Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

A

accuracy - Variable in class smile.validation.ClassificationMetrics
The accuracy on validation data.
Accuracy - Class in smile.validation.metric
The accuracy is the proportion of true results (both true positives and true negatives) in the population.
Accuracy() - Constructor for class smile.validation.metric.Accuracy
 
acf(double[], int) - Static method in interface smile.timeseries.TimeSeries
Autocorrelation function.
ActivationFunction - Interface in smile.base.mlp
The activation function in hidden layers.
AdaBoost - Class in smile.classification
AdaBoost (Adaptive Boosting) classifier with decision trees.
AdaBoost(Formula, int, DecisionTree[], double[], double[], double[]) - Constructor for class smile.classification.AdaBoost
Constructor.
AdaBoost(Formula, int, DecisionTree[], double[], double[], double[], IntSet) - Constructor for class smile.classification.AdaBoost
Constructor.
add(E[]) - Method in class smile.neighbor.BKTree
Add a dataset into BK-tree.
add(Collection<E>) - Method in class smile.neighbor.BKTree
Add a dataset into BK-tree.
add(E) - Method in class smile.neighbor.BKTree
Add a datum into the BK-tree.
add(int) - Method in class smile.neighbor.lsh.Bucket
Adds a point to bucket.
add(int, double[]) - Method in class smile.neighbor.lsh.Hash
Insert an item into the hash table.
add(int, double[]) - Method in class smile.neighbor.lsh.MultiProbeHash
 
add(String, int) - Method in class smile.validation.Hyperparameters
Adds a parameter.
add(String, double) - Method in class smile.validation.Hyperparameters
Adds a parameter.
add(String, String) - Method in class smile.validation.Hyperparameters
Adds a parameter.
add(String, int[]) - Method in class smile.validation.Hyperparameters
Adds a parameter.
add(String, double[]) - Method in class smile.validation.Hyperparameters
Adds a parameter.
add(String, String[]) - Method in class smile.validation.Hyperparameters
Adds a parameter.
add(String, int, int) - Method in class smile.validation.Hyperparameters
Adds a parameter.
add(String, int, int, int) - Method in class smile.validation.Hyperparameters
Adds a parameter.
add(String, double, double) - Method in class smile.validation.Hyperparameters
Adds a parameter.
add(String, double, double, double) - Method in class smile.validation.Hyperparameters
Adds a parameter.
addEdge(Neuron) - Method in class smile.vq.hebb.Neuron
Adds an edge.
addEdge(Neuron, int) - Method in class smile.vq.hebb.Neuron
Adds an edge.
AdjustedMutualInformation - Class in smile.validation.metric
Adjusted Mutual Information (AMI) for comparing clustering.
AdjustedMutualInformation(AdjustedMutualInformation.Method) - Constructor for class smile.validation.metric.AdjustedMutualInformation
Constructor.
AdjustedMutualInformation.Method - Enum in smile.validation.metric
The normalization method.
AdjustedRandIndex - Class in smile.validation.metric
Adjusted Rand Index.
AdjustedRandIndex() - Constructor for class smile.validation.metric.AdjustedRandIndex
 
adjustedRSquared() - Method in class smile.regression.LinearModel
Returns adjusted R2 statistic.
adjustedRSquared() - Method in class smile.timeseries.AR
Returns adjusted R2 statistic.
adjustedRSquared() - Method in class smile.timeseries.ARMA
Returns adjusted R2 statistic.
age - Variable in class smile.vq.hebb.Edge
The age of this edges.
age() - Method in class smile.vq.hebb.Neuron
Increments the age of all edges emanating from the neuron.
AIC() - Method in class smile.classification.LogisticRegression
Returns the AIC score.
AIC() - Method in class smile.classification.Maxent
Returns the AIC score.
AIC() - Method in class smile.classification.SparseLogisticRegression
Returns the AIC score.
AIC() - Method in class smile.glm.GLM
Returns the AIC score.
AIC(double, int) - Static method in interface smile.validation.ModelSelection
Akaike information criterion.
antecedent - Variable in class smile.association.AssociationRule
Antecedent itemset.
apply(double, FPTree) - Static method in class smile.association.ARM
Mines the association rules.
apply(FPTree) - Static method in class smile.association.FPGrowth
Mines the frequent item sets.
apply(String[]) - Method in class smile.feature.Bag
Returns the bag-of-words features of a document.
apply(int, int, int, Fitness<BitString>) - Method in class smile.feature.GAFE
Genetic algorithm based feature selection for classification.
apply(Tuple) - Method in class smile.feature.SparseOneHotEncoder
Generates the compact representation of sparse binary features for given object.
apply(DataFrame) - Method in class smile.feature.SparseOneHotEncoder
Generates the compact representation of sparse binary features for a data frame.
applyAsDouble(T) - Method in interface smile.classification.Classifier
 
applyAsDouble(T) - Method in interface smile.regression.Regression
 
applyAsInt(T) - Method in interface smile.classification.Classifier
 
AR - Class in smile.timeseries
Autoregressive model.
AR(double[], double[], double, AR.Method) - Constructor for class smile.timeseries.AR
Constructor.
ar() - Method in class smile.timeseries.AR
Returns the linear coefficients of AR (without intercept).
ar() - Method in class smile.timeseries.ARMA
Returns the linear coefficients of AR(p).
AR.Method - Enum in smile.timeseries
The fitting method.
ARM - Class in smile.association
Association Rule Mining.
ARMA - Class in smile.timeseries
Autoregressive moving-average model.
ARMA(double[], double[], double[], double, double[], double[]) - Constructor for class smile.timeseries.ARMA
Constructor.
AssociationRule - Class in smile.association
Association rule object.
AssociationRule(int[], int[], double, double, double, double) - Constructor for class smile.association.AssociationRule
Constructor.
attractors - Variable in class smile.clustering.DENCLUE
The density attractor of each observation.
auc - Variable in class smile.validation.ClassificationMetrics
The AUC on validation data.
AUC - Class in smile.validation.metric
The area under the curve (AUC).
AUC() - Constructor for class smile.validation.metric.AUC
 
AverageImputation - Class in smile.imputation
Impute missing values with the average of other attributes in the instance.
AverageImputation() - Constructor for class smile.imputation.AverageImputation
Constructor.
avg - Variable in class smile.validation.ClassificationValidations
The average of metrics.
avg - Variable in class smile.validation.RegressionValidations
The average of metrics.

B

B - Variable in class smile.vq.BIRCH
The branching factor of non-leaf nodes.
backpropagate(double[]) - Method in class smile.base.mlp.HiddenLayer
 
backpropagate(double[]) - Method in class smile.base.mlp.Layer
Propagates the errors back to a lower layer.
backpropagate(double[], boolean) - Method in class smile.base.mlp.MultilayerPerceptron
Propagates the errors back through the network.
backpropagate(double[]) - Method in class smile.base.mlp.OutputLayer
 
Bag - Class in smile.feature
The bag-of-words feature of text used in natural language processing and information retrieval.
Bag(String[]) - Constructor for class smile.feature.Bag
Constructor.
Bag(String[], boolean) - Constructor for class smile.feature.Bag
Constructor.
Bag - Class in smile.validation
A bag of random selected samples.
Bag(int[], int[]) - Constructor for class smile.validation.Bag
Constructor.
BBDTree - Class in smile.clustering
Balanced Box-Decomposition Tree.
BBDTree(double[][]) - Constructor for class smile.clustering.BBDTree
Constructs a tree out of the given n data data living in R^d.
Bernoulli - Interface in smile.glm.model
The response variable is of Bernoulli distribution.
beta - Variable in class smile.glm.GLM
The linear weights.
bias - Variable in class smile.base.mlp.Layer
The bias.
biasGradient - Variable in class smile.base.mlp.Layer
The bias gradient.
biasUpdate - Variable in class smile.base.mlp.Layer
The bias update.
BIC() - Method in class smile.glm.GLM
Returns the BIC score.
BIC(double, int, int) - Static method in interface smile.validation.ModelSelection
Bayesian information criterion.
binary(int, KernelMachine<int[]>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
binomial(Formula, DataFrame) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
binomial(Formula, DataFrame, Properties) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
binomial(double[][], int[]) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
binomial(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
binomial(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.LogisticRegression.Binomial
Constructor.
binomial(int, int[][], int[]) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
binomial(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
binomial(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.Maxent.Binomial
Constructor.
binomial(SparseDataset, int[]) - Static method in class smile.classification.SparseLogisticRegression
Fits binomial logistic regression.
binomial(SparseDataset, int[], Properties) - Static method in class smile.classification.SparseLogisticRegression
Fits binomial logistic regression.
binomial(SparseDataset, int[], double, double, int) - Static method in class smile.classification.SparseLogisticRegression
Fits binomial logistic regression.
Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression.Binomial
Constructor.
Binomial - Interface in smile.glm.model
The response variable is of Binomial distribution.
BIRCH - Class in smile.vq
Balanced Iterative Reducing and Clustering using Hierarchies.
BIRCH(int, int, int, double) - Constructor for class smile.vq.BIRCH
Constructor.
BKTree<E> - Class in smile.neighbor
A BK-tree is a metric tree specifically adapted to discrete metric spaces.
BKTree(Metric<E>) - Constructor for class smile.neighbor.BKTree
Constructor.
Bootstrap - Interface in smile.validation
The bootstrap is a general tool for assessing statistical accuracy.
BoxTest - Class in smile.timeseries
Portmanteau test jointly that several autocorrelations of time series are zero.
BoxTest.Type - Enum in smile.timeseries
The type of test.
branch(Tuple) - Method in class smile.base.cart.InternalNode
Returns true if the instance goes to the true branch.
branch(Tuple) - Method in class smile.base.cart.NominalNode
 
branch(Tuple) - Method in class smile.base.cart.OrdinalNode
 
bubble(int) - Static method in interface smile.vq.Neighborhood
Returns the bubble neighborhood function.
Bucket - Class in smile.neighbor.lsh
A bucket is a container for points that all have the same value for hash function g (function g is a vector of k LSH functions).
Bucket(int) - Constructor for class smile.neighbor.lsh.Bucket
Constructor.
bucket - Variable in class smile.neighbor.lsh.Bucket
The bucket id is given by the universal bucket hashing.
build(int) - Method in class smile.base.mlp.HiddenLayerBuilder
 
build(int) - Method in class smile.base.mlp.LayerBuilder
Creates a hidden layer.
build(int) - Method in class smile.base.mlp.OutputLayerBuilder
 

