trait TraverseFilter[F[_]] extends Traverse[F] with FunctorFilter[F] with Serializable

TraverseFilter, also known as Witherable, represents list-like structures that can essentially have a traverse and a filter applied as a single combined operation (traverseFilter).

Must obey the laws defined in cats.laws.TraverseFilterLaws.

Based on Haskell's Data.Witherable

Self Type
TraverseFilter[F]
Linear Supertypes
FunctorFilter[F], Traverse[F], Foldable[F], Functor[F], Invariant[F], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TraverseFilter
  2. FunctorFilter
  3. Traverse
  4. Foldable
  5. Functor
  6. Invariant
  7. Serializable
  8. Serializable
  9. AnyRef
  10. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def foldLeft[A, B](fa: F[A], b: B)(f: (B, A) ⇒ B): B

    Left associative fold on 'F' using the function 'f'.

    Left associative fold on 'F' using the function 'f'.

    Definition Classes
    Foldable
  2. abstract def foldRight[A, B](fa: F[A], lb: Eval[B])(f: (A, Eval[B]) ⇒ Eval[B]): Eval[B]

    Right associative lazy fold on F using the folding function 'f'.

    Right associative lazy fold on F using the folding function 'f'.

    This method evaluates lb lazily (in some cases it will not be needed), and returns a lazy value. We are using (A, Eval[B]) => Eval[B] to support laziness in a stack-safe way. Chained computation should be performed via .map and .flatMap.

    For more detailed information about how this method works see the documentation for Eval[_].

    Definition Classes
    Foldable
  3. abstract def traverseFilter[G[_], A, B](fa: F[A])(f: (A) ⇒ G[Option[B]])(implicit arg0: Applicative[G]): G[F[B]]

    A combined traverse and filter.

    A combined traverse and filter. Filtering is handled via Option instead of Boolean such that the output type B can be different than the input type A.

    Example:

    scala> import cats.implicits._
    scala> val m: Map[Int, String] = Map(1 -> "one", 3 -> "three")
    scala> val l: List[Int] = List(1, 2, 3, 4)
    scala> def asString(i: Int): Eval[Option[String]] = Now(m.get(i))
    scala> val result: Eval[List[String]] = l.traverseFilter(asString)
    scala> result.value
    res0: List[String] = List(one, three)

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def as[A, B](fa: F[A], b: B): F[B]

    Replaces the A value in F[A] with the supplied value.

    Replaces the A value in F[A] with the supplied value.

    Definition Classes
    Functor
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def collect[A, B](fa: F[A])(f: PartialFunction[A, B]): F[B]

    Similar to mapFilter but uses a partial function instead of a function that returns an Option.

    Similar to mapFilter but uses a partial function instead of a function that returns an Option.

    Example:

    scala> import cats.implicits._
    scala> val l: List[Int] = List(1, 2, 3, 4)
    scala> FunctorFilter[List].collect(l){
         |   case 1 => "one"
         |   case 3 => "three"
         | }
    res0: List[String] = List(one, three)
    Definition Classes
    FunctorFilter
  8. def combineAll[A](fa: F[A])(implicit arg0: Monoid[A]): A

    Alias for fold.

    Alias for fold.

    Definition Classes
    Foldable
  9. def compose[G[_]](implicit arg0: Traverse[G]): Traverse[[α]F[G[α]]]
    Definition Classes
    Traverse
  10. def compose[G[_]](implicit arg0: Foldable[G]): Foldable[[α]F[G[α]]]
    Definition Classes
    Foldable
  11. def compose[G[_]](implicit arg0: Functor[G]): Functor[[α]F[G[α]]]
    Definition Classes
    Functor
  12. def compose[G[_]](implicit arg0: Invariant[G]): Invariant[[α]F[G[α]]]
    Definition Classes
    Invariant
  13. def composeContravariant[G[_]](implicit arg0: Contravariant[G]): Contravariant[[α]F[G[α]]]
    Definition Classes
    FunctorInvariant
  14. def composeFilter[G[_]](implicit arg0: TraverseFilter[G]): TraverseFilter[[α]F[G[α]]]
    Definition Classes
    Traverse
  15. def composeFilter[G[_]](implicit arg0: FunctorFilter[G]): FunctorFilter[[α]F[G[α]]]
    Definition Classes
    Functor
  16. def composeFunctor[G[_]](implicit arg0: Functor[G]): Invariant[[α]F[G[α]]]
    Definition Classes
    Invariant
  17. def dropWhile_[A](fa: F[A])(p: (A) ⇒ Boolean): List[A]

    Convert F[A] to a List[A], dropping all initial elements which match p.

