public abstract class SparseLogisticRegression extends java.lang.Object implements SoftClassifier<smile.util.SparseArray>, OnlineClassifier<smile.util.SparseArray>
LogisticRegression
,
Maxent
,
Serialized FormModifier and Type | Class and Description |
---|---|
static class |
SparseLogisticRegression.Binomial
Binomial logistic regression.
|
static class |
SparseLogisticRegression.Multinomial
Multinomial logistic regression.
|
Constructor and Description |
---|
SparseLogisticRegression(int p,
double L,
double lambda,
smile.util.IntSet labels)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
double |
AIC()
Returns the AIC score.
|
static SparseLogisticRegression.Binomial |
binomial(smile.data.SparseDataset x,
int[] y)
Fits binomial logistic regression.
|
static SparseLogisticRegression.Binomial |
binomial(smile.data.SparseDataset x,
int[] y,
double lambda,
double tol,
int maxIter)
Fits binomial logistic regression.
|
static SparseLogisticRegression.Binomial |
binomial(smile.data.SparseDataset x,
int[] y,
java.util.Properties prop)
Fits binomial logistic regression.
|
static SparseLogisticRegression |
fit(smile.data.SparseDataset x,
int[] y)
Fits logistic regression.
|
static SparseLogisticRegression |
fit(smile.data.SparseDataset x,
int[] y,
double lambda,
double tol,
int maxIter)
Fits logistic regression.
|
static SparseLogisticRegression |
fit(smile.data.SparseDataset x,
int[] y,
java.util.Properties prop)
Fits logistic regression.
|
double |
getLearningRate()
Returns the learning rate of stochastic gradient descent.
|
double |
loglikelihood()
Returns the log-likelihood of model.
|
static SparseLogisticRegression.Multinomial |
multinomial(smile.data.SparseDataset x,
int[] y)
Fits multinomial logistic regression.
|
static SparseLogisticRegression.Multinomial |
multinomial(smile.data.SparseDataset x,
int[] y,
double lambda,
double tol,
int maxIter)
Fits multinomial logistic regression.
|
static SparseLogisticRegression.Multinomial |
multinomial(smile.data.SparseDataset x,
int[] y,
java.util.Properties prop)
Fits multinomial logistic regression.
|
void |
setLearningRate(double rate)
Sets the learning rate of stochastic gradient descent.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
predict, predict
update, update
applyAsDouble, applyAsInt, predict, predict, score
public SparseLogisticRegression(int p, double L, double lambda, smile.util.IntSet labels)
p
- the dimension of input data.L
- the log-likelihood of learned model.lambda
- λ > 0 gives a "regularized" estimate of linear
weights which often has superior generalization performance,
especially when the dimensionality is high.labels
- class labelspublic static SparseLogisticRegression.Binomial binomial(smile.data.SparseDataset x, int[] y)
x
- training samples.y
- training labels.public static SparseLogisticRegression.Binomial binomial(smile.data.SparseDataset x, int[] y, java.util.Properties prop)
x
- training samples.y
- training labels.public static SparseLogisticRegression.Binomial binomial(smile.data.SparseDataset x, int[] y, double lambda, double tol, int maxIter)
x
- training samples.y
- training labels.lambda
- λ > 0 gives a "regularized" estimate of linear
weights which often has superior generalization performance,
especially when the dimensionality is high.tol
- the tolerance for stopping iterations.maxIter
- the maximum number of iterations.public static SparseLogisticRegression.Multinomial multinomial(smile.data.SparseDataset x, int[] y)
x
- training samples.y
- training labels.public static SparseLogisticRegression.Multinomial multinomial(smile.data.SparseDataset x, int[] y, java.util.Properties prop)
x
- training samples.y
- training labels.public static SparseLogisticRegression.Multinomial multinomial(smile.data.SparseDataset x, int[] y, double lambda, double tol, int maxIter)
x
- training samples.y
- training labels.lambda
- λ > 0 gives a "regularized" estimate of linear
weights which often has superior generalization performance,
especially when the dimensionality is high.tol
- the tolerance for stopping iterations.maxIter
- the maximum number of iterations.public static SparseLogisticRegression fit(smile.data.SparseDataset x, int[] y)
x
- training samples.y
- training labels.public static SparseLogisticRegression fit(smile.data.SparseDataset x, int[] y, java.util.Properties prop)
x
- training samples.y
- training labels.public static SparseLogisticRegression fit(smile.data.SparseDataset x, int[] y, double lambda, double tol, int maxIter)
x
- training samples.y
- training labels.lambda
- λ > 0 gives a "regularized" estimate of linear
weights which often has superior generalization performance,
especially when the dimensionality is high.tol
- the tolerance for stopping iterations.maxIter
- the maximum number of iterations.public void setLearningRate(double rate)
rate
- the learning rate.public double getLearningRate()
public double loglikelihood()
public double AIC()