C

CART - Class in smile.base.cart
Classification and regression tree.
CART(Formula, StructType, StructField, Node, double[]) - Constructor for class smile.base.cart.CART
Constructor.
CART(DataFrame, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.base.cart.CART
Constructor.
CentroidClustering<T,U> - Class in smile.clustering
In centroid-based clustering, clusters are represented by a central vector, which may not necessarily be a member of the data set.
CentroidClustering(double, T[], int[]) - Constructor for class smile.clustering.CentroidClustering
Constructor.
centroids - Variable in class smile.clustering.CentroidClustering
The centroids of each cluster.
centroids() - Method in class smile.vq.BIRCH
Returns the cluster centroids of leaf nodes.
CLARANS<T> - Class in smile.clustering
Clustering Large Applications based upon RANdomized Search.
CLARANS(double, T[], int[], Distance<T>) - Constructor for class smile.clustering.CLARANS
Constructor.
classification(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.Bootstrap
Runs classification bootstrap validation.
classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.Bootstrap
Runs classification bootstrap validation.
classification(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
Runs classification cross validation.
classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Runs classification cross validation.
classification(T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
ClassificationMetric - Interface in smile.validation.metric
An abstract interface to measure the classification performance.
ClassificationMetrics - Class in smile.validation
The classification validation metrics.
ClassificationMetrics(double, double, int, int, double) - Constructor for class smile.validation.ClassificationMetrics
Constructor.
ClassificationMetrics(double, double, int, int, double, double) - Constructor for class smile.validation.ClassificationMetrics
Constructor of multiclass soft classifier validation.
ClassificationMetrics(double, double, int, int, double, double, double, double, double, double) - Constructor for class smile.validation.ClassificationMetrics
Constructor of binary classifier validation.
ClassificationMetrics(double, double, int, int, double, double, double, double, double, double, double, double) - Constructor for class smile.validation.ClassificationMetrics
Constructor of binary soft classifier validation.
ClassificationMetrics(double, double, int, int, double, double, double, double, double, double, double, double, double) - Constructor for class smile.validation.ClassificationMetrics
Constructor.
ClassificationValidation<M> - Class in smile.validation
Classification model validation results.
ClassificationValidation(M, int[], int[], double, double) - Constructor for class smile.validation.ClassificationValidation
Constructor.
ClassificationValidation(M, int[], int[], double[][], double, double) - Constructor for class smile.validation.ClassificationValidation
Constructor of soft classifier validation.
ClassificationValidations<M> - Class in smile.validation
Classification model validation results.
ClassificationValidations(List<ClassificationValidation<M>>) - Constructor for class smile.validation.ClassificationValidations
Constructor.
Classifier<T> - Interface in smile.classification
A classifier assigns an input object into one of a given number of categories.
ClassLabels - Class in smile.classification
Map arbitrary class labels to [0, k), where k is the number of classes.
ClassLabels(int, int[], IntSet) - Constructor for class smile.classification.ClassLabels
Constructor.
clear() - Method in class smile.base.cart.CART
Clear the workspace of building tree.
clear(double) - Method in class smile.vq.NeuralMap
Removes staled neurons and the edges beyond lifetime.
clone() - Method in class smile.neighbor.lsh.Probe
 
clustering(double[][], double[][], int[], int[]) - Method in class smile.clustering.BBDTree
Given k cluster centroids, this method assigns data to nearest centroids.
ClusteringMetric - Interface in smile.validation.metric
An abstract interface to measure the clustering performance.
coefficients() - Method in class smile.classification.LogisticRegression.Binomial
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.LogisticRegression.Multinomial
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.Maxent.Binomial
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.Maxent.Multinomial
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.SparseLogisticRegression.Binomial
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.SparseLogisticRegression.Multinomial
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
coefficients() - Method in class smile.glm.GLM
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.regression.LinearModel
Returns the linear coefficients (without intercept).
comparator - Static variable in class smile.base.cart.Split
 
compareTo(CentroidClustering<T, U>) - Method in class smile.clustering.CentroidClustering
 
compareTo(MEC<T>) - Method in class smile.clustering.MEC
 
compareTo(PrH) - Method in class smile.neighbor.lsh.PrH
 
compareTo(Probe) - Method in class smile.neighbor.lsh.Probe
 
compareTo(PrZ) - Method in class smile.neighbor.lsh.PrZ
 
compareTo(Neighbor<K, V>) - Method in class smile.neighbor.Neighbor
 
compareTo(Neuron) - Method in class smile.vq.hebb.Neuron
 
CompleteLinkage - Class in smile.clustering.linkage
Complete linkage.
CompleteLinkage(double[][]) - Constructor for class smile.clustering.linkage.CompleteLinkage
Constructor.
CompleteLinkage(int, float[]) - Constructor for class smile.clustering.linkage.CompleteLinkage
Constructor.
components - Variable in class smile.projection.ICA
The independent components (row-wise).
computeGradient(double[]) - Method in class smile.base.mlp.Layer
Computes the parameter gradient for a sample of (mini-)batch.
computeGradientUpdate(double[], double, double, double) - Method in class smile.base.mlp.Layer
Computes the parameter gradient and update the weights.
computeOutputGradient(double[], double) - Method in class smile.base.mlp.OutputLayer
Compute the network output gradient.
confidence - Variable in class smile.association.AssociationRule
The confidence value.
confusion - Variable in class smile.validation.ClassificationValidation
The confusion matrix.
ConfusionMatrix - Class in smile.validation.metric
The confusion matrix of truth and predictions.
ConfusionMatrix(int[][]) - Constructor for class smile.validation.metric.ConfusionMatrix
Constructor.
consequent - Variable in class smile.association.AssociationRule
Consequent itemset.
coordinates - Variable in class smile.manifold.IsoMap
The coordinate matrix in embedding space.
coordinates - Variable in class smile.manifold.LaplacianEigenmap
The coordinate matrix in embedding space.
coordinates - Variable in class smile.manifold.LLE
The coordinate matrix in embedding space.
coordinates - Variable in class smile.manifold.TSNE
The coordinate matrix in embedding space.
coordinates - Variable in class smile.manifold.UMAP
The coordinate matrix in embedding space.
coordinates - Variable in class smile.mds.IsotonicMDS
The coordinates.
coordinates - Variable in class smile.mds.MDS
The principal coordinates.
coordinates - Variable in class smile.mds.SammonMapping
The coordinates.
cor(double[][]) - Static method in class smile.projection.PCA
Fits principal component analysis with correlation matrix.
Cost - Enum in smile.base.mlp
Neural network cost function.
cost() - Method in class smile.base.mlp.OutputLayer
Returns the cost function of neural network.
count() - Method in class smile.base.cart.DecisionNode
Returns the number of node samples in each class.
counter - Variable in class smile.vq.hebb.Neuron
The local counter variable (e.g.
cov - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The covariance matrix of joint predictive distribution at query points.
cov(double[], int) - Static method in interface smile.timeseries.TimeSeries
Autocovariance function.
CoverTree<E> - Class in smile.neighbor
Cover tree is a data structure for generic nearest neighbor search, which is especially efficient in spaces with small intrinsic dimension.
CoverTree(E[], Metric<E>) - Constructor for class smile.neighbor.CoverTree
Constructor.
CoverTree(E[], Metric<E>, double) - Constructor for class smile.neighbor.CoverTree
Constructor.
CRF - Class in smile.sequence
First-order linear conditional random field.
CRF(StructType, RegressionTree[][], double) - Constructor for class smile.sequence.CRF
Constructor.
CRFLabeler<T> - Class in smile.sequence
First-order CRF sequence labeler.
CRFLabeler(CRF, Function<T, Tuple>) - Constructor for class smile.sequence.CRFLabeler
Constructor.
crossentropy - Variable in class smile.validation.ClassificationMetrics
The cross entropy on validation data.
CrossEntropy - Interface in smile.validation.metric
Cross entropy generalizes the log loss metric to multiclass problems.
CrossValidation - Interface in smile.validation
Cross-validation is a technique for assessing how the results of a statistical analysis will generalize to an independent data set.

