Packages

trait BimonadLaws[F[_]] extends MonadLaws[F] with ComonadLaws[F]

Laws that must be obeyed by any Bimonad.

For more information, see definition 4.1 from this paper: http://arxiv.org/pdf/0710.1163v3.pdf

Source
BimonadLaws.scala
Type Hierarchy
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. BimonadLaws
  2. ComonadLaws
  3. CoflatMapLaws
  4. MonadLaws
  5. FlatMapLaws
  6. ApplicativeLaws
  7. ApplyLaws
  8. SemigroupalLaws
  9. FunctorLaws
  10. InvariantLaws
  11. AnyRef
  12. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Abstract Value Members

  1. implicit abstract def F: Bimonad[F]

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def apProductConsistent[A, B](fa: F[A], f: F[(A) => B]): IsEq[F[B]]
    Definition Classes
    ApplicativeLaws
  5. def applicativeComposition[A, B, C](fa: F[A], fab: F[(A) => B], fbc: F[(B) => C]): IsEq[F[C]]

    This law is applyComposition stated in terms of pure.

    This law is applyComposition stated in terms of pure. It is a combination of applyComposition and applicativeMap and hence not strictly necessary.

    Definition Classes
    ApplicativeLaws
  6. def applicativeHomomorphism[A, B](a: A, f: (A) => B): IsEq[F[B]]
    Definition Classes
    ApplicativeLaws
  7. def applicativeIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    ApplicativeLaws
  8. def applicativeInterchange[A, B](a: A, ff: F[(A) => B]): IsEq[F[B]]
    Definition Classes
    ApplicativeLaws
  9. def applicativeMap[A, B](fa: F[A], f: (A) => B): IsEq[F[B]]
    Definition Classes
    ApplicativeLaws
  10. def applicativeUnit[A](a: A): IsEq[F[A]]
    Definition Classes
    ApplicativeLaws
  11. def applyComposition[A, B, C](fa: F[A], fab: F[(A) => B], fbc: F[(B) => C]): IsEq[F[C]]
    Definition Classes
    ApplyLaws
  12. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  13. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native()
  14. def coflatMapAssociativity[A, B, C](fa: F[A], f: (F[A]) => B, g: (F[B]) => C): IsEq[F[C]]
    Definition Classes
    CoflatMapLaws
  15. def coflatMapIdentity[A, B](fa: F[A]): IsEq[F[F[A]]]
    Definition Classes
    CoflatMapLaws
  16. def coflattenCoherence[A, B](fa: F[A], f: (F[A]) => B): IsEq[F[B]]
    Definition Classes
    CoflatMapLaws
  17. def coflattenThroughMap[A](fa: F[A]): IsEq[F[F[F[A]]]]
    Definition Classes
    CoflatMapLaws
  18. def cokleisliAssociativity[A, B, C, D](f: (F[A]) => B, g: (F[B]) => C, h: (F[C]) => D, fa: F[A]): IsEq[D]

    The composition of cats.data.Cokleisli arrows is associative.

    The composition of cats.data.Cokleisli arrows is associative. This is analogous to coflatMapAssociativity.

    Definition Classes
    CoflatMapLaws
  19. def cokleisliLeftIdentity[A, B](fa: F[A], f: (F[A]) => B): IsEq[B]

    extract is the left identity element under left-to-right composition of cats.data.Cokleisli arrows.

    extract is the left identity element under left-to-right composition of cats.data.Cokleisli arrows. This is analogous to comonadLeftIdentity.

    Definition Classes
    ComonadLaws
  20. def cokleisliRightIdentity[A, B](fa: F[A], f: (F[A]) => B): IsEq[B]

    extract is the right identity element under left-to-right composition of cats.data.Cokleisli arrows.

    extract is the right identity element under left-to-right composition of cats.data.Cokleisli arrows. This is analogous to comonadRightIdentity.

    Definition Classes
    ComonadLaws
  21. def comonadLeftIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    ComonadLaws
  22. def comonadRightIdentity[A, B](fa: F[A], f: (F[A]) => B): IsEq[B]
    Definition Classes
    ComonadLaws
  23. def covariantComposition[A, B, C](fa: F[A], f: (A) => B, g: (B) => C): IsEq[F[C]]
    Definition Classes
    FunctorLaws
  24. def covariantIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    FunctorLaws
  25. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  26. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  27. def extractCoflattenIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    ComonadLaws
  28. def extractFlatMapEntwining[A](ffa: F[F[A]]): IsEq[A]
  29. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  30. def flatMapAssociativity[A, B, C](fa: F[A], f: (A) => F[B], g: (B) => F[C]): IsEq[F[C]]
    Definition Classes
    FlatMapLaws
  31. def flatMapConsistentApply[A, B](fa: F[A], fab: F[(A) => B]): IsEq[F[B]]
    Definition Classes
    FlatMapLaws
  32. def flatMapFromTailRecMConsistency[A, B](fa: F[A], fn: (A) => F[B]): IsEq[F[B]]

    It is possible to implement flatMap from tailRecM and map and it should agree with the flatMap implementation.

