T
- data type for out()
output@Operator(group="train") public final class ApplyAdam<T> extends PrimitiveOp implements Operand<T>
$$lr_t := \text{learning\_rate} * \sqrt{1 - beta_2^t} / (1 - beta_1^t)$$ $$m_t := beta_1 * m_{t-1} + (1 - beta_1) * g$$ $$v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g$$ $$variable := variable - lr_t * m_t / (\sqrt{v_t} + \epsilon)$$
Modifier and Type | Class and Description |
---|---|
static class |
ApplyAdam.Options
Optional attributes for
ApplyAdam |
operation
Modifier and Type | Method and Description |
---|---|
Output<T> |
asOutput()
Returns the symbolic handle of a tensor.
|
static <T> ApplyAdam<T> |
create(Scope scope,
Operand<T> var,
Operand<T> m,
Operand<T> v,
Operand<T> beta1Power,
Operand<T> beta2Power,
Operand<T> lr,
Operand<T> beta1,
Operand<T> beta2,
Operand<T> epsilon,
Operand<T> grad,
ApplyAdam.Options... options)
Factory method to create a class wrapping a new ApplyAdam operation.
|
Output<T> |
out()
Same as "var".
|
static ApplyAdam.Options |
useLocking(Boolean useLocking) |
static ApplyAdam.Options |
useNesterov(Boolean useNesterov) |
equals, hashCode, op, toString
public static <T> ApplyAdam<T> create(Scope scope, Operand<T> var, Operand<T> m, Operand<T> v, Operand<T> beta1Power, Operand<T> beta2Power, Operand<T> lr, Operand<T> beta1, Operand<T> beta2, Operand<T> epsilon, Operand<T> grad, ApplyAdam.Options... options)
scope
- current scopevar
- Should be from a Variable().m
- Should be from a Variable().v
- Should be from a Variable().beta1Power
- Must be a scalar.beta2Power
- Must be a scalar.lr
- Scaling factor. Must be a scalar.beta1
- Momentum factor. Must be a scalar.beta2
- Momentum factor. Must be a scalar.epsilon
- Ridge term. Must be a scalar.grad
- The gradient.options
- carries optional attributes valuespublic static ApplyAdam.Options useLocking(Boolean useLocking)
useLocking
- If `True`, updating of the var, m, and v tensors will be protected
by a lock; otherwise the behavior is undefined, but may exhibit less
contention.public static ApplyAdam.Options useNesterov(Boolean useNesterov)
useNesterov
- If `True`, uses the nesterov update.public Output<T> asOutput()
Operand
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
asOutput
in interface Operand<T>
OperationBuilder.addInput(Output)
Copyright © 2015–2019. All rights reserved.