public abstract class SparseLogisticRegression extends java.lang.Object implements SoftClassifier<smile.util.SparseArray>, OnlineClassifier<smile.util.SparseArray>
LogisticRegression,
Maxent,
Serialized Form| Modifier and Type | Class and Description |
|---|---|
static class |
SparseLogisticRegression.Binomial
Binomial logistic regression.
|
static class |
SparseLogisticRegression.Multinomial
Multinomial logistic regression.
|
| Constructor and Description |
|---|
SparseLogisticRegression(int p,
double L,
double lambda,
smile.util.IntSet labels)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
double |
AIC()
Returns the AIC score.
|
static SparseLogisticRegression.Binomial |
binomial(smile.data.SparseDataset x,
int[] y)
Fits binomial logistic regression.
|
static SparseLogisticRegression.Binomial |
binomial(smile.data.SparseDataset x,
int[] y,
double lambda,
double tol,
int maxIter)
Fits binomial logistic regression.
|
static SparseLogisticRegression.Binomial |
binomial(smile.data.SparseDataset x,
int[] y,
java.util.Properties prop)
Fits binomial logistic regression.
|
static SparseLogisticRegression |
fit(smile.data.SparseDataset x,
int[] y)
Fits logistic regression.
|
static SparseLogisticRegression |
fit(smile.data.SparseDataset x,
int[] y,
double lambda,
double tol,
int maxIter)
Fits logistic regression.
|
static SparseLogisticRegression |
fit(smile.data.SparseDataset x,
int[] y,
java.util.Properties prop)
Fits logistic regression.
|
double |
getLearningRate()
Returns the learning rate of stochastic gradient descent.
|
double |
loglikelihood()
Returns the log-likelihood of model.
|
static SparseLogisticRegression.Multinomial |
multinomial(smile.data.SparseDataset x,
int[] y)
Fits multinomial logistic regression.
|
static SparseLogisticRegression.Multinomial |
multinomial(smile.data.SparseDataset x,
int[] y,
double lambda,
double tol,
int maxIter)
Fits multinomial logistic regression.
|
static SparseLogisticRegression.Multinomial |
multinomial(smile.data.SparseDataset x,
int[] y,
java.util.Properties prop)
Fits multinomial logistic regression.
|
void |
setLearningRate(double rate)
Sets the learning rate of stochastic gradient descent.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitpredict, predictupdate, updateapplyAsDouble, applyAsInt, predict, predict, scorepublic SparseLogisticRegression(int p,
double L,
double lambda,
smile.util.IntSet labels)
p - the dimension of input data.L - the log-likelihood of learned model.lambda - λ > 0 gives a "regularized" estimate of linear
weights which often has superior generalization performance,
especially when the dimensionality is high.labels - class labelspublic static SparseLogisticRegression.Binomial binomial(smile.data.SparseDataset x, int[] y)
x - training samples.y - training labels.public static SparseLogisticRegression.Binomial binomial(smile.data.SparseDataset x, int[] y, java.util.Properties prop)
x - training samples.y - training labels.public static SparseLogisticRegression.Binomial binomial(smile.data.SparseDataset x, int[] y, double lambda, double tol, int maxIter)
x - training samples.y - training labels.lambda - λ > 0 gives a "regularized" estimate of linear
weights which often has superior generalization performance,
especially when the dimensionality is high.tol - the tolerance for stopping iterations.maxIter - the maximum number of iterations.public static SparseLogisticRegression.Multinomial multinomial(smile.data.SparseDataset x, int[] y)
x - training samples.y - training labels.public static SparseLogisticRegression.Multinomial multinomial(smile.data.SparseDataset x, int[] y, java.util.Properties prop)
x - training samples.y - training labels.public static SparseLogisticRegression.Multinomial multinomial(smile.data.SparseDataset x, int[] y, double lambda, double tol, int maxIter)
x - training samples.y - training labels.lambda - λ > 0 gives a "regularized" estimate of linear
weights which often has superior generalization performance,
especially when the dimensionality is high.tol - the tolerance for stopping iterations.maxIter - the maximum number of iterations.public static SparseLogisticRegression fit(smile.data.SparseDataset x, int[] y)
x - training samples.y - training labels.public static SparseLogisticRegression fit(smile.data.SparseDataset x, int[] y, java.util.Properties prop)
x - training samples.y - training labels.public static SparseLogisticRegression fit(smile.data.SparseDataset x, int[] y, double lambda, double tol, int maxIter)
x - training samples.y - training labels.lambda - λ > 0 gives a "regularized" estimate of linear
weights which often has superior generalization performance,
especially when the dimensionality is high.tol - the tolerance for stopping iterations.maxIter - the maximum number of iterations.public void setLearningRate(double rate)
rate - the learning rate.public double getLearningRate()
public double loglikelihood()
public double AIC()