D

d(int, int) - Method in class smile.clustering.linkage.Linkage
Returns the distance/dissimilarity between two clusters/objects, which are indexed by integers.
d - Variable in class smile.vq.BIRCH
The dimensionality of data.
data - Variable in class smile.neighbor.LSH
The data objects.
DataFrameClassifier - Interface in smile.classification
Classification trait on DataFrame.
DataFrameRegression - Interface in smile.regression
Regression trait on DataFrame.
DBSCAN<T> - Class in smile.clustering
Density-Based Spatial Clustering of Applications with Noise.
DBSCAN(int, double, RNNSearch<T, T>, int, int[]) - Constructor for class smile.clustering.DBSCAN
Constructor.
DecisionNode - Class in smile.base.cart
A leaf node in decision tree.
DecisionNode(int[]) - Constructor for class smile.base.cart.DecisionNode
Constructor.
DecisionTree - Class in smile.classification
Decision tree.
DecisionTree(DataFrame, int[], StructField, int, SplitRule, int, int, int, int, int[], int[][]) - Constructor for class smile.classification.DecisionTree
Constructor.
DENCLUE - Class in smile.clustering
DENsity CLUstering.
DENCLUE(int, double[][], double[], double[][], double, int[], double) - Constructor for class smile.clustering.DENCLUE
Constructor.
depth() - Method in class smile.base.cart.InternalNode
 
depth() - Method in class smile.base.cart.LeafNode
 
depth() - Method in interface smile.base.cart.Node
Returns the maximum depth of the tree -- the number of nodes along the longest path from this node down to the farthest leaf node.
DeterministicAnnealing - Class in smile.clustering
Deterministic annealing clustering.
DeterministicAnnealing(double, double[][], int[]) - Constructor for class smile.clustering.DeterministicAnnealing
Constructor.
deviance() - Method in class smile.base.cart.DecisionNode
 
deviance(int[], double[]) - Static method in class smile.base.cart.DecisionNode
Returns the deviance of node.
deviance() - Method in class smile.base.cart.InternalNode
 
deviance() - Method in interface smile.base.cart.Node
Returns the deviance of node.
deviance() - Method in class smile.base.cart.RegressionNode
 
deviance - Variable in class smile.glm.GLM
The deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Proposed Model)).
deviance() - Method in class smile.glm.GLM
Returns the deviance of model.
deviance(double[], double[], double[]) - Method in interface smile.glm.model.Model
The deviance function.
devianceResiduals - Variable in class smile.glm.GLM
The deviance residuals.
devianceResiduals() - Method in class smile.glm.GLM
Returns the deviance residuals.
df - Variable in class smile.glm.GLM
The degrees of freedom of the residual deviance.
df() - Method in class smile.regression.LinearModel
Returns the degree-of-freedom of residual standard error.
df() - Method in class smile.timeseries.AR
Returns the degree-of-freedom of residual standard error.
df() - Method in class smile.timeseries.ARMA
Returns the degree-of-freedom of residual standard error.
df - Variable in class smile.timeseries.BoxTest
The degree of freedom.
diff(double[], int) - Static method in interface smile.timeseries.TimeSeries
Returns the first-differencing of time series.
diff(double[], int, int) - Static method in interface smile.timeseries.TimeSeries
Returns the differencing of time series.
dimension() - Method in class smile.classification.Maxent
Returns the dimension of input space.
DiscreteNaiveBayes - Class in smile.classification
Naive Bayes classifier for document classification in NLP.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes.Model - Enum in smile.classification
The generation models of naive Bayes classifier.
distance(T, U) - Method in class smile.clustering.CentroidClustering
The distance function.
distance(T, T) - Method in class smile.clustering.CLARANS
 
distance(double[], double[]) - Method in class smile.clustering.DeterministicAnnealing
 
distance(double[], double[]) - Method in class smile.clustering.GMeans
 
distance(double[], double[]) - Method in class smile.clustering.KMeans
 
distance(int[], int[]) - Method in class smile.clustering.KModes
 
distance(double[], SparseArray) - Method in class smile.clustering.SIB
 
distance(double[], double[]) - Method in class smile.clustering.XMeans
 
distance - Variable in class smile.neighbor.Neighbor
The distance between the query and the neighbor.
distance - Variable in class smile.vq.hebb.Neuron
The distance between the neuron and an input signal.
distance(double[]) - Method in class smile.vq.hebb.Neuron
Computes the distance between the neuron and a signal.
distortion - Variable in class smile.clustering.CentroidClustering
The total distortion.
distortion - Variable in class smile.clustering.SpectralClustering
The distortion in feature space.
dlink(double) - Method in interface smile.glm.model.Model
The derivative of link function.
dot() - Method in class smile.base.cart.CART
Returns the graphic representation in Graphviz dot format.
dot(StructType, StructField, int) - Method in class smile.base.cart.DecisionNode
 
dot(StructType, StructField, int) - Method in interface smile.base.cart.Node
Returns a dot representation for visualization.
dot(StructType, StructField, int) - Method in class smile.base.cart.NominalNode
 
dot(StructType, StructField, int) - Method in class smile.base.cart.OrdinalNode
 
dot(StructType, StructField, int) - Method in class smile.base.cart.RegressionNode
 

E

Edge - Class in smile.vq.hebb
The connection between neurons.
Edge(Neuron) - Constructor for class smile.vq.hebb.Edge
Constructor.
Edge(Neuron, int) - Constructor for class smile.vq.hebb.Edge
Constructor.
edges - Variable in class smile.vq.hebb.Neuron
The direct connected neighbors.
ElasticNet - Class in smile.regression
Elastic Net regularization.
ElasticNet() - Constructor for class smile.regression.ElasticNet
 
entropy - Variable in class smile.clustering.MEC
The conditional entropy as the objective function.
entry - Variable in class smile.neighbor.lsh.Bucket
The indices of points that all have the same value for hash function g.
epsilon - Variable in class smile.base.mlp.MultilayerPerceptron
A small constant for numerical stability in RMSProp.
equals(Object) - Method in class smile.association.AssociationRule
 
equals(Object) - Method in class smile.association.ItemSet
 
equals(Object) - Method in class smile.base.cart.DecisionNode
 
equals(Object) - Method in class smile.base.cart.RegressionNode
 
error() - Method in class smile.regression.LinearModel
Returns the residual standard error.
error - Variable in class smile.validation.ClassificationMetrics
The number of errors.
Error - Class in smile.validation.metric
The number of errors in the population.
Error() - Constructor for class smile.validation.metric.Error
 
estimate(int, double) - Method in class smile.neighbor.lsh.HashValueParzenModel
Given a hash value h, estimate the Gaussian model (mean and variance) of neighbors existing in the corresponding bucket.
Exp - Class in smile.projection.ica
The contrast function when the independent components are highly super-Gaussian, or when robustness is very important.
Exp() - Constructor for class smile.projection.ica.Exp
 
expand() - Method in class smile.neighbor.lsh.Probe
This operation sets to one the component following the last nonzero component if it is not the last one.
extend() - Method in class smile.neighbor.lsh.Probe
This operation adds one to the last nonzero component.

F

f(double[]) - Method in interface smile.base.mlp.ActivationFunction
The output function.
f(double[]) - Method in class smile.base.mlp.HiddenLayer
 
f(double[]) - Method in class smile.base.mlp.Layer
The activation or output function.
f(double[]) - Method in enum smile.base.mlp.OutputFunction
The output function.
f(double[]) - Method in class smile.base.mlp.OutputLayer
 
f(T) - Method in class smile.base.rbf.RBF
The activation function.
f(double[]) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(int[]) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(SparseArray) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(double) - Method in class smile.projection.ica.Exp
 
f(double) - Method in class smile.projection.ica.Kurtosis
 
f(double) - Method in class smile.projection.ica.LogCosh
 
f1 - Variable in class smile.validation.ClassificationMetrics
The F-1 score on validation data.
F1 - Static variable in class smile.validation.metric.FScore
The F_1 score, the harmonic mean of precision and recall.
F2 - Static variable in class smile.validation.metric.FScore
The F_2 score, which weighs recall higher than precision.
Fallout - Class in smile.validation.metric
Fall-out, false alarm rate, or false positive rate (FPR)
Fallout() - Constructor for class smile.validation.metric.Fallout
 
falseChild() - Method in class smile.base.cart.InternalNode
Returns the false branch child.
FDR - Class in smile.validation.metric
The false discovery rate (FDR) is ratio of false positives to combined true and false positives, which is actually 1 - precision.
FDR() - Constructor for class smile.validation.metric.FDR
 
feature() - Method in class smile.base.cart.InternalNode
Returns the split feature.
FeatureRanking - Interface in smile.feature
Univariate feature ranking metric.
features - Variable in class smile.sequence.CRFLabeler
The feature function.
FeatureTransform - Interface in smile.feature
Feature transformation.
FHalf - Static variable in class smile.validation.metric.FScore
The F_0.5 score, which weighs recall lower than precision.
findBestSplit(LeafNode, int, int, boolean[]) - Method in class smile.base.cart.CART
Finds the best attribute to split on a set of samples.
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.base.cart.CART
Finds the best split for given column.
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.classification.DecisionTree
 