    Convert F[A] to a List[A], dropping all initial elements which match p.

    Definition Classes
    Foldable
  18. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  19. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  20. def exists[A](fa: F[A])(p: (A) ⇒ Boolean): Boolean

    Check whether at least one element satisfies the predicate.

    Check whether at least one element satisfies the predicate.

    If there are no elements, the result is false.

    Definition Classes
    Foldable
  21. def filter[A](fa: F[A])(f: (A) ⇒ Boolean): F[A]

    Apply a filter to a structure such that the output structure contains all A elements in the input structure that satisfy the predicate f but none that don't.

    Apply a filter to a structure such that the output structure contains all A elements in the input structure that satisfy the predicate f but none that don't.

    Definition Classes
    TraverseFilterFunctorFilter
  22. def filterA[G[_], A](fa: F[A])(f: (A) ⇒ G[Boolean])(implicit G: Applicative[G]): G[F[A]]

    Filter values inside a G context.

    Filter values inside a G context.

    This is a generalized version of Haskell's filterM. This StackOverflow question about filterM may be helpful in understanding how it behaves.

    Example:

    scala> import cats.implicits._
    scala> val l: List[Int] = List(1, 2, 3, 4)
    scala> def odd(i: Int): Eval[Boolean] = Now(i % 2 == 1)
    scala> val res: Eval[List[Int]] = l.filterA(odd)
    scala> res.value
    res0: List[Int] = List(1, 3)
    
    scala> List(1, 2, 3).filterA(_ => List(true, false))
    res1: List[List[Int]] = List(List(1, 2, 3), List(1, 2), List(1, 3), List(1), List(2, 3), List(2), List(3), List())
  23. def filter_[A](fa: F[A])(p: (A) ⇒ Boolean): List[A]

    Convert F[A] to a List[A], only including elements which match p.

    Convert F[A] to a List[A], only including elements which match p.

    Definition Classes
    Foldable
  24. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  25. def find[A](fa: F[A])(f: (A) ⇒ Boolean): Option[A]

    Find the first element matching the predicate, if one exists.

    Find the first element matching the predicate, if one exists.

    Definition Classes
    Foldable
  26. def flatSequence[G[_], A](fgfa: F[G[F[A]]])(implicit G: Applicative[G], F: FlatMap[F]): G[F[A]]

    Thread all the G effects through the F structure and flatten to invert the structure from F[G[F[A]]] to G[F[A]].

    Thread all the G effects through the F structure and flatten to invert the structure from F[G[F[A]]] to G[F[A]].

    Example:

    scala> import cats.implicits._
    scala> val x: List[Option[List[Int]]] = List(Some(List(1, 2)), Some(List(3)))
    scala> val y: List[Option[List[Int]]] = List(None, Some(List(3)))
    scala> x.flatSequence
    res0: Option[List[Int]] = Some(List(1, 2, 3))
    scala> y.flatSequence
    res1: Option[List[Int]] = None
    Definition Classes
    Traverse
  27. def flatTraverse[G[_], A, B](fa: F[A])(f: (A) ⇒ G[F[B]])(implicit G: Applicative[G], F: FlatMap[F]): G[F[B]]

    A traverse followed by flattening the inner result.

    A traverse followed by flattening the inner result.

    Example:

    scala> import cats.implicits._
    scala> def parseInt(s: String): Option[Int] = Either.catchOnly[NumberFormatException](s.toInt).toOption
    scala> val x = Option(List("1", "two", "3"))
    scala> x.flatTraverse(_.map(parseInt))
    res0: List[Option[Int]] = List(Some(1), None, Some(3))
    Definition Classes
    Traverse
  28. def flattenOption[A](fa: F[Option[A]]): F[A]

    "Flatten" out a structure by collapsing Options.

    "Flatten" out a structure by collapsing Options.

    Example:

    scala> import cats.implicits._
    scala> val l: List[Option[Int]] = List(Some(1), None, Some(3), None)
    scala> l.flattenOption
    res0: List[Int] = List(1, 3)
    Definition Classes
    FunctorFilter
  29. def fold[A](fa: F[A])(implicit A: Monoid[A]): A

    Fold implemented using the given Monoid[A] instance.

