop of shape `[batch, depth, rows, cols, channels]`.ksize
- 1-D tensor of length 5. The size of the window for each dimension ofstrides
- 1-D tensor of length 5. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesAvgPool3DGrad
public <T> Angle<Float> angle(Operand<T> input)
Angle
operation to the graphinput
- Angle
public <T extends Number,U> ResourceScatterMin resourceScatterMin(Operand<?> resource, Operand<T> indices, Operand<U> updates)
ResourceScatterMin
operation to the graphresource
- Should be from a `Variable` node.indices
- A tensor of indices into the first dimension of `ref`.updates
- A tensor of updated values to add to `ref`.ResourceScatterMin
public <T> Sin<T> sin(Operand<T> x)
Sin
operation to the graphx
- Sin
public SaveV2 saveV2(Operand<String> prefix, Operand<String> tensorNames, Operand<String> shapeAndSlices, Iterable<Operand<?>> tensors)
SaveV2
operation to the graphprefix
- Must have a single element. The prefix of the V2 checkpoint to which wetensorNames
- shape {N}. The names of the tensors to be saved.shapeAndSlices
- shape {N}. The slice specs of the tensors to be saved.tensors
- `N` tensors to save.SaveV2
public <T,U extends Number> ResourceSparseApplyAdadelta resourceSparseApplyAdadelta(Operand<?> var, Operand<?> accum, Operand<?> accumUpdate, Operand<T> lr, Operand<T> rho, Operand<T> epsilon, Operand<T> grad, Operand<U> indices, ResourceSparseApplyAdadelta.Options... options)
ResourceSparseApplyAdadelta
operation to the graphvar
- accum
- Should be from a Variable().accumUpdate
- : Should be from a Variable().lr
- Learning rate. Must be a scalar.rho
- Decay factor. Must be a scalar.epsilon
- Constant factor. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.options
- carries optional attributes valuesResourceSparseApplyAdadelta
public <U extends Number,T extends Number> RandomPoisson<U> randomPoisson(Operand<T> shape, Operand<U> rate, RandomPoisson.Options... options)
RandomPoisson
operation to the graphshape
- rate
- options
- carries optional attributes valuesRandomPoisson
public <T,U extends Number> ScatterNdNonAliasingAdd<T> scatterNdNonAliasingAdd(Operand<T> input, Operand<U> indices, Operand<T> updates)
ScatterNdNonAliasingAdd
operation to the graphinput
- A Tensor.indices
- A Tensor. Must be one of the following types: `int32`, `int64`.updates
- A Tensor. Must have the same type as ref. A tensor of updated valuesScatterNdNonAliasingAdd
public <T> TensorArrayGather<T> tensorArrayGather(Operand<?> handle, Operand<Integer> indices, Operand<Float> flowIn, Class<T> dtype, TensorArrayGather.Options... options)
TensorArrayGather
operation to the graphhandle
- The handle to a TensorArray.indices
- The locations in the TensorArray from which to read tensor elements.flowIn
- A float scalar that enforces proper chaining of operations.dtype
- The type of the elem that is returned.options
- carries optional attributes valuesTensorArrayGather
public <T> Cosh<T> cosh(Operand<T> x)
Cosh
operation to the graphx
- Cosh
public <T,U extends Number> Unique<T,U> unique(Operand<T> x, Class<U> outIdx)
Unique
operation to the graphx
- 1-D.outIdx
- Unique
public <T> TensorListConcatLists tensorListConcatLists(Operand<?> inputA, Operand<?> inputB, Class<T> elementDtype)
TensorListConcatLists
operation to the graphinputA
- inputB
- elementDtype
- TensorListConcatLists
public WholeFileReader wholeFileReader(WholeFileReader.Options... options)
WholeFileReader
operation to the graphoptions
- carries optional attributes valuesWholeFileReader
public DeserializeIterator deserializeIterator(Operand<?> resourceHandle, Operand<?> serialized)
DeserializeIterator
operation to the graphresourceHandle
- A handle to an iterator resource.serialized
- A variant tensor storing the state of the iterator contained in theDeserializeIterator
public AccumulatorSetGlobalStep accumulatorSetGlobalStep(Operand<String> handle, Operand<Long> newGlobalStep)
AccumulatorSetGlobalStep
operation to the graphhandle
- The handle to an accumulator.newGlobalStep
- The new global_step value to set.AccumulatorSetGlobalStep