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.regression.RegressionTree
 
fit(double[][], int) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(double[][], int, int) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(double[][], int, double) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(T[], Metric<T>, int) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(T[], Metric<T>, int, int) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(T[], Metric<T>, int, double) - Static method in class smile.base.rbf.RBF
Learns Gaussian RBF function and centers from data.
fit(T[], int[]) - Method in class smile.base.svm.LASVM
Trains the model.
fit(T[], int[], int) - Method in class smile.base.svm.LASVM
Trains the model.
fit(T[], double[]) - Method in class smile.base.svm.SVR
Fits a epsilon support vector regression model.
fit(Formula, DataFrame) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(Formula, DataFrame, int, int, int, int) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(int[]) - Static method in class smile.classification.ClassLabels
Learns the class label mapping from samples.
fit(BaseVector) - Static method in class smile.classification.ClassLabels
Learns the class label mapping from samples.
fit(Formula, DataFrame) - Static method in class smile.classification.DecisionTree
Learns a classification tree.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.DecisionTree
Learns a classification tree.
fit(Formula, DataFrame, SplitRule, int, int, int) - Static method in class smile.classification.DecisionTree
Learns a classification tree.
fit(Formula, DataFrame) - Static method in class smile.classification.FLD
Learn Fisher's linear discriminant.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.FLD
Learn Fisher's linear discriminant.
fit(double[][], int[]) - Static method in class smile.classification.FLD
Learn Fisher's linear discriminant.
fit(double[][], int[], int, double) - Static method in class smile.classification.FLD
Learn Fisher's linear discriminant.
fit(Formula, DataFrame) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(Formula, DataFrame, int, int, int, int, double, double) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(double[], int[]) - Static method in class smile.classification.IsotonicRegressionScaling
Trains the Isotonic Regression scaling.
fit(T[], int[], Distance<T>) - Static method in class smile.classification.KNN
Learn the 1-NN classifier.
fit(T[], int[], int, Distance<T>) - Static method in class smile.classification.KNN
Learn the K-NN classifier.
fit(double[][], int[]) - Static method in class smile.classification.KNN
Learn the 1-NN classifier.
fit(double[][], int[], int) - Static method in class smile.classification.KNN
Learn the K-NN classifier.
fit(Formula, DataFrame) - Static method in class smile.classification.LDA
Learns linear discriminant analysis.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.LDA
Learns linear discriminant analysis.
fit(double[][], int[]) - Static method in class smile.classification.LDA
Learns linear discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.LDA
Learns linear discriminant analysis.
fit(double[][], int[], double[], double) - Static method in class smile.classification.LDA
Learns linear discriminant analysis.
fit(Formula, DataFrame) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(double[][], int[]) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(int, int[][], int[]) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
fit(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
fit(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary classifiers.
fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary classifiers.
fit(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary data frame classifiers.
fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary classifiers.
fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary classifiers.
fit(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary data frame classifiers.
fit(double[], int[]) - Static method in class smile.classification.PlattScaling
Trains the Platt scaling.
fit(double[], int[], int) - Static method in class smile.classification.PlattScaling
Trains the Platt scaling.
fit(Classifier<T>, T[], int[]) - Static method in class smile.classification.PlattScaling
Fits Platt Scaling to estimate posteriori probabilities.
fit(Formula, DataFrame) - Static method in class smile.classification.QDA
Learns quadratic discriminant analysis.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.QDA
Learns quadratic discriminant analysis.
fit(double[][], int[]) - Static method in class smile.classification.QDA
Learn quadratic discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.QDA
Learns quadratic discriminant analysis.
fit(double[][], int[], double[], double) - Static method in class smile.classification.QDA
Learn quadratic discriminant analysis.
fit(Formula, DataFrame) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[]) - Static method in class smile.classification.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[], LongStream) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(T[], int[], RBF<T>[]) - Static method in class smile.classification.RBFNetwork
Fits a RBF network.
fit(T[], int[], RBF<T>[], boolean) - Static method in class smile.classification.RBFNetwork
Fits a RBF network.
fit(Formula, DataFrame) - Static method in class smile.classification.RDA
Learns regularized discriminant analysis.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.RDA
Learns regularized discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.RDA
Learns regularized discriminant analysis.
fit(double[][], int[], double) - Static method in class smile.classification.RDA
Learn regularized discriminant analysis.
fit(double[][], int[], double, double[], double) - Static method in class smile.classification.RDA
Learn regularized discriminant analysis.
fit(SparseDataset, int[]) - Static method in class smile.classification.SparseLogisticRegression
Fits logistic regression.
fit(SparseDataset, int[], Properties) - Static method in class smile.classification.SparseLogisticRegression
Fits logistic regression.
fit(SparseDataset, int[], double, double, int) - Static method in class smile.classification.SparseLogisticRegression
Fits logistic regression.
fit(double[][], int[], double, double) - Static method in class smile.classification.SVM
Fits a binary-class linear SVM.
fit(int[][], int[], int, double, double) - Static method in class smile.classification.SVM
Fits a binary-class linear SVM of binary sparse data.
fit(SparseArray[], int[], int, double, double) - Static method in class smile.classification.SVM
Fits a binary-class linear SVM.
fit(T[], int[], MercerKernel<T>, double, double) - Static method in class smile.classification.SVM
Fits a binary-class SVM.
fit(T[], Distance<T>, int) - Static method in class smile.clustering.CLARANS
Clustering data into k clusters.
fit(T[], Distance<T>, int, int) - Static method in class smile.clustering.CLARANS
Constructor.
fit(double[][], int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data with KD-tree.
fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data.
fit(T[], RNNSearch<T, T>, int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data.
fit(double[][], double, int) - Static method in class smile.clustering.DENCLUE
Clustering data.
fit(double[][], double, int, double, int) - Static method in class smile.clustering.DENCLUE
Clustering data.
fit(double[][], int) - Static method in class smile.clustering.DeterministicAnnealing
Clustering data into k clusters.
fit(double[][], int, double, int, double, double) - Static method in class smile.clustering.DeterministicAnnealing
Clustering data into k clusters.
fit(double[][], int) - Static method in class smile.clustering.GMeans
Clustering data with the number of clusters determined by G-Means algorithm automatically.
fit(double[][], int, int, double) - Static method in class smile.clustering.GMeans
Clustering data with the number of clusters determined by G-Means algorithm automatically.
fit(Linkage) - Static method in class smile.clustering.HierarchicalClustering
Fits the Agglomerative Hierarchical Clustering with given linkage method, which includes proximity matrix.
fit(double[][], int) - Static method in class smile.clustering.KMeans
Partitions data into k clusters up to 100 iterations.
fit(double[][], int, int, double) - Static method in class smile.clustering.KMeans
Partitions data into k clusters up to 100 iterations.
fit(BBDTree, double[][], int, int, double) - Static method in class smile.clustering.KMeans
Partitions data into k clusters.
fit(int[][], int) - Static method in class smile.clustering.KModes
Fits k-modes clustering.
fit(int[][], int, int) - Static method in class smile.clustering.KModes
Fits k-modes clustering.
fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.MEC
Clustering the data.
fit(T[], RNNSearch<T, T>, int, double, int[], double) - Static method in class smile.clustering.MEC
Clustering the data.
fit(SparseArray[], int) - Static method in class smile.clustering.SIB
Clustering data into k clusters up to 100 iterations.
fit(SparseArray[], int, int) - Static method in class smile.clustering.SIB
Clustering data into k clusters.
fit(Matrix, int) - Static method in class smile.clustering.SpectralClustering
Spectral graph clustering.
fit(Matrix, int, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral graph clustering.
fit(double[][], int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering the data.
fit(double[][], int, double, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering the data.
fit(double[][], int, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering with Nystrom approximation.
fit(double[][], int, int, double, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering with Nystrom approximation.
fit(double[][], int) - Static method in class smile.clustering.XMeans
Clustering data with the number of clusters determined by X-Means algorithm automatically.
fit(double[][], int, int, double) - Static method in class smile.clustering.XMeans
Clustering data with the number of clusters determined by X-Means algorithm automatically.
fit(DataFrame) - Static method in class smile.feature.MaxAbsScaler
Learns transformation parameters from a dataset.
fit(double[][]) - Static method in class smile.feature.MaxAbsScaler
Learns transformation parameters from a dataset.
fit(DataFrame) - Static method in class smile.feature.RobustStandardizer
Learns transformation parameters from a dataset.
fit(double[][]) - Static method in class smile.feature.RobustStandardizer
Learns transformation parameters from a dataset.
fit(DataFrame) - Static method in class smile.feature.Scaler
Learns transformation parameters from a dataset.
fit(double[][]) - Static method in class smile.feature.Scaler
Learns transformation parameters from a dataset.
fit(DataFrame) - Static method in class smile.feature.Standardizer
Learns transformation parameters from a dataset.
fit(double[][]) - Static method in class smile.feature.Standardizer
Learns transformation parameters from a dataset.
fit(DataFrame) - Static method in class smile.feature.WinsorScaler
Learns transformation parameters from a dataset with 5% lower limit and 95% upper limit.
fit(DataFrame, double, double) - Static method in class smile.feature.WinsorScaler
Learns transformation parameters from a dataset.
fit(double[][]) - Static method in class smile.feature.WinsorScaler
Learns transformation parameters from a dataset.
fit(double[][], double, double) - Static method in class smile.feature.WinsorScaler
Learns transformation parameters from a dataset.
fit(Formula, DataFrame, Model) - Static method in class smile.glm.GLM
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
fit(Formula, DataFrame, Model, Properties) - Static method in class smile.glm.GLM
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
fit(Formula, DataFrame, Model, double, int) - Static method in class smile.glm.GLM
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
fit(RNNSearch<double[], double[]>, double[][], double) - Method in class smile.neighbor.MPLSH
Fits the posteriori multiple probe algorithm.
fit(RNNSearch<double[], double[]>, double[][], double, int) - Method in class smile.neighbor.MPLSH
Fits the posteriori multiple probe algorithm.
fit(RNNSearch<double[], double[]>, double[][], double, int, double) - Method in class smile.neighbor.MPLSH
Train the posteriori multiple probe algorithm.
fit(double[][], int) - Static method in class smile.projection.ICA
Fits independent component analysis.
fit(double[][], int, Properties) - Static method in class smile.projection.ICA
Fits independent component analysis.
fit(double[][], int, DifferentiableFunction, double, int) - Static method in class smile.projection.ICA
Fits independent component analysis.
fit(T[], MercerKernel<T>, int) - Static method in class smile.projection.KPCA
Fits kernel principal component analysis.
fit(T[], MercerKernel<T>, int, double) - Static method in class smile.projection.KPCA
Fits kernel principal component analysis.
fit(double[][]) - Static method in class smile.projection.PCA
Fits principal component analysis with covariance matrix.
fit(double[][], int) - Static method in class smile.projection.ProbabilisticPCA
Fits probabilistic principal component analysis.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.ElasticNet
Fit an Elastic Net model.
fit(Formula, DataFrame, double, double) - Static method in class smile.regression.ElasticNet
Fit an Elastic Net model.
fit(Formula, DataFrame, double, double, double, int) - Static method in class smile.regression.ElasticNet
Fit an Elastic Net model.
fit(T[], double[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model.
fit(T[], double[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model by the method of subset of regressors.
fit(T[], double[], MercerKernel<T>, double, boolean, double, int) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model.
fit(T[], double[], T[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model by the method of subset of regressors.
fit(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model by the method of subset of regressors.
fit(T[], double[], T[], MercerKernel<T>, double, boolean) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model by the method of subset of regressors.
fit(Formula, DataFrame) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame, Loss, int, int, int, int, double, double) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, double) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, double, double, int) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame, String, boolean, boolean) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame) - Static method in class smile.regression.RandomForest
Learns a random forest for regression.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RandomForest
Learns a random forest for regression.
fit(Formula, DataFrame, int, int, int, int, int, double) - Static method in class smile.regression.RandomForest
Learns a random forest for regression.
fit(Formula, DataFrame, int, int, int, int, int, double, LongStream) - Static method in class smile.regression.RandomForest
Learns a random forest for regression.
fit(T[], double[], RBF<T>[]) - Static method in class smile.regression.RBFNetwork
Fits a RBF network.
fit(T[], double[], RBF<T>[], boolean) - Static method in class smile.regression.RBFNetwork
Fits a RBF network.
fit(Formula, DataFrame) - Static method in class smile.regression.RegressionTree
Learns a regression tree.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RegressionTree
Learns a regression tree.
fit(Formula, DataFrame, int, int, int) - Static method in class smile.regression.RegressionTree
Learns a regression tree.
fit(Formula, DataFrame) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, double) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, double[], double[], double[]) - Static method in class smile.regression.RidgeRegression
Fits a generalized ridge regression model that minimizes a weighted least squares criterion augmented with a generalized ridge penalty:
fit(double[][], double[], double, double, double) - Static method in class smile.regression.SVR
Fits a linear epsilon-SVR.
fit(int[][], double[], int, double, double, double) - Static method in class smile.regression.SVR
Fits a linear epsilon-SVR of binary sparse data.
fit(SparseArray[], double[], int, double, double, double) - Static method in class smile.regression.SVR
Fits a linear epsilon-SVR of sparse data.
fit(T[], double[], MercerKernel<T>, double, double, double) - Static method in class smile.regression.SVR
Fits a epsilon-SVR.
fit(Tuple[][], int[][]) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(Tuple[][], int[][], Properties) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(Tuple[][], int[][], int, int, int, int, double) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(T[][], int[][], Function<T, Tuple>) - Static method in class smile.sequence.CRFLabeler
Fits a CRF model.
fit(T[][], int[][], Function<T, Tuple>, Properties) - Static method in class smile.sequence.CRFLabeler
Fits a CRF model.
fit(T[][], int[][], Function<T, Tuple>, int, int, int, int, double) - Static method in class smile.sequence.CRFLabeler
Fits a CRF.
fit(int[][], int[][]) - Static method in class smile.sequence.HMM
Fits an HMM by maximum likelihood estimation.
fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMM
Fits an HMM by maximum likelihood estimation.
fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMMLabeler
Fits an HMM by maximum likelihood estimation.
fit(double[], int) - Static method in class smile.timeseries.AR
Fits an autoregressive model with Yule-Walker procedure.
fit(double[], int, int) - Static method in class smile.timeseries.ARMA
Fits an ARMA model with Hannan-Rissanen algorithm.
fitness(double[][], int[], double[][], int[], ClassificationMetric, BiFunction<double[][], int[], Classifier<double[]>>) - Static method in class smile.feature.GAFE
Returns a classification fitness measure.
fitness(double[][], double[], double[][], double[], RegressionMetric, BiFunction<double[][], double[], Regression<double[]>>) - Static method in class smile.feature.GAFE
Returns a regression fitness function.
fitness(String, DataFrame, DataFrame, ClassificationMetric, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.feature.GAFE
Returns a classification fitness function.
fitness(String, DataFrame, DataFrame, RegressionMetric, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.feature.GAFE
Returns a regression fitness function.
fittedValues() - Method in class smile.glm.GLM
Returns the fitted mean values.
fittedValues() - Method in class smile.regression.LinearModel
Returns the fitted values.
fittedValues - Variable in class smile.regression.Regression.Metric
The fitted values.
fittedValues() - Method in class smile.timeseries.AR
Returns the fitted values.
fittedValues() - Method in class smile.timeseries.ARMA
Returns the fitted values.
fitTime - Variable in class smile.validation.ClassificationMetrics
The time in milliseconds of fitting the model.
fitTime - Variable in class smile.validation.RegressionMetrics
The time in milliseconds of fitting the model.
FLD - Class in smile.classification
Fisher's linear discriminant.
FLD(double[], double[][], Matrix) - Constructor for class smile.classification.FLD
Constructor.
FLD(double[], double[][], Matrix, IntSet) - Constructor for class smile.classification.FLD
Constructor.
forecast() - Method in class smile.timeseries.AR
Returns 1-step ahead forecast.
forecast(int) - Method in class smile.timeseries.AR
Returns l-step ahead forecast.
forecast() - Method in class smile.timeseries.ARMA
Returns 1-step ahead forecast.
forecast(int) - Method in class smile.timeseries.ARMA
Returns l-step ahead forecast.
formula - Variable in class smile.base.cart.CART
The model formula.
formula() - Method in class smile.classification.AdaBoost
 