    Fold implemented using the given Monoid[A] instance.

    Definition Classes
    Foldable
  30. def foldK[G[_], A](fga: F[G[A]])(implicit G: MonoidK[G]): G[A]

    Fold implemented using the given MonoidK[G] instance.

    Fold implemented using the given MonoidK[G] instance.

    This method is identical to fold, except that we use the universal monoid (MonoidK[G]) to get a Monoid[G[A]] instance.

    For example:

    scala> import cats.implicits._
    scala> val F = Foldable[List]
    scala> F.foldK(List(1 :: 2 :: Nil, 3 :: 4 :: 5 :: Nil))
    res0: List[Int] = List(1, 2, 3, 4, 5)
    Definition Classes
    Foldable
  31. def foldM[G[_], A, B](fa: F[A], z: B)(f: (B, A) ⇒ G[B])(implicit G: Monad[G]): G[B]

    Left associative monadic folding on F.

    Left associative monadic folding on F.

    The default implementation of this is based on foldLeft, and thus will always fold across the entire structure. Certain structures are able to implement this in such a way that folds can be short-circuited (not traverse the entirety of the structure), depending on the G result produced at a given step.

    Definition Classes
    Foldable
  32. def foldMap[A, B](fa: F[A])(f: (A) ⇒ B)(implicit B: Monoid[B]): B

    Fold implemented by mapping A values into B and then combining them using the given Monoid[B] instance.

    Fold implemented by mapping A values into B and then combining them using the given Monoid[B] instance.

    Definition Classes
    Foldable
  33. def foldMapM[G[_], A, B](fa: F[A])(f: (A) ⇒ G[B])(implicit G: Monad[G], B: Monoid[B]): G[B]

    Monadic folding on F by mapping A values to G[B], combining the B values using the given Monoid[B] instance.

    Monadic folding on F by mapping A values to G[B], combining the B values using the given Monoid[B] instance.

    Similar to foldM, but using a Monoid[B].

    scala> import cats.Foldable
    scala> import cats.implicits._
    scala> val evenNumbers = List(2,4,6,8,10)
    scala> val evenOpt: Int => Option[Int] =
         |   i => if (i % 2 == 0) Some(i) else None
    scala> Foldable[List].foldMapM(evenNumbers)(evenOpt)
    res0: Option[Int] = Some(30)
    scala> Foldable[List].foldMapM(evenNumbers :+ 11)(evenOpt)
    res1: Option[Int] = None
    Definition Classes
    Foldable
  34. def forall[A](fa: F[A])(p: (A) ⇒ Boolean): Boolean

    Check whether all elements satisfy the predicate.

    Check whether all elements satisfy the predicate.

    If there are no elements, the result is true.

    Definition Classes
    Foldable
  35. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Tuple the values in fa with the result of applying a function with the value

    Tuple the values in fa with the result of applying a function with the value

    Definition Classes
    Functor
  36. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  37. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  38. def imap[A, B](fa: F[A])(f: (A) ⇒ B)(fi: (B) ⇒ A): F[B]
    Definition Classes
    FunctorInvariant
  39. def intercalate[A](fa: F[A], a: A)(implicit A: Monoid[A]): A

    Intercalate/insert an element between the existing elements while folding.

    Intercalate/insert an element between the existing elements while folding.

    scala> import cats.implicits._
    scala> Foldable[List].intercalate(List("a","b","c"), "-")
    res0: String = a-b-c
    scala> Foldable[List].intercalate(List("a"), "-")
    res1: String = a
    scala> Foldable[List].intercalate(List.empty[String], "-")
    res2: String = ""
    scala> Foldable[Vector].intercalate(Vector(1,2,3), 1)
    res3: Int = 8
    Definition Classes
    Foldable
  40. def intersperseList[A](xs: List[A], x: A): List[A]
    Attributes
    protected
    Definition Classes
    Foldable
  41. def isEmpty[A](fa: F[A]): Boolean

    Returns true if there are no elements.

    Returns true if there are no elements. Otherwise false.

    Definition Classes
    Foldable
  42. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  43. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Lift a function f to operate on Functors

    Lift a function f to operate on Functors

    Definition Classes
    Functor
  44. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]
    Definition Classes
    TraverseFunctor
  45. def mapFilter[A, B](fa: F[A])(f: (A) ⇒ Option[B]): F[B]

    A combined map and filter.

