cats.kernel
Members list
Type members
Classlikes
Bands are semigroups whose operation (i.e. combine) is also idempotent.
Bands are semigroups whose operation (i.e. combine) is also idempotent.
Attributes
- Companion:
- object
- Source:
- Band.scala
- Graph
- Supertypes
- Known subtypes
- trait Semilattice[A]trait BoundedSemilattice[A]class BitSetSemilatticeclass SetSemilattice[A]class SortedSetSemilattice[A]class SortedSetSemilattice[A]class UnitAlgebraobject Alg.typeobject Alg.typeobject Alg.type
Attributes
- Companion:
- trait
- Source:
- Band.scala
- Graph
- Supertypes
- Self type
- Band.type
Attributes
- Companion:
- object
- Source:
- Enumerable.scala
- Graph
- Supertypes
- trait PartialNextLowerBounded[A]trait LowerBounded[A]trait PartialPreviousUpperBounded[A]trait UpperBounded[A]trait PartialNext[A]trait PartialPrevious[A]class Objecttrait Matchableclass Any
- Known subtypes
- trait BooleanEnumerableclass BooleanOrdertrait ByteEnumerableclass ByteOrdertrait CharEnumerableclass CharOrdertrait IntEnumerableclass IntOrdertrait LongEnumerableclass LongOrdertrait ShortEnumerableclass ShortOrdertrait UnitEnumerableclass UnitOrder
Attributes
- Companion:
- trait
- Source:
- Enumerable.scala
- Graph
- Supertypes
- Self type
- BoundedEnumerable.type
Attributes
- Companion:
- object
- Source:
- BoundedSemilattice.scala
- Graph
- Supertypes
- trait CommutativeMonoid[A]trait Monoid[A]trait Semilattice[A]trait CommutativeSemigroup[A]trait Band[A]trait Semigroup[A]trait Serializableclass Any
- Known subtypes
- class BitSetSemilatticeclass SetSemilattice[A]class SortedSetSemilattice[A]class SortedSetSemilattice[A]class UnitAlgebraobject Alg.type
Attributes
- Companion:
- trait
- Source:
- BoundedSemilattice.scala
- Graph
- Supertypes
- Self type
- BoundedSemilattice.type
An commutative group (also known as an abelian group) is a group whose combine operation is commutative.
An commutative group (also known as an abelian group) is a group whose combine operation is commutative.
Attributes
- Companion:
- object
- Source:
- CommutativeGroup.scala
- Graph
- Supertypes
- trait CommutativeMonoid[A]trait CommutativeSemigroup[A]trait Group[A]trait Monoid[A]trait Semigroup[A]trait Serializableclass Any
- Known subtypes
- class BigDecimalGroupclass BigIntGroupclass ByteGroupclass DoubleGroupclass DurationGroupclass FiniteDurationGroupclass FloatGroupclass IntGroupclass LongGroupclass ShortGroupclass UnitAlgebraobject Alg.type
Attributes
- Companion:
- trait
- Source:
- CommutativeGroup.scala
- Graph
- Supertypes
- class GroupFunctions[CommutativeGroup]class MonoidFunctions[CommutativeGroup]class Objecttrait Matchableclass Any
- Self type
- CommutativeGroup.type
CommutativeMonoid represents a commutative monoid.
CommutativeMonoid represents a commutative monoid.
A monoid is commutative if for all x and y, x |+| y === y |+| x.
Attributes
- Companion:
- object
- Source:
- CommutativeMonoid.scala
- Graph
- Supertypes
- Known subtypes
- trait BoundedSemilattice[A]class BitSetSemilatticeclass SetSemilattice[A]class SortedSetSemilattice[A]class SortedSetSemilattice[A]class UnitAlgebraobject Alg.typetrait CommutativeGroup[A]class BigDecimalGroupclass BigIntGroupclass ByteGroupclass DoubleGroupclass DurationGroupclass FiniteDurationGroupclass FloatGroupclass IntGroupclass LongGroupclass ShortGroupobject Alg.typeobject Alg.type
- Self type
Attributes
- Companion:
- trait
- Source:
- CommutativeMonoid.scala
- Graph
- Supertypes
- Self type
- CommutativeMonoid.type
CommutativeSemigroup represents a commutative semigroup.