formula() - Method in interface smile.classification.DataFrameClassifier
Returns the formula associated with the model.
formula() - Method in class smile.classification.DecisionTree
Returns null if the tree is part of ensemble algorithm.
formula() - Method in class smile.classification.GradientTreeBoost
 
formula() - Method in class smile.classification.RandomForest
 
formula() - Method in interface smile.feature.TreeSHAP
Returns the formula associated with the model.
formula - Variable in class smile.glm.GLM
The symbolic description of the model to be fitted.
formula() - Method in interface smile.regression.DataFrameRegression
Returns the formula associated with the model.
formula() - Method in class smile.regression.GradientTreeBoost
 
formula() - Method in class smile.regression.LinearModel
 
formula() - Method in class smile.regression.RandomForest
 
formula() - Method in class smile.regression.RegressionTree
Returns null if the tree is part of ensemble algorithm.
FPGrowth - Class in smile.association
Frequent item set mining based on the FP-growth (frequent pattern growth) algorithm, which employs an extended prefix-tree (FP-tree) structure to store the database in a compressed form.
FPTree - Class in smile.association
FP-tree data structure used in FP-growth (frequent pattern growth) algorithm for frequent item set mining.
FScore - Class in smile.validation.metric
The F-score (or F-measure) considers both the precision and the recall of the test to compute the score.
FScore() - Constructor for class smile.validation.metric.FScore
Constructor of F1 score.
FScore(double) - Constructor for class smile.validation.metric.FScore
Constructor of general F-score.
ftest() - Method in class smile.regression.LinearModel
Returns the F-statistic of goodness-of-fit.

G

g(double[], double[]) - Method in interface smile.base.mlp.ActivationFunction
The gradient function.
g(Cost, double[], double[]) - Method in enum smile.base.mlp.OutputFunction
The gradient function.
g(double) - Method in class smile.projection.ica.Exp
 
g(double) - Method in class smile.projection.ica.Kurtosis
 
g(double) - Method in class smile.projection.ica.LogCosh
 
g2(double) - Method in class smile.projection.ica.Exp
 
g2(double) - Method in class smile.projection.ica.Kurtosis
 
g2(double) - Method in class smile.projection.ica.LogCosh
 
GAFE - Class in smile.feature
Genetic algorithm based feature selection.
GAFE() - Constructor for class smile.feature.GAFE
Constructor.
GAFE(Selection, int, Crossover, double, double) - Constructor for class smile.feature.GAFE
Constructor.
Gaussian(double, double) - Static method in interface smile.vq.Neighborhood
Returns Gaussian neighborhood function.
GaussianProcessRegression<T> - Class in smile.regression
Gaussian Process for Regression.
GaussianProcessRegression(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.GaussianProcessRegression
Constructor.
GaussianProcessRegression(MercerKernel<T>, T[], double[], double, double, double) - Constructor for class smile.regression.GaussianProcessRegression
Constructor.
GaussianProcessRegression(MercerKernel<T>, T[], double[], double, double, double, Matrix.Cholesky, double) - Constructor for class smile.regression.GaussianProcessRegression
Constructor.
GaussianProcessRegression.JointPrediction - Class in smile.regression
The joint prediction of multiple data points.
get(int) - Method in class smile.neighbor.lsh.Hash
Returns the bucket entry for the given hash value.
get(double[]) - Method in class smile.neighbor.lsh.Hash
Returns the bucket entry for the given point.
getCenter() - Method in class smile.projection.PCA
Returns the center of data.
getCenter() - Method in class smile.projection.ProbabilisticPCA
Returns the center of data.
getCoordinates() - Method in class smile.projection.KPCA
Returns the nonlinear principal component scores, i.e., the representation of learning data in the nonlinear principal component space.
getCumulativeVarianceProportion() - Method in class smile.projection.PCA
Returns the cumulative proportion of variance contained in principal components, ordered from largest to smallest.
getHeight() - Method in class smile.clustering.HierarchicalClustering
Returns a set of n-1 non-decreasing real values, which are the clustering height, i.e., the value of the criterion associated with the clustering method for the particular agglomeration.
getInitialStateProbabilities() - Method in class smile.sequence.HMM
Returns the initial state probabilities.
getInputSize() - Method in class smile.base.mlp.Layer
Returns the dimension of input vector (not including bias value).
getLearningRate() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the learning rate.
getLearningRate() - Method in class smile.classification.LogisticRegression
Returns the learning rate of stochastic gradient descent.
getLearningRate() - Method in class smile.classification.Maxent
Returns the learning rate of stochastic gradient descent.
getLearningRate() - Method in class smile.classification.SparseLogisticRegression
Returns the learning rate of stochastic gradient descent.
getLearningRate() - Method in class smile.projection.GHA
Returns the learning rate.
getLoadings() - Method in class smile.projection.PCA
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
getLoadings() - Method in class smile.projection.ProbabilisticPCA
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
getMomentum() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the momentum factor.
getNoiseVariance() - Method in class smile.projection.ProbabilisticPCA
Returns the variance of noise.
getOutputSize() - Method in class smile.base.mlp.Layer
Returns the dimension of output vector.
getProbeSequence(double[], double, int) - Method in class smile.neighbor.lsh.PosterioriModel
Generate query-directed probes.
getProjection() - Method in class smile.classification.FLD
Returns the projection matrix W.
getProjection() - Method in class smile.projection.GHA
Returns the projection matrix.
getProjection() - Method in class smile.projection.KPCA
Returns the projection matrix.
getProjection() - Method in interface smile.projection.LinearProjection
Returns the projection matrix.
getProjection() - Method in class smile.projection.PCA
 
getProjection() - Method in class smile.projection.ProbabilisticPCA
Returns the projection matrix.
getProjection() - Method in class smile.projection.RandomProjection
 
getStateTransitionProbabilities() - Method in class smile.sequence.HMM
Returns the state transition probabilities.
getSymbolEmissionProbabilities() - Method in class smile.sequence.HMM
Returns the symbol emission probabilities.
getTree() - Method in class smile.clustering.HierarchicalClustering
Returns an n-1 by 2 matrix of which row i describes the merging of clusters at step i of the clustering.
getVariance() - Method in class smile.projection.PCA
Returns the principal component variances, ordered from largest to smallest, which are the eigenvalues of the covariance or correlation matrix of learning data.
getVarianceProportion() - Method in class smile.projection.PCA
Returns the proportion of variance contained in each principal component, ordered from largest to smallest.
getVariances() - Method in class smile.projection.KPCA
Returns the eigenvalues of kernel principal components, ordered from largest to smallest.
getWeightDecay() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the weight decay factor.
GHA - Class in smile.projection
Generalized Hebbian Algorithm.
GHA(int, int, double) - Constructor for class smile.projection.GHA
Constructor.
GHA(double[][], double) - Constructor for class smile.projection.GHA
Constructor.
GLM - Class in smile.glm
Generalized linear models.
GLM(Formula, String[], Model, double[], double, double, double, double[], double[], double[][]) - Constructor for class smile.glm.GLM
Constructor.
GMeans - Class in smile.clustering
G-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters by normality test.
GMeans(double, double[][], int[]) - Constructor for class smile.clustering.GMeans
Constructor.
gradient() - Method in class smile.base.mlp.Layer
Returns the output gradient vector.
GradientTreeBoost - Class in smile.classification
Gradient boosting for classification.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.classification.GradientTreeBoost
Constructor of binary class.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
Constructor of binary class.
GradientTreeBoost(Formula, RegressionTree[][], double, double[]) - Constructor for class smile.classification.GradientTreeBoost
Constructor of multi-class.
GradientTreeBoost(Formula, RegressionTree[][], double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
Constructor of multi-class.
GradientTreeBoost - Class in smile.regression
Gradient boosting for regression.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.regression.GradientTreeBoost
Constructor.
graph - Variable in class smile.manifold.IsoMap
The nearest neighbor graph.
graph - Variable in class smile.manifold.LaplacianEigenmap
Nearest neighbor graph.
graph - Variable in class smile.manifold.LLE
Nearest neighbor graph.
graph - Variable in class smile.manifold.UMAP
The nearest neighbor graph.
grid() - Method in class smile.validation.Hyperparameters
Generates a stream of hyperparameters for grid search.
GrowingNeuralGas - Class in smile.vq
Growing Neural Gas.
GrowingNeuralGas(int) - Constructor for class smile.vq.GrowingNeuralGas
Constructor.
GrowingNeuralGas(int, double, double, int, int, double, double) - Constructor for class smile.vq.GrowingNeuralGas
Constructor.

H

H - Variable in class smile.neighbor.LSH
The size of hash table.
H - Variable in class smile.neighbor.lsh.NeighborHashValueModel
Hash values of query object.
Hash - Class in smile.neighbor.lsh
The hash function for Euclidean spaces.
hash - Variable in class smile.neighbor.LSH
Hash functions.
Hash(int, int, double, int) - Constructor for class smile.neighbor.lsh.Hash
Constructor.
hash(double[]) - Method in class smile.neighbor.lsh.Hash
Apply hash functions on given vector x.
hash(Hash, PrZ[]) - Method in class smile.neighbor.lsh.Probe
Returns the bucket number of the probe.
hashCode() - Method in class smile.association.AssociationRule
 
hashCode() - Method in class smile.association.ItemSet
 
HashValueParzenModel - Class in smile.neighbor.lsh
Hash value Parzen model for multi-probe hash.
HashValueParzenModel(MultiProbeHash, MultiProbeSample[], double) - Constructor for class smile.neighbor.lsh.HashValueParzenModel
Constructor.
HiddenLayer - Class in smile.base.mlp
A hidden layer in the neural network.
HiddenLayer(int, int, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayer
Constructor.
HiddenLayerBuilder - Class in smile.base.mlp
The builder of hidden layers.
HiddenLayerBuilder(int, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayerBuilder
Constructor.
HierarchicalClustering - Class in smile.clustering
Agglomerative Hierarchical Clustering.
HierarchicalClustering(int[][], double[]) - Constructor for class smile.clustering.HierarchicalClustering
Constructor.
HMM - Class in smile.sequence
First-order Hidden Markov Model.
HMM(double[], Matrix, Matrix) - Constructor for class smile.sequence.HMM
Constructor.
HMMLabeler<T> - Class in smile.sequence
First-order Hidden Markov Model sequence labeler.
HMMLabeler(HMM, ToIntFunction<T>) - Constructor for class smile.sequence.HMMLabeler
Constructor.
huber(double) - Static method in interface smile.base.cart.Loss
Huber loss function for M-regression, which attempts resistance to long-tailed error distributions and outliers while maintaining high efficiency for normally distributed errors.
Hyperparameters - Class in smile.validation
Hyperparameter tuning.
Hyperparameters() - Constructor for class smile.validation.Hyperparameters
Constructor.

I

ICA - Class in smile.projection
Independent Component Analysis (ICA) is a computational method for separating a multivariate signal into additive components.
ICA(double[][]) - Constructor for class smile.projection.ICA
Constructor.
importance - Variable in class smile.base.cart.CART
Variable importance.
importance() - Method in class smile.base.cart.CART
Returns the variable importance.
importance() - Method in class smile.classification.AdaBoost
Returns the variable importance.
importance() - Method in class smile.classification.GradientTreeBoost
Returns the variable importance.
importance() - Method in class smile.classification.RandomForest
Returns the variable importance.
importance() - Method in class smile.regression.GradientTreeBoost
Returns the variable importance.
importance() - Method in class smile.regression.RandomForest
Returns the variable importance.
impurity(LeafNode) - Method in class smile.base.cart.CART
Returns the impurity of node.
impurity(SplitRule) - Method in class smile.base.cart.DecisionNode
Returns the impurity of node.
impurity(SplitRule, int, int[]) - Static method in class smile.base.cart.DecisionNode
Returns the impurity of samples.
impurity() - Method in class smile.base.cart.RegressionNode
Returns the residual sum of squares.
impurity(LeafNode) - Method in class smile.classification.DecisionTree
 
impurity(LeafNode) - Method in class smile.regression.RegressionTree
 
impute(double[][]) - Method in class smile.imputation.AverageImputation
 
impute(double[][]) - Method in class smile.imputation.KMeansImputation
 
impute(double[][]) - Method in class smile.imputation.KNNImputation
 
impute(double[][]) - Method in class smile.imputation.LLSImputation
 
impute(double[][]) - Method in interface smile.imputation.MissingValueImputation
Impute missing values in the data.
impute(double[][]) - Method in class smile.imputation.SVDImputation
 
impute(double[][], int) - Method in class smile.imputation.SVDImputation
Impute missing values in the dataset.
imputeWithColumnAverage(double[][]) - Static method in interface smile.imputation.MissingValueImputation
Impute the missing values with column averages.
index - Variable in class smile.base.cart.CART
An index of samples to their original locations in training dataset.
index - Variable in class smile.manifold.IsoMap
The original sample index.
index - Variable in class smile.manifold.LaplacianEigenmap
The original sample index.
index - Variable in class smile.manifold.LLE
The original sample index.
index - Variable in class smile.manifold.UMAP
The original sample index.
index - Variable in class smile.neighbor.Neighbor
The index of neighbor object in the dataset.
indexOf(int[]) - Method in class smile.classification.ClassLabels
Maps the class labels to index.
initHashTable(int, int, int, double, int) - Method in class smile.neighbor.LSH
Initialize the hash tables.
initHashTable(int, int, int, double, int) - Method in class smile.neighbor.MPLSH
 
instance - Static variable in class smile.feature.SignalNoiseRatio
 
instance - Static variable in class smile.feature.SumSquaresRatio
 
instance - Static variable in class smile.validation.metric.Accuracy
Default instance.
instance - Static variable in class smile.validation.metric.AdjustedRandIndex
Default instance.
instance - Static variable in class smile.validation.metric.AUC
Default instance.
instance - Static variable in class smile.validation.metric.Error
Default instance.
instance - Static variable in class smile.validation.metric.Fallout
Default instance.
instance - Static variable in class smile.validation.metric.FDR
Default instance.
instance - Static variable in class smile.validation.metric.LogLoss
Default instance.
instance - Static variable in class smile.validation.metric.MAD
Default instance.
instance - Static variable in class smile.validation.metric.MatthewsCorrelation
Default instance.
instance - Static variable in class smile.validation.metric.MSE
Default instance.
instance - Static variable in class smile.validation.metric.MutualInformation
Default instance.
instance - Static variable in class smile.validation.metric.Precision
Default instance.
instance - Static variable in class smile.validation.metric.R2
Default instance.
instance - Static variable in class smile.validation.metric.RandIndex
Default instance.
instance - Static variable in class smile.validation.metric.Recall
Default instance.
instance - Static variable in class smile.validation.metric.RMSE
Default instance.
instance - Static variable in class smile.validation.metric.RSS
Default instance.
instance - Static variable in class smile.validation.metric.Sensitivity
Default instance.
instance - Static variable in class smile.validation.metric.Specificity
Default instance.
instances() - Method in class smile.base.svm.KernelMachine
Returns the instances of kernel machines.
intercept(double[]) - Method in interface smile.base.cart.Loss
Returns the intercept of model.
intercept() - Method in class smile.base.svm.KernelMachine
Returns the intercept.
intercept() - Method in class smile.regression.LinearModel
Returns the intercept.
intercept() - Method in class smile.timeseries.AR
Returns the intercept.
intercept() - Method in class smile.timeseries.ARMA
Returns the intercept.
InternalNode - Class in smile.base.cart
An internal node in CART.
InternalNode(int, double, double, Node, Node) - Constructor for class smile.base.cart.InternalNode
 