    A combined map and filter. Filtering is handled via Option instead of Boolean such that the output type B can be different than the input type A.

    Example:

    scala> import cats.implicits._
    scala> val m: Map[Int, String] = Map(1 -> "one", 3 -> "three")
    scala> val l: List[Int] = List(1, 2, 3, 4)
    scala> def asString(i: Int): Option[String] = m.get(i)
    scala> l.mapFilter(i => m.get(i))
    res0: List[String] = List(one, three)
    Definition Classes
    TraverseFilterFunctorFilter
  46. def maximumOption[A](fa: F[A])(implicit A: Order[A]): Option[A]

    Find the maximum A item in this structure according to the Order[A].

    Find the maximum A item in this structure according to the Order[A].

    returns

    None if the structure is empty, otherwise the maximum element wrapped in a Some.

    Definition Classes
    Foldable
    See also

    minimumOption for minimum instead of maximum.

    Reducible#maximum for a version that doesn't need to return an Option for structures that are guaranteed to be non-empty.

  47. def minimumOption[A](fa: F[A])(implicit A: Order[A]): Option[A]

    Find the minimum A item in this structure according to the Order[A].

    Find the minimum A item in this structure according to the Order[A].

    returns

    None if the structure is empty, otherwise the minimum element wrapped in a Some.

    Definition Classes
    Foldable
    See also

    maximumOption for maximum instead of minimum.

    Reducible#minimum for a version that doesn't need to return an Option for structures that are guaranteed to be non-empty.

  48. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  49. def nonEmpty[A](fa: F[A]): Boolean
    Definition Classes
    Foldable
  50. final def notify(): Unit
    Definition Classes
    AnyRef
  51. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  52. def reduceLeftOption[A](fa: F[A])(f: (A, A) ⇒ A): Option[A]

    Reduce the elements of this structure down to a single value by applying the provided aggregation function in a left-associative manner.

    Reduce the elements of this structure down to a single value by applying the provided aggregation function in a left-associative manner.

    returns

    None if the structure is empty, otherwise the result of combining the cumulative left-associative result of the f operation over all of the elements.

    Definition Classes
    Foldable
    See also

    Reducible#reduceLeft for a version that doesn't need to return an Option for structures that are guaranteed to be non-empty. Example:

    scala> import cats.implicits._
    scala> val l = List(6, 3, 2)
    This is equivalent to (6 - 3) - 2
    scala> Foldable[List].reduceLeftOption(l)(_ - _)
    res0: Option[Int] = Some(1)
    
    scala> Foldable[List].reduceLeftOption(List.empty[Int])(_ - _)
    res1: Option[Int] = None

    reduceRightOption for a right-associative alternative.

  53. def reduceLeftToOption[A, B](fa: F[A])(f: (A) ⇒ B)(g: (B, A) ⇒ B): Option[B]
    Definition Classes
    Foldable
  54. def reduceRightOption[A](fa: F[A])(f: (A, Eval[A]) ⇒ Eval[A]): Eval[Option[A]]

    Reduce the elements of this structure down to a single value by applying the provided aggregation function in a right-associative manner.

    Reduce the elements of this structure down to a single value by applying the provided aggregation function in a right-associative manner.

    returns

    None if the structure is empty, otherwise the result of combining the cumulative right-associative result of the f operation over the A elements.

    Definition Classes
    Foldable
    See also

    Reducible#reduceRight for a version that doesn't need to return an Option for structures that are guaranteed to be non-empty. Example:

    scala> import cats.implicits._
    scala> val l = List(6, 3, 2)
    This is eqivalent to 6 - (3 - 2)
    scala> Foldable[List].reduceRightOption(l)((current, rest) => rest.map(current - _)).value
    res0: Option[Int] = Some(5)
    
    scala> Foldable[List].reduceRightOption(List.empty[Int])((current, rest) => rest.map(current - _)).value
    res1: Option[Int] = None

    reduceLeftOption for a left-associative alternative

  55. def reduceRightToOption[A, B](fa: F[A])(f: (A) ⇒ B)(g: (A, Eval[B]) ⇒ Eval[B]): Eval[Option[B]]
    Definition Classes
    Foldable
  56. def sequence[G[_], A](fga: F[G[A]])(implicit arg0: Applicative[G]): G[F[A]]

    Thread all the G effects through the F structure to invert the structure from F[G[A]] to G[F[A]].

