Modifier and Type | Class and Description |
---|---|
class |
DoubleColumn
A column in a base table that contains double precision floating point values
|
class |
FloatColumn
A column in a base table that contains float values
|
class |
IntColumn
A column that contains signed 4 byte integer values
|
class |
LongColumn
A column that contains signed 8 byte integer values
|
class |
ShortColumn
A column that contains signed 2 byte integer values
|
Modifier and Type | Method and Description |
---|---|
static Lda |
Lda.learn(BooleanColumn labels,
double[] priors,
double tolerance,
NumericColumn... predictors) |
static Lda |
Lda.learn(BooleanColumn labels,
double[] priors,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(BooleanColumn labels,
double lambda,
double tolerance,
int maxIters,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(BooleanColumn labels,
double lambda,
NumericColumn... predictors) |
static Lda |
Lda.learn(BooleanColumn labels,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(BooleanColumn labels,
NumericColumn... predictors) |
static Lda |
Lda.learn(CategoryColumn labels,
double[] priors,
double tolerance,
NumericColumn... predictors) |
static Lda |
Lda.learn(CategoryColumn labels,
double[] priors,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(CategoryColumn labels,
double lambda,
double tolerance,
int maxIters,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(CategoryColumn labels,
double lambda,
NumericColumn... predictors) |
static Lda |
Lda.learn(CategoryColumn labels,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(CategoryColumn labels,
NumericColumn... predictors) |
static Knn |
Knn.learn(int k,
BooleanColumn labels,
NumericColumn... predictors) |
static RandomForest |
RandomForest.learn(int nTrees,
CategoryColumn classes,
NumericColumn... columns) |
static DecisionTree |
DecisionTree.learn(int nTrees,
CategoryColumn classes,
NumericColumn... columns) |
static Knn |
Knn.learn(int k,
CategoryColumn labels,
NumericColumn... predictors) |
static Lda |
Lda.learn(IntColumn labels,
double[] priors,
double tolerance,
NumericColumn... predictors) |
static Lda |
Lda.learn(IntColumn labels,
double[] priors,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(IntColumn labels,
double lambda,
double tolerance,
int maxIters,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(IntColumn labels,
double lambda,
NumericColumn... predictors) |
static Lda |
Lda.learn(IntColumn labels,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(IntColumn labels,
NumericColumn... predictors) |
static RandomForest |
RandomForest.learn(int nTrees,
IntColumn classes,
NumericColumn... columns) |
static DecisionTree |
DecisionTree.learn(int maxNodes,
IntColumn classes,
NumericColumn... columns) |
static Knn |
Knn.learn(int k,
IntColumn labels,
NumericColumn... predictors) |
static RandomForest |
RandomForest.learn(int nTrees,
ShortColumn classes,
NumericColumn... columns) |
static DecisionTree |
DecisionTree.learn(int maxNodes,
ShortColumn classes,
NumericColumn... columns) |
static Knn |
Knn.learn(int k,
ShortColumn labels,
NumericColumn... predictors) |
static Lda |
Lda.learn(ShortColumn labels,
double[] priors,
double tolerance,
NumericColumn... predictors) |
static Lda |
Lda.learn(ShortColumn labels,
double[] priors,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(ShortColumn labels,
double lambda,
double tolerance,
int maxIters,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(ShortColumn labels,
double lambda,
NumericColumn... predictors) |
static Lda |
Lda.learn(ShortColumn labels,
NumericColumn... predictors) |
static LogisticRegression |
LogisticRegression.learn(ShortColumn labels,
NumericColumn... predictors) |
int[] |
Lda.predict(NumericColumn... predictors) |
int[] |
Knn.predict(NumericColumn... predictors) |
int[] |
LogisticRegression.predict(NumericColumn... predictors) |
double |
LogisticRegression.predictFromModel(int row,
double[] posteriori,
NumericColumn... predictors) |
ConfusionMatrix |
Lda.predictMatrix(BooleanColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
Knn.predictMatrix(BooleanColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
LogisticRegression.predictMatrix(BooleanColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
RandomForest.predictMatrix(CategoryColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
Lda.predictMatrix(CategoryColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
DecisionTree.predictMatrix(CategoryColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
Knn.predictMatrix(CategoryColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
LogisticRegression.predictMatrix(CategoryColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
Lda.predictMatrix(IntColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
Knn.predictMatrix(IntColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
LogisticRegression.predictMatrix(IntColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
RandomForest.predictMatrix(ShortColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
Lda.predictMatrix(ShortColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
DecisionTree.predictMatrix(ShortColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
Knn.predictMatrix(ShortColumn labels,
NumericColumn... predictors) |
ConfusionMatrix |
LogisticRegression.predictMatrix(ShortColumn labels,
NumericColumn... predictors) |
Constructor and Description |
---|
Gmeans(int maxK,
NumericColumn... columns) |
Kmeans(int k,
int maxIterations,
NumericColumn... columns) |
Kmeans(int k,
NumericColumn... columns) |
Xmeans(int maxK,
NumericColumn... columns) |
Modifier and Type | Method and Description |
---|---|
static PrincipalComponents |
PrincipalComponents.create(boolean useCorrelationMatrix,
NumericColumn... columns) |
Modifier and Type | Method and Description |
---|---|
static LeastSquares |
LeastSquares.train(NumericColumn responseVar,
NumericColumn... explanatoryVars) |
static LeastSquares |
LeastSquares.train(NumericColumn responseVar,
NumericColumn... explanatoryVars) |
Constructor and Description |
---|
LeastSquares(NumericColumn responseVariable,
NumericColumn... explanatoryVars) |
LeastSquares(NumericColumn responseVariable,
NumericColumn... explanatoryVars) |
Modifier and Type | Method and Description |
---|---|
NumericColumn |
Relation.nCol(int columnIndex)
Returns the column with the given name cast to a NumericColumn
|
NumericColumn |
Relation.nCol(String columnName)
Returns the column with the given name cast to a NumericColumn
|
NumericColumn |
Relation.numericColumn(int columnIndex) |
NumericColumn |
TemporaryView.numericColumn(int columnIndex) |
NumericColumn |
Relation.numericColumn(String columnName) |
NumericColumn |
TemporaryView.numericColumn(String columnName) |
Modifier and Type | Method and Description |
---|---|
static double[][] |
DoubleArrays.to2dArray(NumericColumn... columns) |
static double[][] |
DoubleArrays.to2dArray(NumericColumn x,
NumericColumn y) |
Copyright © 2017. All rights reserved.