cats.laws

BimonadLaws

trait BimonadLaws[F[_]] extends MonadLaws[F] with ComonadLaws[F]

Laws that must be obeyed by any Bimonad.

For more information, see definition 4.1 from this paper: http://arxiv.org/pdf/0710.1163v3.pdf

Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. BimonadLaws
  2. ComonadLaws
  3. CoflatMapLaws
  4. MonadLaws
  5. FlatMapLaws
  6. ApplicativeLaws
  7. ApplyLaws
  8. CartesianLaws
  9. FunctorLaws
  10. InvariantLaws
  11. AnyRef
  12. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Abstract Value Members

  1. implicit abstract def F: Bimonad[F]

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def apProductConsistent[A, B](fa: F[A], f: F[(A) ⇒ B]): IsEq[F[B]]

    Definition Classes
    ApplicativeLaws
  7. def applicativeComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEq[F[C]]

    This law is applyComposition stated in terms of pure.

    This law is applyComposition stated in terms of pure. It is a combination of applyComposition and applicativeMap and hence not strictly necessary.

    Definition Classes
    ApplicativeLaws
  8. def applicativeHomomorphism[A, B](a: A, f: (A) ⇒ B): IsEq[F[B]]

    Definition Classes
    ApplicativeLaws
  9. def applicativeIdentity[A](fa: F[A]): IsEq[F[A]]

    Definition Classes
    ApplicativeLaws
  10. def applicativeInterchange[A, B](a: A, ff: F[(A) ⇒ B]): IsEq[F[B]]

    Definition Classes
    ApplicativeLaws
  11. def applicativeMap[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Definition Classes
    ApplicativeLaws
  12. def applyComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEq[F[C]]

    Definition Classes
    ApplyLaws
  13. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  14. def cartesianAssociativity[A, B, C](fa: F[A], fb: F[B], fc: F[C]): (F[(A, (B, C))], F[((A, B), C)])

    Definition Classes
    CartesianLaws
  15. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  16. def coflatMapAssociativity[A, B, C](fa: F[A], f: (F[A]) ⇒ B, g: (F[B]) ⇒ C): IsEq[F[C]]

    Definition Classes
    CoflatMapLaws
  17. def coflatMapIdentity[A, B](fa: F[A]): IsEq[F[F[A]]]

    Definition Classes
    CoflatMapLaws
  18. def coflattenCoherence[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[F[B]]

    Definition Classes
    CoflatMapLaws
  19. def coflattenThroughMap[A](fa: F[A]): IsEq[F[F[F[A]]]]

    Definition Classes
    CoflatMapLaws
  20. def cokleisliAssociativity[A, B, C, D](f: (F[A]) ⇒ B, g: (F[B]) ⇒ C, h: (F[C]) ⇒ D, fa: F[A]): IsEq[D]

    The composition of cats.data.Cokleisli arrows is associative.

    The composition of cats.data.Cokleisli arrows is associative. This is analogous to coflatMapAssociativity.

    Definition Classes
    CoflatMapLaws
  21. def cokleisliLeftIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    extract is the left identity element under left-to-right composition of cats.data.Cokleisli arrows.

    extract is the left identity element under left-to-right composition of cats.data.Cokleisli arrows. This is analogous to comonadLeftIdentity.

    Definition Classes
    ComonadLaws
  22. def cokleisliRightIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    extract is the right identity element under left-to-right composition of cats.data.Cokleisli arrows.

    extract is the right identity element under left-to-right composition of cats.data.Cokleisli arrows. This is analogous to comonadRightIdentity.

    Definition Classes
    ComonadLaws
  23. def comonadLeftIdentity[A](fa: F[A]): IsEq[F[A]]

    Definition Classes
    ComonadLaws
  24. def comonadRightIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    Definition Classes
    ComonadLaws
  25. def covariantComposition[A, B, C](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ C): IsEq[F[C]]

    Definition Classes
    FunctorLaws
  26. def covariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Definition Classes
    FunctorLaws
  27. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  28. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  29. def extractCoflattenIdentity[A](fa: F[A]): IsEq[F[A]]

    Definition Classes
    ComonadLaws
  30. def extractFlatMapEntwining[A](ffa: F[F[A]]): IsEq[A]

  31. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  32. def flatMapAssociativity[A, B, C](fa: F[A], f: (A) ⇒ F[B], g: (B) ⇒ F[C]): IsEq[F[C]]

    Definition Classes
    FlatMapLaws
  33. def flatMapConsistentApply[A, B](fa: F[A], fab: F[(A) ⇒ B]): IsEq[F[B]]

    Definition Classes
    FlatMapLaws
  34. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  35. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  36. def invariantComposition[A, B, C](fa: F[A], f1: (A) ⇒ B, f2: (B) ⇒ A, g1: (B) ⇒ C, g2: (C) ⇒ B): IsEq[F[C]]

    Definition Classes
    InvariantLaws
  37. def invariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Definition Classes
    InvariantLaws
  38. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  39. def kleisliAssociativity[A, B, C, D](f: (A) ⇒ F[B], g: (B) ⇒ F[C], h: (C) ⇒ F[D], a: A): IsEq[F[D]]

    The composition of cats.data.Kleisli arrows is associative.

    The composition of cats.data.Kleisli arrows is associative. This is analogous to flatMapAssociativity.

    Definition Classes
    FlatMapLaws
  40. def kleisliLeftIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadLeftIdentity.

    Definition Classes
    MonadLaws
  41. def kleisliRightIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadRightIdentity.

    Definition Classes
    MonadLaws
  42. def mapCoflatMapCoherence[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Definition Classes
    ComonadLaws
  43. def mapCoflattenIdentity[A](fa: F[A]): IsEq[F[A]]

    Definition Classes
    ComonadLaws
  44. def mapFlatMapCoherence[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Make sure that map and flatMap are consistent.

    Make sure that map and flatMap are consistent.

    Definition Classes
    MonadLaws
  45. def monadLeftIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Definition Classes
    MonadLaws
  46. def monadRightIdentity[A](fa: F[A]): IsEq[F[A]]

    Definition Classes
    MonadLaws
  47. def monoidalLeftIdentity[A](fa: F[A]): (F[(Unit, A)], F[A])

    Definition Classes
    ApplicativeLaws
  48. def monoidalRightIdentity[A](fa: F[A]): (F[(A, Unit)], F[A])

    Definition Classes
    ApplicativeLaws
  49. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  50. final def notify(): Unit

    Definition Classes
    AnyRef
  51. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  52. def pureCoflatMapEntwining[A](a: A): IsEq[F[F[A]]]

  53. def pureExtractIsId[A](a: A): IsEq[A]

  54. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  55. def toString(): String

    Definition Classes
    AnyRef → Any
  56. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  57. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  58. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from ComonadLaws[F]

Inherited from CoflatMapLaws[F]

Inherited from MonadLaws[F]

Inherited from FlatMapLaws[F]

Inherited from ApplicativeLaws[F]

Inherited from ApplyLaws[F]

Inherited from CartesianLaws[F]

Inherited from FunctorLaws[F]

Inherited from InvariantLaws[F]

Inherited from AnyRef

Inherited from Any

Ungrouped