    Thread all the G effects through the F structure to invert the structure from F[G[A]] to G[F[A]].

    Example:

    scala> import cats.implicits._
    scala> val x: List[Option[Int]] = List(Some(1), Some(2))
    scala> val y: List[Option[Int]] = List(None, Some(2))
    scala> x.sequence
    res0: Option[List[Int]] = Some(List(1, 2))
    scala> y.sequence
    res1: Option[List[Int]] = None
    Definition Classes
    Traverse
  57. def sequenceU[GA](fga: F[GA])(implicit U: Unapply[Applicative, GA]): M[F[A]]

    Behaves just like sequence, but uses Unapply to find the Applicative instance for G.

    Behaves just like sequence, but uses Unapply to find the Applicative instance for G.

    Example:

    scala> import cats.data.{Validated, ValidatedNel}
    scala> import cats.implicits._
    scala> val x: List[ValidatedNel[String, Int]] = List(Validated.valid(1), Validated.invalid("a"), Validated.invalid("b")).map(_.toValidatedNel)
    scala> x.sequenceU
    res0: cats.data.ValidatedNel[String,List[Int]] = Invalid(NonEmptyList(a, b))
    scala> x.sequence[ValidatedNel[String, ?], Int]
    res1: cats.data.ValidatedNel[String,List[Int]] = Invalid(NonEmptyList(a, b))
    Definition Classes
    Traverse
  58. def sequenceU_[GA](fa: F[GA])(implicit U: Unapply[Applicative, GA]): M[Unit]

    Behaves like sequence_, but uses Unapply to find the Applicative instance for G - used when G is a type constructor with two or more parameters such as scala.util.Either

    Behaves like sequence_, but uses Unapply to find the Applicative instance for G - used when G is a type constructor with two or more parameters such as scala.util.Either

    scala> import cats.implicits._
    scala> val F = Foldable[List]
    scala> F.sequenceU_(List(Either.right[String, Int](333), Right(444)))
    res0: Either[String, Unit] = Right(())
    scala> F.sequenceU_(List(Either.right[String, Int](333), Left("boo")))
    res1: Either[String, Unit] = Left(boo)

    Note that using sequence_ instead of sequenceU_ would not compile without explicitly passing in the type parameters - the type checker has trouble inferring the appropriate instance.

    Definition Classes
    Foldable
  59. def sequence_[G[_], A](fga: F[G[A]])(implicit arg0: Applicative[G]): G[Unit]

    Sequence F[G[A]] using Applicative[G].

    Sequence F[G[A]] using Applicative[G].

    This is similar to traverse_ except it operates on F[G[A]] values, so no additional functions are needed.

    For example:

    scala> import cats.implicits._
    scala> val F = Foldable[List]
    scala> F.sequence_(List(Option(1), Option(2), Option(3)))
    res0: Option[Unit] = Some(())
    scala> F.sequence_(List(Option(1), None, Option(3)))
    res1: Option[Unit] = None
    Definition Classes
    Foldable
  60. def size[A](fa: F[A]): Long

    The size of this Foldable.

    The size of this Foldable.

    This is overriden in structures that have more efficient size implementations (e.g. Vector, Set, Map).

    Note: will not terminate for infinite-sized collections.

    Definition Classes
    Foldable
  61. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  62. def takeWhile_[A](fa: F[A])(p: (A) ⇒ Boolean): List[A]

    Convert F[A] to a List[A], retaining only initial elements which match p.

    Convert F[A] to a List[A], retaining only initial elements which match p.

    Definition Classes
    Foldable
  63. def toList[A](fa: F[A]): List[A]

    Convert F[A] to a List[A].

    Convert F[A] to a List[A].

    Definition Classes
    Foldable
  64. def toString(): String
    Definition Classes
    AnyRef → Any
  65. def traverse[G[_], A, B](fa: F[A])(f: (A) ⇒ G[B])(implicit G: Applicative[G]): G[F[B]]

    Given a function which returns a G effect, thread this effect through the running of this function on all the values in F, returning an F[B] in a G context.

    Given a function which returns a G effect, thread this effect through the running of this function on all the values in F, returning an F[B] in a G context.

