Class TransformInput
- java.lang.Object
-
- software.amazon.awssdk.services.sagemaker.model.TransformInput
-
- All Implemented Interfaces:
Serializable
,SdkPojo
,ToCopyableBuilder<TransformInput.Builder,TransformInput>
@Generated("software.amazon.awssdk:codegen") public final class TransformInput extends Object implements SdkPojo, Serializable, ToCopyableBuilder<TransformInput.Builder,TransformInput>
Describes the input source of a transform job and the way the transform job consumes it.
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static interface
TransformInput.Builder
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static TransformInput.Builder
builder()
CompressionType
compressionType()
If your transform data is compressed, specify the compression type.String
compressionTypeAsString()
If your transform data is compressed, specify the compression type.String
contentType()
The multipurpose internet mail extension (MIME) type of the data.TransformDataSource
dataSource()
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.boolean
equals(Object obj)
boolean
equalsBySdkFields(Object obj)
<T> Optional<T>
getValueForField(String fieldName, Class<T> clazz)
int
hashCode()
List<SdkField<?>>
sdkFields()
static Class<? extends TransformInput.Builder>
serializableBuilderClass()
SplitType
splitType()
The method to use to split the transform job's data files into smaller batches.String
splitTypeAsString()
The method to use to split the transform job's data files into smaller batches.TransformInput.Builder
toBuilder()
String
toString()
Returns a string representation of this object.-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface software.amazon.awssdk.utils.builder.ToCopyableBuilder
copy
-
-
-
-
Method Detail
-
dataSource
public final TransformDataSource dataSource()
Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
- Returns:
- Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.
-
contentType
public final String contentType()
The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
- Returns:
- The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.
-
compressionType
public final CompressionType compressionType()
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is
None
.If the service returns an enum value that is not available in the current SDK version,
compressionType
will returnCompressionType.UNKNOWN_TO_SDK_VERSION
. The raw value returned by the service is available fromcompressionTypeAsString()
.- Returns:
- If your transform data is compressed, specify the compression type. Amazon SageMaker automatically
decompresses the data for the transform job accordingly. The default value is
None
. - See Also:
CompressionType
-
compressionTypeAsString
public final String compressionTypeAsString()
If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is
None
.If the service returns an enum value that is not available in the current SDK version,
compressionType
will returnCompressionType.UNKNOWN_TO_SDK_VERSION
. The raw value returned by the service is available fromcompressionTypeAsString()
.- Returns:
- If your transform data is compressed, specify the compression type. Amazon SageMaker automatically
decompresses the data for the transform job accordingly. The default value is
None
. - See Also:
CompressionType
-
splitType
public final SplitType splitType()
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for
SplitType
isNone
, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter toLine
to split records on a newline character boundary.SplitType
also supports a number of record-oriented binary data formats. Currently, the supported record formats are:-
RecordIO
-
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the
BatchStrategy
andMaxPayloadInMB
parameters. When the value ofBatchStrategy
isMultiRecord
, Amazon SageMaker sends the maximum number of records in each request, up to theMaxPayloadInMB
limit. If the value ofBatchStrategy
isSingleRecord
, Amazon SageMaker sends individual records in each request.Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of
BatchStrategy
is set toSingleRecord
. Padding is not removed if the value ofBatchStrategy
is set toMultiRecord
.For more information about
RecordIO
, see Create a Dataset Using RecordIO in the MXNet documentation. For more information aboutTFRecord
, see Consuming TFRecord data in the TensorFlow documentation.If the service returns an enum value that is not available in the current SDK version,
splitType
will returnSplitType.UNKNOWN_TO_SDK_VERSION
. The raw value returned by the service is available fromsplitTypeAsString()
.- Returns:
- The method to use to split the transform job's data files into smaller batches. Splitting is necessary
when the total size of each object is too large to fit in a single request. You can also use data
splitting to improve performance by processing multiple concurrent mini-batches. The default value for
SplitType
isNone
, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter toLine
to split records on a newline character boundary.SplitType
also supports a number of record-oriented binary data formats. Currently, the supported record formats are:-
RecordIO
-
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the
BatchStrategy
andMaxPayloadInMB
parameters. When the value ofBatchStrategy
isMultiRecord
, Amazon SageMaker sends the maximum number of records in each request, up to theMaxPayloadInMB
limit. If the value ofBatchStrategy
isSingleRecord
, Amazon SageMaker sends individual records in each request.Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of
BatchStrategy
is set toSingleRecord
. Padding is not removed if the value ofBatchStrategy
is set toMultiRecord
.For more information about
RecordIO
, see Create a Dataset Using RecordIO in the MXNet documentation. For more information aboutTFRecord
, see Consuming TFRecord data in the TensorFlow documentation. -
- See Also:
SplitType
-
-
splitTypeAsString
public final String splitTypeAsString()
The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for
SplitType
isNone
, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter toLine
to split records on a newline character boundary.SplitType
also supports a number of record-oriented binary data formats. Currently, the supported record formats are:-
RecordIO
-
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the
BatchStrategy
andMaxPayloadInMB
parameters. When the value ofBatchStrategy
isMultiRecord
, Amazon SageMaker sends the maximum number of records in each request, up to theMaxPayloadInMB
limit. If the value ofBatchStrategy
isSingleRecord
, Amazon SageMaker sends individual records in each request.Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of
BatchStrategy
is set toSingleRecord
. Padding is not removed if the value ofBatchStrategy
is set toMultiRecord
.For more information about
RecordIO
, see Create a Dataset Using RecordIO in the MXNet documentation. For more information aboutTFRecord
, see Consuming TFRecord data in the TensorFlow documentation.If the service returns an enum value that is not available in the current SDK version,
splitType
will returnSplitType.UNKNOWN_TO_SDK_VERSION
. The raw value returned by the service is available fromsplitTypeAsString()
.- Returns:
- The method to use to split the transform job's data files into smaller batches. Splitting is necessary
when the total size of each object is too large to fit in a single request. You can also use data
splitting to improve performance by processing multiple concurrent mini-batches. The default value for
SplitType
isNone
, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter toLine
to split records on a newline character boundary.SplitType
also supports a number of record-oriented binary data formats. Currently, the supported record formats are:-
RecordIO
-
TFRecord
When splitting is enabled, the size of a mini-batch depends on the values of the
BatchStrategy
andMaxPayloadInMB
parameters. When the value ofBatchStrategy
isMultiRecord
, Amazon SageMaker sends the maximum number of records in each request, up to theMaxPayloadInMB
limit. If the value ofBatchStrategy
isSingleRecord
, Amazon SageMaker sends individual records in each request.Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of
BatchStrategy
is set toSingleRecord
. Padding is not removed if the value ofBatchStrategy
is set toMultiRecord
.For more information about
RecordIO
, see Create a Dataset Using RecordIO in the MXNet documentation. For more information aboutTFRecord
, see Consuming TFRecord data in the TensorFlow documentation. -
- See Also:
SplitType
-
-
toBuilder
public TransformInput.Builder toBuilder()
- Specified by:
toBuilder
in interfaceToCopyableBuilder<TransformInput.Builder,TransformInput>
-
builder
public static TransformInput.Builder builder()
-
serializableBuilderClass
public static Class<? extends TransformInput.Builder> serializableBuilderClass()
-
equalsBySdkFields
public final boolean equalsBySdkFields(Object obj)
- Specified by:
equalsBySdkFields
in interfaceSdkPojo
-
toString
public final String toString()
Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be redacted from this string using a placeholder value.
-
-