CommutativeSemigroup represents a commutative semigroup.
A semigroup is commutative if for all x and y, x |+| y === y |+| x.
Attributes
- Companion:
- object
- Source:
- CommutativeSemigroup.scala
- Graph
- Supertypes
- Known subtypes
- trait CommutativeMonoid[A]trait BoundedSemilattice[A]class BitSetSemilatticeclass SetSemilattice[A]class SortedSetSemilattice[A]class SortedSetSemilattice[A]class UnitAlgebraobject Alg.typetrait CommutativeGroup[A]class BigDecimalGroupclass BigIntGroupclass ByteGroupclass DoubleGroupclass DurationGroupclass FiniteDurationGroupclass FloatGroupclass IntGroupclass LongGroupclass ShortGroupobject Alg.typeobject Alg.typetrait Semilattice[A]object Alg.typeobject Alg.type
- Self type
Attributes
- Companion:
- trait
- Source:
- CommutativeSemigroup.scala
- Graph
- Supertypes
- Self type
- CommutativeSemigroup.type
ADT encoding the possible results of a comparison
ADT encoding the possible results of a comparison
Attributes
- Companion:
- object
- Source:
- Comparison.scala
- Graph
- Supertypes
- Known subtypes
Attributes
- Companion:
- class
- Source:
- Comparison.scala
- Graph
- Supertypes
- Self type
- Comparison.type
A type class used to determine equality between 2 instances of the same
type. Any 2 instances x
and y
are equal if eqv(x, y)
is true
.
Moreover, eqv
should form an equivalence relation.
A type class used to determine equality between 2 instances of the same
type. Any 2 instances x
and y
are equal if eqv(x, y)
is true
.
Moreover, eqv
should form an equivalence relation.
Attributes
- Companion:
- object
- Source:
- Eq.scala
- Graph
- Supertypes
- trait Serializableclass Any
- Known subtypes
- trait ReferentialEq[A]trait SystemIdentityHash[A]trait Hash[A]class BigDecimalOrderclass BigIntOrderclass BitSetPartialOrderclass BooleanOrderclass ByteOrderclass CharOrderclass DeadlineOrderclass DoubleOrderclass DurationOrderclass FiniteDurationOrderclass FloatOrderclass IntOrderclass LazyListHash[A]class ListHash[A]class LongOrderclass OptionHash[A]class QueueHash[A]class SeqHash[A]class SetHash[A]class ShortOrderclass SortedSetHash[A]class SortedSetHash[A]class StreamHash[A]class StringOrderclass SymbolOrderclass UnitOrderclass VectorHash[A]object O.typetrait PartialOrder[A]trait Order[A]class LazyListOrder[A]class ListOrder[A]class OptionOrder[A]class QueueOrder[A]class SeqOrder[A]class SortedSetOrder[A]class SortedSetOrder[A]class StreamOrder[A]class VectorOrder[A]object O.typeclass LazyListPartialOrder[A]class ListPartialOrder[A]class OptionPartialOrder[A]class QueuePartialOrder[A]class SeqPartialOrder[A]class SetPartialOrder[A]class StreamPartialOrder[A]class VectorPartialOrder[A]object O.typeclass LazyListEq[A]class ListEq[A]class OptionEq[A]class QueueEq[A]class SeqEq[A]class StreamEq[A]class VectorEq[A]
- Self type
- Eq[A]
Attributes
Attributes
- Source:
- Eq.scala
- Graph
- Supertypes
- Known subtypes
- object Eq.typeclass HashFunctions[H]object Hash.typeclass PartialOrderFunctions[P]class OrderFunctions[O]trait SignedFunctions[S]object Signed.typetrait TruncatedDivisionFunctions[S]object TruncatedDivision.typeobject Order.typeobject PartialOrder.type
Attributes
- Source:
- Eq.scala
- Graph
- Supertypes
- Known subtypes
- object Eq.typetrait EqInstancestrait EqInstancestrait AllInstancesobject implicits.typeclass AllInstancesBinCompatobject all.typeobject eq.typetrait AllInstancesobject eq.type
A group is a monoid where each element has an inverse.
A group is a monoid where each element has an inverse.
Attributes
- Companion:
- object
- Source:
- Group.scala
- Graph
- Supertypes
- Known subtypes
- trait EvalGroup[A]trait CommutativeGroup[A]class BigDecimalGroupclass BigIntGroupclass ByteGroupclass DoubleGroupclass DurationGroupclass FiniteDurationGroupclass FloatGroupclass IntGroupclass LongGroupclass ShortGroupclass UnitAlgebraobject Alg.typetrait Function0Group[A]object Alg.type
Attributes
- Companion:
- trait
- Source:
- Group.scala
- Graph
- Supertypes
- class GroupFunctions[Group]class MonoidFunctions[Group]class SemigroupFunctions[Group]class Objecttrait Matchableclass Any
- Self type
- Group.type
Attributes
- Source:
- Group.scala
- Graph
- Supertypes
- Known subtypes
- object CommutativeGroup.typeobject Group.type
A type class used to represent a hashing scheme for objects of a given type.
For any two instances x
and y
that are considered equivalent under the
equivalence relation defined by this object, hash(x)
should equal hash(y)
.
A type class used to represent a hashing scheme for objects of a given type.
For any two instances x
and y
that are considered equivalent under the
equivalence relation defined by this object, hash(x)
should equal hash(y)
.
Attributes
- Companion:
- object
- Source:
- Hash.scala
- Graph
- Supertypes
- Known subtypes
- trait SystemIdentityHash[A]class BigDecimalOrderclass BigIntOrderclass BitSetPartialOrderclass BooleanOrderclass ByteOrderclass CharOrderclass DeadlineOrderclass DoubleOrderclass DurationOrderclass FiniteDurationOrderclass FloatOrderclass IntOrderclass LazyListHash[A]class ListHash[A]class LongOrderclass OptionHash[A]class QueueHash[A]class SeqHash[A]class SetHash[A]class ShortOrderclass SortedSetHash[A]class SortedSetHash[A]class StreamHash[A]class StringOrderclass SymbolOrderclass UnitOrderclass VectorHash[A]object O.type
- Self type
- Hash[A]
Attributes
- Companion:
- trait
- Source:
- Hash.scala
- Graph
- Supertypes
- Self type
- Hash.type
Attributes
- Source:
- Hash.scala
- Graph
- Supertypes
- Known subtypes
- object Hash.type
Attributes
- Source:
- Hash.scala
- Graph
- Supertypes
- Known subtypes
- trait HashInstancestrait HashInstancestrait AllInstancesobject implicits.typeclass AllInstancesBinCompatobject all.typetrait AllInstancesobject hash.type
A type class used to name the lower limit of a type.
A type class used to name the lower limit of a type.
Attributes
- Companion:
- object
- Source:
- Bounded.scala
- Graph
- Supertypes
- Known subtypes
- trait PartialNextLowerBounded[A]trait BoundedEnumerable[A]trait BooleanEnumerableclass BooleanOrdertrait ByteEnumerableclass ByteOrdertrait CharEnumerableclass CharOrdertrait IntEnumerableclass IntOrdertrait LongEnumerableclass LongOrdertrait ShortEnumerableclass ShortOrdertrait UnitEnumerableclass UnitOrdertrait LowerBoundedEnumerable[A]trait BooleanBoundedtrait ByteBoundedtrait CharBoundedtrait DeadlineBoundedclass DeadlineOrdertrait DurationBoundedclass DurationOrdertrait FiniteDurationBoundedclass FiniteDurationOrdertrait IntBoundedtrait LongBoundedtrait ShortBoundedtrait StringLowerBoundedclass StringOrdertrait SymbolLowerBoundedclass SymbolOrdertrait UUIDBoundedtrait UnitBounded
Attributes
- Companion:
- trait
- Source:
- Bounded.scala
- Graph
- Supertypes
- Self type
- LowerBounded.type
Attributes
- Source:
- Enumerable.scala
- Graph
- Supertypes
- trait Next[A]trait PartialNextLowerBounded[A]trait LowerBounded[A]trait PartialNext[A]trait PartialPrevious[A]class Objecttrait Matchableclass Any
Attributes
- Source:
- Bounded.scala
- Graph
- Supertypes
- Known subtypes
- object LowerBounded.type
A monoid is a semigroup with an identity. A monoid is a specialization of a
semigroup, so its operation must be associative. Additionally,
combine(x, empty) == combine(empty, x) == x
. For example, if we have Monoid[String]
,
with combine
as string concatenation, then empty = ""
.
A monoid is a semigroup with an identity. A monoid is a specialization of a
semigroup, so its operation must be associative. Additionally,
combine(x, empty) == combine(empty, x) == x
. For example, if we have Monoid[String]
,
with combine
as string concatenation, then empty = ""
.
Attributes
- Companion:
- object
- Source:
- Monoid.scala
- Graph
- Supertypes
- Known subtypes
- trait EvalMonoid[A]trait EvalGroup[A]trait CommutativeMonoid[A]trait BoundedSemilattice[A]class BitSetSemilatticeclass SetSemilattice[A]class SortedSetSemilattice[A]class SortedSetSemilattice[A]class UnitAlgebraobject Alg.typetrait CommutativeGroup[A]class BigDecimalGroupclass BigIntGroupclass ByteGroupclass DoubleGroupclass DurationGroupclass FiniteDurationGroupclass FloatGroupclass IntGroupclass LongGroupclass ShortGroupobject Alg.typeobject Alg.typetrait Group[A]trait Function0Group[A]object Alg.typetrait Function0Monoid[A]class LazyListMonoid[A]class ListMonoid[A]class OptionMonoid[A]class QueueMonoid[A]class SeqMonoid[A]class StreamMonoid[A]class StringMonoidclass VectorMonoid[A]object Alg.type
- Self type
- Monoid[A]
Attributes
- Companion:
- trait
- Source:
- Monoid.scala
- Graph
- Supertypes
- Self type
- Monoid.type
Attributes
- Source:
- Monoid.scala
- Graph
- Supertypes
- Known subtypes
- object CommutativeMonoid.typeclass GroupFunctions[G]object CommutativeGroup.typeobject Group.typeobject Monoid.type
A typeclass with an operation which returns a member which is always greater than the one supplied.
A typeclass with an operation which returns a member which is always greater than the one supplied.
Attributes
- Source:
- Enumerable.scala
- Graph
- Supertypes
- Known subtypes
- trait LowerBoundedEnumerable[A]trait UnboundedEnumerable[A]trait BigIntUnboundedEnumclass BigIntOrder
The Order
type class is used to define a total ordering on some type A
.
An order is defined by a relation <=, which obeys the following laws:
The Order
type class is used to define a total ordering on some type A
.
An order is defined by a relation <=, which obeys the following laws:
- either x <= y or y <= x (totality)
- if x <= y and y <= x, then x == y (antisymmetry)
- if x <= y and y <= z, then x <= z (transitivity)
The truth table for compare is defined as follows:
x <= y x >= y Int true true = 0 (corresponds to x == y) true false < 0 (corresponds to x < y) false true > 0 (corresponds to x > y)
By the totality law, x <= y and y <= x cannot be both false.
Attributes
- Companion:
- object
- Source:
- Order.scala
- Graph
- Supertypes
- Known subtypes
- class BigDecimalOrderclass BigIntOrderclass BooleanOrderclass ByteOrderclass CharOrderclass DeadlineOrderclass DoubleOrderclass DurationOrderclass FiniteDurationOrderclass FloatOrderclass IntOrderclass LazyListOrder[A]class ListOrder[A]class LongOrderclass OptionOrder[A]class QueueOrder[A]class SeqOrder[A]class ShortOrderclass SortedSetOrder[A]class SortedSetOrder[A]class StreamOrder[A]class StringOrderclass SymbolOrderclass UnitOrderclass VectorOrder[A]object O.type
- Self type
- Order[A]
Attributes
- Companion:
- trait
- Source:
- Order.scala
- Graph
- Supertypes
- class OrderFunctions[Order]class PartialOrderFunctions[Order]class EqFunctions[Order]class Objecttrait Matchableclass Any
- Self type
- Order.type
Attributes
- Source:
- Order.scala
- Graph
- Supertypes
- Known subtypes
- trait SignedFunctions[S]object Signed.typetrait TruncatedDivisionFunctions[S]object TruncatedDivision.typeobject Order.type
Attributes
- Source:
- Order.scala
- Graph
- Supertypes
- Known subtypes
- object Order.typetrait OrderInstancestrait OrderInstancestrait AllInstancesobject implicits.typeclass AllInstancesBinCompatobject all.typeobject order.typetrait AllInstancesobject order.type
A typeclass with an operation which returns a member which is
greater or None
than the one supplied.
A typeclass with an operation which returns a member which is
greater or None
than the one supplied.
Attributes
- Source:
- Enumerable.scala
- Graph
- Supertypes
- Known subtypes
- trait Next[A]trait LowerBoundedEnumerable[A]trait UnboundedEnumerable[A]trait BigIntUnboundedEnumclass BigIntOrdertrait PartialNextLowerBounded[A]trait BoundedEnumerable[A]trait BooleanEnumerableclass BooleanOrdertrait ByteEnumerableclass ByteOrdertrait CharEnumerableclass CharOrdertrait IntEnumerableclass IntOrdertrait LongEnumerableclass LongOrdertrait ShortEnumerableclass ShortOrdertrait UnitEnumerableclass UnitOrdertrait PartialPreviousUpperBounded[A]trait UpperBoundedEnumerable[A]
Attributes
- Source:
- EnumerableCompat.scala
- Graph
- Supertypes
- trait LowerBounded[A]trait PartialNext[A]trait PartialPrevious[A]class Objecttrait Matchableclass Any
- Known subtypes
- trait BoundedEnumerable[A]trait BooleanEnumerableclass BooleanOrdertrait ByteEnumerableclass ByteOrdertrait CharEnumerableclass CharOrdertrait IntEnumerableclass IntOrdertrait LongEnumerableclass LongOrdertrait ShortEnumerableclass ShortOrdertrait UnitEnumerableclass UnitOrdertrait LowerBoundedEnumerable[A]
The PartialOrder
type class is used to define a partial ordering on some type A
.
The PartialOrder
type class is used to define a partial ordering on some type A
.
A partial order is defined by a relation <=, which obeys the following laws:
- x <= x (reflexivity)
- if x <= y and y <= x, then x = y (anti-symmetry)
- if x <= y and y <= z, then x <= z (transitivity)
To compute both <= and >= at the same time, we use a Double number to encode the result of the comparisons x <= y and x >= y. The truth table is defined as follows:
x <= y | x >= y | result | note |
---|---|---|---|
true | true | 0.0 | (corresponds to x = y) |
false | false | NaN | (x and y cannot be compared) |
true | false | -1.0 | (corresponds to x < y) |
false | true | 1.0 | (corresponds to x > y) |
Attributes
- Companion:
- object
- Source:
- PartialOrder.scala
- Graph
- Supertypes
- Known subtypes
- trait Order[A]class BigDecimalOrderclass BigIntOrderclass BooleanOrderclass ByteOrderclass CharOrderclass DeadlineOrderclass DoubleOrderclass DurationOrderclass FiniteDurationOrderclass FloatOrderclass IntOrderclass LazyListOrder[A]class ListOrder[A]class LongOrderclass OptionOrder[A]class QueueOrder[A]class SeqOrder[A]class ShortOrderclass SortedSetOrder[A]class SortedSetOrder[A]class StreamOrder[A]class StringOrderclass SymbolOrderclass UnitOrderclass VectorOrder[A]object O.typeclass BitSetPartialOrderclass LazyListPartialOrder[A]class ListPartialOrder[A]class OptionPartialOrder[A]class QueuePartialOrder[A]class SeqPartialOrder[A]class SetPartialOrder[A]class StreamPartialOrder[A]class VectorPartialOrder[A]object O.type
- Self type
- PartialOrder[A]
Attributes
- Companion:
- trait
- Source:
- PartialOrder.scala
- Graph
- Supertypes
- Self type
- PartialOrder.type
Attributes
- Source:
- PartialOrder.scala
- Graph
- Supertypes
- Known subtypes
- class OrderFunctions[O]trait SignedFunctions[S]object Signed.typetrait TruncatedDivisionFunctions[S]object TruncatedDivision.typeobject Order.typeobject PartialOrder.type
Attributes
- Source:
- PartialOrder.scala
- Graph
- Supertypes
- Known subtypes
- object PartialOrder.typetrait PartialOrderInstancestrait PartialOrderInstancestrait AllInstancesobject implicits.typeclass AllInstancesBinCompatobject all.typeobject partialOrder.typetrait AllInstancesobject partialOrder.type
A typeclass with an operation which returns a member which is
smaller or None
than the one supplied.
A typeclass with an operation which returns a member which is
smaller or None
than the one supplied.
Attributes
- Source:
- Enumerable.scala
- Graph
- Supertypes
- Known subtypes
- trait PartialNextLowerBounded[A]trait BoundedEnumerable[A]trait BooleanEnumerableclass BooleanOrdertrait ByteEnumerableclass ByteOrdertrait CharEnumerableclass CharOrdertrait IntEnumerableclass IntOrdertrait LongEnumerableclass LongOrdertrait ShortEnumerableclass ShortOrdertrait UnitEnumerableclass UnitOrdertrait LowerBoundedEnumerable[A]trait PartialPreviousUpperBounded[A]trait UpperBoundedEnumerable[A]trait Previous[A]trait UnboundedEnumerable[A]trait BigIntUnboundedEnumclass BigIntOrder
Attributes
- Source:
- EnumerableCompat.scala
- Graph
- Supertypes
- trait UpperBounded[A]trait PartialNext[A]trait PartialPrevious[A]class Objecttrait Matchableclass Any
- Known subtypes
- trait BoundedEnumerable[A]trait BooleanEnumerableclass BooleanOrdertrait ByteEnumerableclass ByteOrdertrait CharEnumerableclass CharOrdertrait IntEnumerableclass IntOrdertrait LongEnumerableclass LongOrdertrait ShortEnumerableclass ShortOrdertrait UnitEnumerableclass UnitOrdertrait UpperBoundedEnumerable[A]
A typeclass with an operation which returns a member which is always smaller than the one supplied.
A typeclass with an operation which returns a member which is always smaller than the one supplied.
Attributes
- Source:
- Enumerable.scala
- Graph
- Supertypes
- Known subtypes
- trait UnboundedEnumerable[A]trait BigIntUnboundedEnumclass BigIntOrdertrait UpperBoundedEnumerable[A]
A semigroup is any set A
with an associative operation (combine
).
A semigroup is any set A
with an associative operation (combine
).
Attributes
- Companion:
- object
- Source:
- Semigroup.scala
- Graph
- Supertypes
- trait Serializableclass Any
- Known subtypes
- trait EvalSemigroup[A]trait EvalMonoid[A]trait EvalGroup[A]trait Band[A]trait Semilattice[A]trait BoundedSemilattice[A]class BitSetSemilatticeclass SetSemilattice[A]class SortedSetSemilattice[A]class SortedSetSemilattice[A]class UnitAlgebraobject Alg.typeobject Alg.typeobject Alg.typetrait CommutativeSemigroup[A]trait CommutativeMonoid[A]trait CommutativeGroup[A]class BigDecimalGroupclass BigIntGroupclass ByteGroupclass DoubleGroupclass DurationGroupclass FiniteDurationGroupclass FloatGroupclass IntGroupclass LongGroupclass ShortGroupobject Alg.typeobject Alg.typeobject Alg.typetrait Monoid[A]trait Group[A]trait Function0Group[A]object Alg.typetrait Function0Monoid[A]class LazyListMonoid[A]class ListMonoid[A]class OptionMonoid[A]class QueueMonoid[A]class SeqMonoid[A]class StreamMonoid[A]class StringMonoidclass VectorMonoid[A]object Alg.typetrait Function0Semigroup[A]object Alg.type
- Self type
- Semigroup[A]
Attributes
- Companion:
- trait
- Source:
- Semigroup.scala
- Graph
- Supertypes
- Self type
- Semigroup.type
Attributes
- Source:
- Semigroup.scala
- Graph
- Supertypes
- Known subtypes
- object Band.typeobject CommutativeSemigroup.typeclass MonoidFunctions[M]object CommutativeMonoid.typeclass GroupFunctions[G]object CommutativeGroup.typeobject Group.typeobject Monoid.typeobject Semigroup.typeclass SemilatticeFunctions[S]object BoundedSemilattice.typeobject Semilattice.type
Semilattices are commutative semigroups whose operation (i.e. combine) is also idempotent.
Semilattices are commutative semigroups whose operation (i.e. combine) is also idempotent.
Attributes
- Companion:
- object
- Source:
- Semilattice.scala
- Graph
- Supertypes
- Known subtypes
- trait BoundedSemilattice[A]class BitSetSemilatticeclass SetSemilattice[A]class SortedSetSemilattice[A]class SortedSetSemilattice[A]class UnitAlgebraobject Alg.typeobject Alg.type
- Self type
- Semilattice[A]
Attributes
- Companion:
- trait
- Source:
- Semilattice.scala
- Graph
- Supertypes
- class SemilatticeFunctions[Semilattice]class SemigroupFunctions[Semilattice]class Objecttrait Matchableclass Any
- Self type
- Semilattice.type
Attributes
- Source:
- Semilattice.scala
- Graph
- Supertypes
- Known subtypes
- object BoundedSemilattice.typeobject Semilattice.type
A typeclass which has both previous
and next
operations
such that next . previous == identity
.
A typeclass which has both previous
and next
operations
such that next . previous == identity
.
Attributes
- Source:
- Enumerable.scala
- Graph
- Supertypes
- trait Previous[A]trait PartialPrevious[A]trait Next[A]trait PartialNext[A]class Objecttrait Matchableclass Any
- Known subtypes
- trait BigIntUnboundedEnumclass BigIntOrder
A type class used to name the upper limit of a type.
A type class used to name the upper limit of a type.
Attributes
- Companion:
- object
- Source:
- Bounded.scala
- Graph
- Supertypes
- Known subtypes
- trait PartialPreviousUpperBounded[A]trait BoundedEnumerable[A]trait BooleanEnumerableclass BooleanOrdertrait ByteEnumerableclass ByteOrdertrait CharEnumerableclass CharOrdertrait IntEnumerableclass IntOrdertrait LongEnumerableclass LongOrdertrait ShortEnumerableclass ShortOrdertrait UnitEnumerableclass UnitOrdertrait UpperBoundedEnumerable[A]trait BooleanBoundedtrait ByteBoundedtrait CharBoundedtrait DeadlineBoundedclass DeadlineOrdertrait DurationBoundedclass DurationOrdertrait FiniteDurationBoundedclass FiniteDurationOrdertrait IntBoundedtrait LongBoundedtrait ShortBoundedtrait UUIDBoundedtrait UnitBounded
Attributes
- Companion:
- trait
- Source:
- Bounded.scala
- Graph
- Supertypes
- Self type
- UpperBounded.type
Attributes
- Source:
- Enumerable.scala
- Graph
- Supertypes
- trait Previous[A]trait PartialPreviousUpperBounded[A]trait UpperBounded[A]trait PartialNext[A]trait PartialPrevious[A]class Objecttrait Matchableclass Any
Attributes
- Source:
- Bounded.scala
- Graph
- Supertypes
- Known subtypes
- object UpperBounded.type