    Example:

    scala> import cats.implicits._
    scala> def parseInt(s: String): Option[Int] = Either.catchOnly[NumberFormatException](s.toInt).toOption
    scala> List("1", "2", "3").traverse(parseInt)
    res0: Option[List[Int]] = Some(List(1, 2, 3))
    scala> List("1", "two", "3").traverse(parseInt)
    res1: Option[List[Int]] = None
    Definition Classes
    TraverseFilterTraverse
  66. def traverseU[A, GB](fa: F[A])(f: (A) ⇒ GB)(implicit U: Unapply[Applicative, GB]): M[F[A]]

    Behaves just like traverse, but uses Unapply to find the Applicative instance for G.

    Behaves just like traverse, but uses Unapply to find the Applicative instance for G.

    Example:

    scala> import cats.implicits._
    scala> def parseInt(s: String): Either[String, Int] = Either.catchOnly[NumberFormatException](s.toInt).leftMap(_ => "no number")
    scala> val ns = List("1", "2", "3")
    scala> ns.traverseU(parseInt)
    res0: Either[String, List[Int]] = Right(List(1, 2, 3))
    scala> ns.traverse[Either[String, ?], Int](parseInt)
    res1: Either[String, List[Int]] = Right(List(1, 2, 3))
    Definition Classes
    Traverse
  67. def traverseU_[A, GB](fa: F[A])(f: (A) ⇒ GB)(implicit U: Unapply[Applicative, GB]): M[Unit]

    Behaves like traverse_, but uses Unapply to find the Applicative instance for G - used when G is a type constructor with two or more parameters such as scala.util.Either

    Behaves like traverse_, but uses Unapply to find the Applicative instance for G - used when G is a type constructor with two or more parameters such as scala.util.Either

    scala> import cats.implicits._
    scala> def parseInt(s: String): Either[String, Int] =
         |   try { Right(s.toInt) }
         |   catch { case _: NumberFormatException => Left("boo") }
    scala> val F = Foldable[List]
    scala> F.traverseU_(List("333", "444"))(parseInt)
    res0: Either[String, Unit] = Right(())
    scala> F.traverseU_(List("333", "zzz"))(parseInt)
    res1: Either[String, Unit] = Left(boo)

    Note that using traverse_ instead of traverseU_ would not compile without explicitly passing in the type parameters - the type checker has trouble inferring the appropriate instance.

    Definition Classes
    Foldable
  68. def traverse_[G[_], A, B](fa: F[A])(f: (A) ⇒ G[B])(implicit G: Applicative[G]): G[Unit]

    Traverse F[A] using Applicative[G].

    Traverse F[A] using Applicative[G].

    A values will be mapped into G[B] and combined using Applicative#map2.

    For example:

    scala> import cats.implicits._
    scala> def parseInt(s: String): Option[Int] = Either.catchOnly[NumberFormatException](s.toInt).toOption
    scala> val F = Foldable[List]
    scala> F.traverse_(List("333", "444"))(parseInt)
    res0: Option[Unit] = Some(())
    scala> F.traverse_(List("333", "zzz"))(parseInt)
    res1: Option[Unit] = None

    This method is primarily useful when G[_] represents an action or effect, and the specific A aspect of G[A] is not otherwise needed.

    Definition Classes
    Foldable
  69. def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]

    Tuples the A value in F[A] with the supplied B value, with the B value on the left.

    Tuples the A value in F[A] with the supplied B value, with the B value on the left.

    Definition Classes
    Functor
  70. def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]

    Tuples the A value in F[A] with the supplied B value, with the B value on the right.

    Tuples the A value in F[A] with the supplied B value, with the B value on the right.

    Definition Classes
    Functor
  71. def void[A](fa: F[A]): F[Unit]

    Empty the fa of the values, preserving the structure

    Empty the fa of the values, preserving the structure

    Definition Classes
    Functor
  72. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  73. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  74. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  75. def widen[A, B >: A](fa: F[A]): F[B]

    Lifts natural subtyping covariance of covariant Functors.

    Lifts natural subtyping covariance of covariant Functors.

    NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a ClassCastException, because it is implemented as a type cast. It could be implemented as map(identity), but according to the functor laws, that should be equal to fa, and a type cast is often much more performant. See this example of widen creating a ClassCastException.

    Definition Classes
    Functor

Inherited from FunctorFilter[F]

Inherited from Traverse[F]

Inherited from Foldable[F]

Inherited from Functor[F]

Inherited from Invariant[F]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped