| Package | Description |
|---|---|
| smile.regression |
Regression analysis.
|
| smile.validation |
Model validation.
|
| Modifier and Type | Interface and Description |
|---|---|
interface |
OnlineRegression<T>
Regression model with online learning capability.
|
| Modifier and Type | Class and Description |
|---|---|
class |
GaussianProcessRegression<T>
Gaussian Process for Regression.
|
class |
GradientTreeBoost
Gradient boosting for regression.
|
class |
LASSO
Least absolute shrinkage and selection operator.
|
class |
OLS
Ordinary least squares.
|
class |
RandomForest
Random forest for regression.
|
class |
RBFNetwork<T>
Radial basis function network.
|
class |
RegressionTree
Decision tree for regression.
|
class |
RidgeRegression
Ridge Regression.
|
class |
SVR<T>
Support vector regression.
|
| Modifier and Type | Method and Description |
|---|---|
abstract Regression<T> |
RegressionTrainer.train(T[] x,
double[] y)
Learns a regression model with given training data.
|
| Modifier and Type | Method and Description |
|---|---|
static <T> double |
Validation.test(Regression<T> regression,
T[] x,
double[] y)
Tests a regression model on a validation set.
|
static <T> double |
Validation.test(Regression<T> regression,
T[] x,
double[] y,
RegressionMeasure measure)
Tests a regression model on a validation set.
|
static <T> double[] |
Validation.test(Regression<T> regression,
T[] x,
double[] y,
RegressionMeasure[] measures)
Tests a regression model on a validation set.
|
Copyright © 2015. All rights reserved.