invlink(double) - Method in interface smile.glm.model.Model
The inverse of link function.
isExpandable() - Method in class smile.neighbor.lsh.Probe
 
isExtendable() - Method in class smile.neighbor.lsh.Probe
 
isNormalized() - Method in class smile.classification.RBFNetwork
Returns true if the model is normalized.
isNormalized() - Method in class smile.regression.RBFNetwork
Returns true if the model is normalized.
IsoMap - Class in smile.manifold
Isometric feature mapping.
IsoMap(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.IsoMap
Constructor.
IsotonicMDS - Class in smile.mds
Kruskal's nonmetric MDS.
IsotonicMDS(double, double[][]) - Constructor for class smile.mds.IsotonicMDS
Constructor.
IsotonicRegressionScaling - Class in smile.classification
A method to calibrate decision function value to probability.
IsotonicRegressionScaling(double[], double[]) - Constructor for class smile.classification.IsotonicRegressionScaling
Constructor.
isShiftable() - Method in class smile.neighbor.lsh.Probe
 
items - Variable in class smile.association.ItemSet
The set of items.
ItemSet - Class in smile.association
A set of items.
ItemSet(int[], int) - Constructor for class smile.association.ItemSet
Constructor.
iterator() - Method in class smile.association.ARM
 
iterator() - Method in class smile.association.FPGrowth
 

J

JOINT - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with max normalization.
joint(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / H(y1, y2).
JointPrediction(T[], double[], double[], Matrix) - Constructor for class smile.regression.GaussianProcessRegression.JointPrediction
Constructor.

K

k - Variable in class smile.classification.ClassLabels
The number of classes.
k - Variable in class smile.clustering.PartitionClustering
The number of clusters.
k - Variable in class smile.neighbor.LSH
The number of random projections per hash value.
KDTree<E> - Class in smile.neighbor
A KD-tree (short for k-dimensional tree) is a space-partitioning dataset structure for organizing points in a k-dimensional space.
KDTree(double[][], E[]) - Constructor for class smile.neighbor.KDTree
Constructor.
kernel() - Method in class smile.base.svm.KernelMachine
Returns the kernel function.
kernel - Variable in class smile.regression.GaussianProcessRegression
The covariance/kernel function.
KernelMachine<T> - Class in smile.base.svm
Kernel machines.
KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.base.svm.KernelMachine
Constructor.
KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.base.svm.KernelMachine
Constructor.
KernelMachine<T> - Class in smile.regression
The learning methods building on kernels.
KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.regression.KernelMachine
Constructor.
KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.KernelMachine
Constructor.
key - Variable in class smile.neighbor.Neighbor
The key of neighbor.
keys - Variable in class smile.neighbor.LSH
The keys of data objects.
keys() - Method in class smile.neighbor.MutableLSH
Returns the keys.
KMeans - Class in smile.clustering
K-Means clustering.
KMeans(double, double[][], int[]) - Constructor for class smile.clustering.KMeans
Constructor.
KMeansImputation - Class in smile.imputation
Missing value imputation by K-Means clustering.
KMeansImputation(int) - Constructor for class smile.imputation.KMeansImputation
Constructor.
KMeansImputation(int, int) - Constructor for class smile.imputation.KMeansImputation
Constructor.
KModes - Class in smile.clustering
K-Modes clustering.
KModes(double, int[][], int[]) - Constructor for class smile.clustering.KModes
Constructor.
KNN<T> - Class in smile.classification
K-nearest neighbor classifier.
KNN(KNNSearch<T, T>, int[], int) - Constructor for class smile.classification.KNN
Constructor.
knn(E, int) - Method in class smile.neighbor.CoverTree
 
knn(double[], int) - Method in class smile.neighbor.KDTree
 
knn(K, int) - Method in interface smile.neighbor.KNNSearch
Search the k nearest neighbors to the query.
knn(T, int) - Method in class smile.neighbor.LinearSearch
 
knn(double[], int) - Method in class smile.neighbor.LSH
 
knn(double[], int) - Method in class smile.neighbor.MPLSH
 
knn(double[], int, double, int) - Method in class smile.neighbor.MPLSH
Returns the approximate k-nearest neighbors.
KNNImputation - Class in smile.imputation
Missing value imputation by k-nearest neighbors.
KNNImputation(int) - Constructor for class smile.imputation.KNNImputation
Constructor.
KNNSearch<K,V> - Interface in smile.neighbor
K-nearest neighbor search identifies the top k nearest neighbors to the query.
KPCA<T> - Class in smile.projection
Kernel principal component analysis.
KPCA(T[], MercerKernel<T>, double[], double, double[][], double[], Matrix) - Constructor for class smile.projection.KPCA
Constructor.
Kurtosis - Class in smile.projection.ica
The kurtosis of the probability density function of a signal.
Kurtosis() - Constructor for class smile.projection.ica.Kurtosis
 

L

L - Variable in class smile.regression.GaussianProcessRegression
The log marginal likelihood, which may be not available (NaN) when the model is fit with approximate methods.
L - Variable in class smile.vq.BIRCH
The number of CF entries in the leaf nodes.
labels - Variable in class smile.classification.ClassLabels
The class labels.
lad() - Static method in interface smile.base.cart.Loss
Least absolute deviation regression.
lambda - Variable in class smile.base.mlp.MultilayerPerceptron
The L2 regularization factor, which is also the weight decay factor.
LaplacianEigenmap - Class in smile.manifold
Laplacian Eigenmap.
LaplacianEigenmap(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.LaplacianEigenmap
Constructor with discrete weights.
LaplacianEigenmap(double, int[], double[][], AdjacencyList) - Constructor for class smile.manifold.LaplacianEigenmap
Constructor with Gaussian kernel.
LASSO - Class in smile.regression
Lasso (least absolute shrinkage and selection operator) regression.
LASSO() - Constructor for class smile.regression.LASSO
 
LASVM<T> - Class in smile.base.svm
LASVM is an approximate SVM solver that uses online approximation.
LASVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.LASVM
Constructor.
LASVM(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.LASVM
Constructor.
lattice(int, int, double[][]) - Static method in class smile.vq.SOM
Creates a lattice of which the weight vectors are randomly selected from samples.
Layer - Class in smile.base.mlp
A layer in the neural network.
Layer(int, int) - Constructor for class smile.base.mlp.Layer
Constructor.
Layer(Matrix, double[]) - Constructor for class smile.base.mlp.Layer
Constructor.
LayerBuilder - Class in smile.base.mlp
The builder of layers.
LayerBuilder(int) - Constructor for class smile.base.mlp.LayerBuilder
Constructor.
LDA - Class in smile.classification
Linear discriminant analysis.
LDA(double[], double[][], double[], Matrix) - Constructor for class smile.classification.LDA
Constructor.
LDA(double[], double[][], double[], Matrix, IntSet) - Constructor for class smile.classification.LDA
Constructor.
LeafNode - Class in smile.base.cart
A leaf node in decision tree.
LeafNode(int) - Constructor for class smile.base.cart.LeafNode
Constructor.
leafs() - Method in class smile.base.cart.InternalNode
 
leafs() - Method in class smile.base.cart.LeafNode
 
leafs() - Method in interface smile.base.cart.Node
Returns the number of leaf nodes in the subtree.
learningRate - Variable in class smile.base.mlp.MultilayerPerceptron
The learning rate.
leverage - Variable in class smile.association.AssociationRule
The difference between the probability of the rule and the expected probability if the items were statistically independent.
lift - Variable in class smile.association.AssociationRule
How many times more often antecedent and consequent occur together than expected if they were statistically independent.
linear() - Static method in interface smile.base.mlp.ActivationFunction
Linear/Identity function.
linear(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with linear activation function.
LinearKernelMachine - Class in smile.base.svm
Linear kernel machine.
LinearKernelMachine(double[], double) - Constructor for class smile.base.svm.LinearKernelMachine
Constructor.
LinearModel - Class in smile.regression
Linear model.
LinearModel(Formula, StructType, Matrix, double[], double[], double) - Constructor for class smile.regression.LinearModel
Constructor.
LinearProjection - Interface in smile.projection
Linear projection.
LinearSearch<T> - Class in smile.neighbor
Brute force linear nearest neighbor search.
LinearSearch(T[], Distance<T>) - Constructor for class smile.neighbor.LinearSearch
Constructor.
link(double) - Method in interface smile.glm.model.Model
The link function.
Linkage - Class in smile.clustering.linkage
A measure of dissimilarity between clusters (i.e.
Linkage(double[][]) - Constructor for class smile.clustering.linkage.Linkage
Initialize the linkage with the lower triangular proximity matrix.
Linkage(int, float[]) - Constructor for class smile.clustering.linkage.Linkage
Initialize the linkage with the lower triangular proximity matrix.
ljung(double[], int) - Static method in class smile.timeseries.BoxTest
Box-Pierce test.
LLE - Class in smile.manifold
Locally Linear Embedding.
LLE(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.LLE
Constructor.
lloyd(double[][], int) - Static method in class smile.clustering.KMeans
The implementation of Lloyd algorithm as a benchmark.
lloyd(double[][], int, int, double) - Static method in class smile.clustering.KMeans
The implementation of Lloyd algorithm as a benchmark.
LLSImputation - Class in smile.imputation
Local least squares missing value imputation.
LLSImputation(int) - Constructor for class smile.imputation.LLSImputation
Constructor.
log() - Static method in interface smile.glm.model.Poisson
log link function.
LogCosh - Class in smile.projection.ica
A good general-purpose contrast function for ICA.
LogCosh() - Constructor for class smile.projection.ica.LogCosh
 