    It is possible to implement flatMap from tailRecM and map and it should agree with the flatMap implementation.

    Definition Classes
    FlatMapLaws
  33. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  34. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  35. def invariantComposition[A, B, C](fa: F[A], f1: (A) => B, f2: (B) => A, g1: (B) => C, g2: (C) => B): IsEq[F[C]]
    Definition Classes
    InvariantLaws
  36. def invariantIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    InvariantLaws
  37. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  38. def kleisliAssociativity[A, B, C, D](f: (A) => F[B], g: (B) => F[C], h: (C) => F[D], a: A): IsEq[F[D]]

    The composition of cats.data.Kleisli arrows is associative.

    The composition of cats.data.Kleisli arrows is associative. This is analogous to flatMapAssociativity.

    Definition Classes
    FlatMapLaws
  39. def kleisliLeftIdentity[A, B](a: A, f: (A) => F[B]): IsEq[F[B]]

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadLeftIdentity.

    Definition Classes
    MonadLaws
  40. def kleisliRightIdentity[A, B](a: A, f: (A) => F[B]): IsEq[F[B]]

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadRightIdentity.

    Definition Classes
    MonadLaws
  41. def map2EvalConsistency[A, B, C](fa: F[A], fb: F[B], f: (A, B) => C): IsEq[F[C]]
    Definition Classes
    ApplyLaws
  42. def map2ProductConsistency[A, B, C](fa: F[A], fb: F[B], f: (A, B) => C): IsEq[F[C]]
    Definition Classes
    ApplyLaws
  43. def mapCoflatMapCoherence[A, B](fa: F[A], f: (A) => B): IsEq[F[B]]
    Definition Classes
    ComonadLaws
  44. def mapCoflattenIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    ComonadLaws
  45. def mapFlatMapCoherence[A, B](fa: F[A], f: (A) => B): IsEq[F[B]]

    Make sure that map and flatMap are consistent.

    Make sure that map and flatMap are consistent.

    Definition Classes
    MonadLaws
  46. def monadLeftIdentity[A, B](a: A, f: (A) => F[B]): IsEq[F[B]]
    Definition Classes
    MonadLaws
  47. def monadRightIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    MonadLaws
  48. def monoidalLeftIdentity[A](fa: F[A]): (F[(Unit, A)], F[A])
    Definition Classes
    ApplicativeLaws
  49. def monoidalRightIdentity[A](fa: F[A]): (F[(A, Unit)], F[A])
    Definition Classes
    ApplicativeLaws
  50. def mproductConsistency[A, B](fa: F[A], fb: (A) => F[B]): IsEq[F[(A, B)]]
    Definition Classes
    FlatMapLaws
  51. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  52. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  53. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  54. def productLConsistency[A, B](fa: F[A], fb: F[B]): IsEq[F[A]]
    Definition Classes
    ApplyLaws
  55. def productRConsistency[A, B](fa: F[A], fb: F[B]): IsEq[F[B]]
    Definition Classes
    ApplyLaws
  56. def pureCoflatMapEntwining[A](a: A): IsEq[F[F[A]]]
  57. def pureExtractIsId[A](a: A): IsEq[A]
  58. def replicateAVoidReplicateA_Consistent[A](n: Int, fa: F[A]): IsEq[F[Unit]]
    Definition Classes
    ApplicativeLaws
  59. def semigroupalAssociativity[A, B, C](fa: F[A], fb: F[B], fc: F[C]): (F[(A, (B, C))], F[((A, B), C)])
    Definition Classes
    SemigroupalLaws
  60. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  61. def tailRecMConsistentFlatMap[A](a: A, f: (A) => F[A]): IsEq[F[A]]
    Definition Classes
    FlatMapLaws
  62. lazy val tailRecMStackSafety: IsEq[F[Int]]
    Definition Classes
    MonadLaws
  63. def toString(): String
    Definition Classes
    AnyRef → Any
  64. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  65. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  66. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()

Inherited from ComonadLaws[F]

Inherited from CoflatMapLaws[F]

Inherited from MonadLaws[F]

Inherited from FlatMapLaws[F]

Inherited from ApplicativeLaws[F]

Inherited from ApplyLaws[F]

Inherited from SemigroupalLaws[F]

Inherited from FunctorLaws[F]

Inherited from InvariantLaws[F]

Inherited from AnyRef

Inherited from Any

Ungrouped