public <U,T> LookupTableFind<U> lookupTableFind(Operand<?> tableHandle, Operand<T> keys, Operand<U> defaultValue)
LookupTableFind
operation to the graphtableHandle
- Handle to the table.keys
- Any shape. Keys to look up.defaultValue
- LookupTableFind
public <T extends Number> Range<T> range(Operand<T> start, Operand<T> limit, Operand<T> delta)
Range
operation to the graphstart
- 0-D (scalar). First entry in the sequence.limit
- 0-D (scalar). Upper limit of sequence, exclusive.delta
- 0-D (scalar). Optional. Default is 1. Number that increments `start`.Range
public <T> DenseToSparseSetOperation<T> denseToSparseSetOperation(Operand<T> set1, Operand<Long> set2Indices, Operand<T> set2Values, Operand<Long> set2Shape, String setOperation, DenseToSparseSetOperation.Options... options)
DenseToSparseSetOperation
operation to the graphset1
- `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set2`.set2Indices
- 2D `Tensor`, indices of a `SparseTensor`. Must be in row-majorset2Values
- 1D `Tensor`, values of a `SparseTensor`. Must be in row-majorset2Shape
- 1D `Tensor`, shape of a `SparseTensor`. `set2_shape[0...n-1]` mustsetOperation
- options
- carries optional attributes valuesDenseToSparseSetOperation
public StringSplit stringSplit(Operand<String> input, Operand<String> delimiter, StringSplit.Options... options)
StringSplit
operation to the graphinput
- 1-D. Strings to split.delimiter
- 0-D. Delimiter characters (bytes), or empty string.options
- carries optional attributes valuesStringSplit
public TensorArrayGrad tensorArrayGrad(Operand<?> handle, Operand<Float> flowIn, String source)
TensorArrayGrad
operation to the graphhandle
- The handle to the forward TensorArray.flowIn
- A float scalar that enforces proper chaining of operations.source
- The gradient source string, used to decide which gradient TensorArrayTensorArrayGrad
public DecodeGif decodeGif(Operand<String> contents)
DecodeGif
operation to the graphcontents
- 0-D. The GIF-encoded image.DecodeGif
public <T> TensorSummaryV2 tensorSummaryV2(Operand<String> tag, Operand<T> tensor, Operand<String> serializedSummaryMetadata)
TensorSummaryV2
operation to the graphtag
- A string attached to this summary. Used for organization in TensorBoard.tensor
- A tensor to serialize.serializedSummaryMetadata
- A serialized SummaryMetadata proto. Contains pluginTensorSummaryV2
public <T,U extends Number> SetDiff1D<T,U> setDiff1D(Operand<T> x, Operand<T> y, Class<U> outIdx)
SetDiff1D
operation to the graphx
- 1-D. Values to keep.y
- 1-D. Values to remove.outIdx
- SetDiff1D
public <T> Constant<T> constant(Class<T> type, long[] shape, ByteBuffer data)
Constant
operation to the graphtype
- the tensor datatype.shape
- the tensor shape.data
- a buffer containing the tensor data.IllegalArgumentException
- If the tensor datatype or shape is not compatible with theConstant
public <T extends Number> LeftShift<T> leftShift(Operand<T> x, Operand<T> y)
LeftShift
operation to the graphx
- y
- LeftShift
public Constant<String> constant(byte[][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. String elements areConstant
public ParseSingleSequenceExample parseSingleSequenceExample(Operand<String> serialized, Operand<String> featureListDenseMissingAssumedEmpty, Iterable<Operand<String>> contextSparseKeys, Iterable<Operand<String>> contextDenseKeys, Iterable<Operand<String>> featureListSparseKeys, Iterable<Operand<String>> featureListDenseKeys, Iterable<Operand<?>> contextDenseDefaults, Operand<String> debugName, List<Class<?>> contextSparseTypes, List<Class<?>> featureListDenseTypes, List<Class<?>> featureListSparseTypes, ParseSingleSequenceExample.Options... options)
ParseSingleSequenceExample
operation to the graphserialized
- A scalar containing a binary serialized SequenceExample proto.featureListDenseMissingAssumedEmpty
- A vector listing thecontextSparseKeys
- A list of Ncontext_sparse string Tensors (scalars).contextDenseKeys
- A list of Ncontext_dense string Tensors (scalars).featureListSparseKeys
- A list of Nfeature_list_sparse string TensorsfeatureListDenseKeys
- A list of Nfeature_list_dense string Tensors (scalars).contextDenseDefaults
- A list of Ncontext_dense Tensors (some may be empty).debugName
- A scalar containing the name of the serialized proto.contextSparseTypes
- A list of Ncontext_sparse types; the data types of data infeatureListDenseTypes
- featureListSparseTypes
- A list of Nfeature_list_sparse types; the data typesoptions
- carries optional attributes valuesParseSingleSequenceExample
public <T> OnesLike<T> onesLike(Operand<T> x)
OnesLike
operation to the graphx
- a tensor of type T.OnesLike
public <T extends Number> LessEqual lessEqual(Operand<T> x, Operand<T> y)
LessEqual
operation to the graphx
- y
- LessEqual
public <T extends Number> Dilation2D<T> dilation2D(Operand<T> input, Operand<T> filter, List<Long> strides, List<Long> rates, String padding)
Dilation2D
operation to the graphinput
- 4-D with shape `[batch, in_height, in_width, depth]`.filter
- 3-D with shape `[filter_height, filter_width, depth]`.strides
- The stride of the sliding window for each dimension of the inputrates
- The input stride for atrous morphological dilation. Must be:padding
- The type of padding algorithm to use.Dilation2D
public <T> Unbatch<T> unbatch(Operand<T> batchedTensor, Operand<Long> batchIndex, Operand<Long> id, Long timeoutMicros, Unbatch.Options... options)
Unbatch
operation to the graphbatchedTensor
- batchIndex
- id
- timeoutMicros
- options
- carries optional attributes valuesUnbatch
public Constant<Double> constant(double[][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T extends Number,U extends Number> StatelessTruncatedNormal<Float> statelessTruncatedNormal(Operand<T> shape, Operand<U> seed)
StatelessTruncatedNormal
operation to the graphshape
- The shape of the output tensor.seed
- 2 seeds (shape [2]).StatelessTruncatedNormal
public <T> CompareAndBitpack compareAndBitpack(Operand<T> input, Operand<T> threshold)
CompareAndBitpack
operation to the graphinput
- Values to compare against `threshold` and bitpack.threshold
- Threshold to compare against.CompareAndBitpack
public Constant<Long> constant(long[][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T extends Number,U extends Number> FusedBatchNormGradV2<T,U> fusedBatchNormGradV2(Operand<T> yBackprop, Operand<T> x, Operand<Float> scale, Operand<U> reserveSpace1, Operand<U> reserveSpace2, FusedBatchNormGradV2.Options... options)
FusedBatchNormGradV2
operation to the graphyBackprop
- A 4D Tensor for the gradient with respect to y.x
- A 4D Tensor for input data.scale
- A 1D Tensor for scaling factor, to scale the normalized x.reserveSpace1
- When is_training is True, a 1D Tensor for the computed batchreserveSpace2
- When is_training is True, a 1D Tensor for the computed batchoptions
- carries optional attributes valuesFusedBatchNormGradV2
public <T extends Number> QuantizeAndDequantize<T> quantizeAndDequantize(Operand<T> input, QuantizeAndDequantize.Options... options)
QuantizeAndDequantize
operation to the graphinput
- options
- carries optional attributes valuesQuantizeAndDequantize
public <T extends Number,U extends Number> RandomPoissonV2<Long> randomPoissonV2(Operand<T> shape, Operand<U> rate, RandomPoissonV2.Options... options)
RandomPoissonV2
operation to the graphshape
- 1-D integer tensor. Shape of independent samples to draw from eachrate
- A tensor in which each scalar is a "rate" parameter describing theoptions
- carries optional attributes valuesRandomPoissonV2
public <T> GuaranteeConst<T> guaranteeConst(Operand<T> input)
GuaranteeConst
operation to the graphinput
- GuaranteeConst
public <T> Sinh<T> sinh(Operand<T> x)
Sinh
operation to the graphx
- Sinh
public <T> Cos<T> cos(Operand<T> x)
Cos
operation to the graphx
- Cos
public MutexLock mutexLock(Operand<?> mutex)
MutexLock
operation to the graphmutex
- The mutex resource to lock.MutexLock
public <T> PlaceholderV2<T> placeholderV2(Class<T> dtype, Shape shape)
PlaceholderV2
operation to the graphdtype
- The type of elements in the tensor.shape
- The shape of the tensor. The shape can be any partially-specifiedPlaceholderV2
public <T> SparseSliceGrad<T> sparseSliceGrad(Operand<T> backpropValGrad, Operand<Long> inputIndices, Operand<Long> inputStart, Operand<Long> outputIndices)
SparseSliceGrad
operation to the graphbackpropValGrad
- 1-D. The gradient with respect toinputIndices
- 2-D. The `indices` of the input `SparseTensor`.inputStart
- 1-D. tensor represents the start of the slice.outputIndices
- 2-D. The `indices` of the sliced `SparseTensor`.SparseSliceGrad
public <T> ApproximateEqual approximateEqual(Operand<T> x, Operand<T> y, ApproximateEqual.Options... options)
ApproximateEqual
operation to the graphx
- y
- options
- carries optional attributes valuesApproximateEqual
public <V extends Number,T,U extends Number> ArgMax<V> argMax(Operand<T> input, Operand<U> dimension, Class<V> outputType)
ArgMax
operation to the graphinput
- dimension
- int32 or int64, must be in the range `[-rank(input), rank(input))`.outputType
- ArgMax
public Constant<Long> constant(long[][][][][][] data)
Constant
operation to the graphdata
- An array containing the values to put into the new constant. The dimensions of theConstant
public <T,U extends Number> ResourceSparseApplyProximalAdagrad resourceSparseApplyProximalAdagrad(Operand<?> var, Operand<?> accum, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<T> grad, Operand<U> indices, ResourceSparseApplyProximalAdagrad.Options... options)
ResourceSparseApplyProximalAdagrad
operation to the graphvar
- Should be from a Variable().accum
- Should be from a Variable().lr
- Learning rate. Must be a scalar.l1
- L1 regularization. Must be a scalar.l2
- L2 regularization. Must be a scalar.grad
- The gradient.indices
- A vector of indices into the first dimension of var and accum.options
- carries optional attributes valuesResourceSparseApplyProximalAdagrad
public Constant<Double> constant(double data)
Constant
operation to the graphdata
- The value to put into the new constant.Constant
public <T,U extends Number> UniqueWithCounts<T,U> uniqueWithCounts(Operand<T> x, Class<U> outIdx)
UniqueWithCounts
operation to the graphx
- 1-D.outIdx
- UniqueWithCounts
public <T,U extends Number> Min<T> min(Operand<T> input, Operand<U> axis, Min.Options... options)
Min
operation to the graphinput
- The tensor to reduce.axis
- The dimensions to reduce. Must be in the rangeoptions
- carries optional attributes valuesMin
public <T> MatrixDiagPart<T> matrixDiagPart(Operand<T> input)
MatrixDiagPart
operation to the graphinput
- Rank `k` tensor where `k >= 2`.MatrixDiagPart
public <T extends Number> DataFormatVecPermute<T> dataFormatVecPermute(Operand<T> x, DataFormatVecPermute.Options... options)
DataFormatVecPermute
operation to the graphx
- Vector of size 4 or Tensor of shape (4, 2) in source data format.options
- carries optional attributes valuesDataFormatVecPermute
public RFFT2D rFFT2D(Operand<Float> input, Operand<Integer> fftLength)
RFFT2D
operation to the graphinput
- A float32 tensor.fftLength
- An int32 tensor of shape [2]. The FFT length for each dimension.RFFT2D
public <T extends Number> BatchMatrixSolve<T> batchMatrixSolve(Operand<T> matrix, Operand<T> rhs, BatchMatrixSolve.Options... options)
BatchMatrixSolve
operation to the graphmatrix
- rhs
- options
- carries optional attributes valuesBatchMatrixSolve
public Iterator iterator(String sharedName, String container, List<Class<?>> outputTypes, List<Shape> outputShapes)
Iterator
operation to the graphsharedName
- container
- outputTypes
- outputShapes
- Iterator
public <T,U extends Number> Transpose<T> transpose(Operand<T> x, Operand<U> perm)
Transpose
operation to the graphx
- perm
- Transpose
public <T extends Number> Conv2D<T> conv2D(Operand<T> input, Operand<T> filter, List<Long> strides, String padding, Conv2D.Options... options)
Conv2D
operation to the graphinput
- A 4-D tensor. The dimension order is interpreted according to the valuefilter
- A 4-D tensor of shapestrides
- 1-D tensor of length 4. The stride of the sliding window for eachpadding
- The type of padding algorithm to use.options
- carries optional attributes valuesConv2D
public Ops withSubScope(String childScopeName)
Scope#withSubScope(String)}
public Ops withName(String opName)
Scope#withName(String)}
Copyright © 2015–2019. All rights reserved.