logistic(int[]) - Static method in interface smile.base.cart.Loss
Logistic regression loss for binary classification.
logistic(int, int, int[], double[][]) - Static method in interface smile.base.cart.Loss
Logistic regression loss for multi-class classification.
LogisticRegression - Class in smile.classification
Logistic regression.
LogisticRegression(int, double, double, IntSet) - Constructor for class smile.classification.LogisticRegression
Constructor.
LogisticRegression.Binomial - Class in smile.classification
Binomial logistic regression.
LogisticRegression.Multinomial - Class in smile.classification
Multinomial logistic regression.
logit() - Static method in interface smile.glm.model.Bernoulli
logit link function.
logit(int[]) - Static method in interface smile.glm.model.Binomial
logit link function.
loglikelihood() - Method in class smile.classification.LogisticRegression
Returns the log-likelihood of model.
loglikelihood() - Method in class smile.classification.Maxent
Returns the log-likelihood of model.
loglikelihood() - Method in class smile.classification.SparseLogisticRegression
Returns the log-likelihood of model.
loglikelihood - Variable in class smile.glm.GLM
Log-likelihood.
loglikelihood() - Method in class smile.glm.GLM
Returns the log-likelihood of model.
loglikelihood(double[], double[]) - Method in interface smile.glm.model.Model
The log-likelihood function.
logloss - Variable in class smile.validation.ClassificationMetrics
The log loss on validation data.
LogLoss - Class in smile.validation.metric
Log loss is a evaluation metric for binary classifiers and it is sometimes the optimization objective as well in case of logistic regression and neural networks.
LogLoss() - Constructor for class smile.validation.metric.LogLoss
 
logp(int[], int[]) - Method in class smile.sequence.HMM
Returns the log joint probability of an observation sequence along a state sequence given this HMM.
logp(int[]) - Method in class smile.sequence.HMM
Returns the logarithm probability of an observation sequence given this HMM.
logp(T[], int[]) - Method in class smile.sequence.HMMLabeler
Returns the log joint probability of an observation sequence along a state sequence.
logp(T[]) - Method in class smile.sequence.HMMLabeler
Returns the logarithm probability of an observation sequence.
LOOCV - Interface in smile.validation
Leave-one-out cross validation.
Loss - Interface in smile.base.cart
Regression loss function.
Loss.Type - Enum in smile.base.cart
The type of loss.
ls() - Static method in interface smile.base.cart.Loss
Least squares regression.
ls(double[]) - Static method in interface smile.base.cart.Loss
Least squares regression.
LSH<E> - Class in smile.neighbor
Locality-Sensitive Hashing.
LSH(double[][], E[], double) - Constructor for class smile.neighbor.LSH
Constructor.
LSH(double[][], E[], double, int) - Constructor for class smile.neighbor.LSH
Constructor.
LSH(int, int, int, double) - Constructor for class smile.neighbor.LSH
Constructor.
LSH(int, int, int, double, int) - Constructor for class smile.neighbor.LSH
Constructor.

M

m - Variable in class smile.neighbor.lsh.PrZ
The index of hash function.
ma() - Method in class smile.timeseries.ARMA
Returns the linear coefficients of MA(q).
MAD - Variable in class smile.regression.Regression.Metric
Mean absolute deviation error.
MAD - Class in smile.validation.metric
Mean absolute deviation error.
MAD() - Constructor for class smile.validation.metric.MAD
 
mad - Variable in class smile.validation.RegressionMetrics
The mean absolute deviation on validation data.
matrix - Variable in class smile.validation.metric.ConfusionMatrix
Confusion matrix.
MatthewsCorrelation - Class in smile.validation.metric
Matthews correlation coefficient.
MatthewsCorrelation() - Constructor for class smile.validation.metric.MatthewsCorrelation
 
MAX - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with max normalization.
max(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (max(H(y1), H(y2)) - E(MI)).
MAX - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with max normalization.
max(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / max(H(y1), H(y2)).
MaxAbsScaler - Class in smile.feature
Scales each feature by its maximum absolute value.
MaxAbsScaler(StructType, double[]) - Constructor for class smile.feature.MaxAbsScaler
Constructor.
maxDepth - Variable in class smile.base.cart.CART
The maximum depth of the tree.
Maxent - Class in smile.classification
Maximum Entropy Classifier.
Maxent(int, double, double, IntSet) - Constructor for class smile.classification.Maxent
Constructor.
Maxent.Binomial - Class in smile.classification
Binomial maximum entropy classifier.
Maxent.Multinomial - Class in smile.classification
Multinomial maximum entropy classifier.
maxNodes - Variable in class smile.base.cart.CART
The maximum number of leaf nodes in the tree.
mcc - Variable in class smile.validation.ClassificationMetrics
The Matthews correlation coefficient on validation data.
MDS - Class in smile.mds
Classical multidimensional scaling, also known as principal coordinates analysis.
MDS(double[], double[], double[][]) - Constructor for class smile.mds.MDS
Constructor.
mean() - Method in class smile.base.cart.RegressionNode
Returns the mean of response variable.
mean() - Method in class smile.neighbor.lsh.HashValueParzenModel
Returns the mean.
mean - Variable in class smile.neighbor.lsh.NeighborHashValueModel
Mean of hash values of neighbors.
mean - Variable in class smile.regression.GaussianProcessRegression
The mean of responsible variable.
mean() - Method in class smile.timeseries.AR
Returns the mean of time series.
mean() - Method in class smile.timeseries.ARMA
Returns the mean of time series.
MEC<T> - Class in smile.clustering
Non-parametric Minimum Conditional Entropy Clustering.
MEC(double, double, RNNSearch<T, T>, int, int[]) - Constructor for class smile.clustering.MEC
Constructor.
merge() - Method in class smile.base.cart.InternalNode
 
merge() - Method in class smile.base.cart.LeafNode
 
merge() - Method in interface smile.base.cart.Node
Try to merge the children nodes and return a leaf node.
merge(RandomForest) - Method in class smile.classification.RandomForest
Merges two random forests.
merge(int, int) - Method in class smile.clustering.linkage.CompleteLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.Linkage
Merge two clusters into one and update the proximity matrix.
merge(int, int) - Method in class smile.clustering.linkage.SingleLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.UPGMALinkage
 
merge(int, int) - Method in class smile.clustering.linkage.UPGMCLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WardLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WPGMALinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WPGMCLinkage
 
merge(RandomForest) - Method in class smile.regression.RandomForest
Merges two random forests.
metric(T[], double[]) - Method in interface smile.regression.Regression
Returns the regression metrics.
metric(double[], double[]) - Method in interface smile.regression.Regression
Returns the regression metrics.
metrics() - Method in class smile.classification.RandomForest
Returns the overall out-of-bag metric estimations.
metrics - Variable in class smile.classification.RandomForest.Model
The performance metrics on out-of-bag samples.
metrics() - Method in class smile.regression.RandomForest
Returns the overall out-of-bag metric estimations.
metrics - Variable in class smile.regression.RandomForest.Model
The performance metrics on out-of-bag samples.
metrics - Variable in class smile.validation.ClassificationValidation
The classification metrics.
metrics - Variable in class smile.validation.RegressionValidation
The regression metrics.
MIN - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with min normalization.
min(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (min(H(y1), H(y2)) - E(MI)).
MIN - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with min normalization.
min(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / min(H(y1), H(y2)).
minPts - Variable in class smile.clustering.DBSCAN
The minimum number of points required to form a cluster
minSupport() - Method in class smile.association.FPTree
Returns the required minimum support of item sets in terms of frequency.
MissingValueImputation - Interface in smile.imputation
Interface to impute missing values in the data.
MissingValueImputationException - Exception in smile.imputation
Exception of missing value imputation.
MissingValueImputationException() - Constructor for exception smile.imputation.MissingValueImputationException
Constructor.
MissingValueImputationException(String) - Constructor for exception smile.imputation.MissingValueImputationException
Constructor.
mle(int, OutputFunction) - Static method in class smile.base.mlp.Layer
Returns an output layer with (log-)likelihood cost function.
MLP - Class in smile.classification
Fully connected multilayer perceptron neural network for classification.
MLP(int, LayerBuilder...) - Constructor for class smile.classification.MLP
Constructor.
MLP(IntSet, int, LayerBuilder...) - Constructor for class smile.classification.MLP
Constructor.
MLP - Class in smile.regression
Fully connected multilayer perceptron neural network for regression.
MLP(int, LayerBuilder...) - Constructor for class smile.regression.MLP
Constructor.
model - Variable in class smile.glm.GLM
The model specifications (link function, deviance, etc.).
Model - Interface in smile.glm.model
The GLM model specification.
model - Variable in class smile.sequence.CRFLabeler
The CRF model.
model - Variable in class smile.sequence.HMMLabeler
The HMM model.
model - Variable in class smile.validation.ClassificationValidation
The model.
model - Variable in class smile.validation.RegressionValidation
The model.
models() - Method in class smile.classification.RandomForest
Returns the base models.
models() - Method in class smile.regression.RandomForest
Returns the base models.
ModelSelection - Interface in smile.validation
Model selection criteria.
momentum - Variable in class smile.base.mlp.MultilayerPerceptron
The momentum factor.
MPLSH<E> - Class in smile.neighbor
Multi-Probe Locality-Sensitive Hashing.
MPLSH(int, int, int, double) - Constructor for class smile.neighbor.MPLSH
Constructor.
MPLSH(int, int, int, double, int) - Constructor for class smile.neighbor.MPLSH
Constructor.
mse(int, OutputFunction) - Static method in class smile.base.mlp.Layer
Returns an output layer with mean squared error cost function.
MSE - Variable in class smile.regression.Regression.Metric
Mean squared error.
MSE - Class in smile.validation.metric
Mean squared error.
MSE() - Constructor for class smile.validation.metric.MSE
 
mse - Variable in class smile.validation.RegressionMetrics
The mean squared error on validation data.
mtry - Variable in class smile.base.cart.CART
The number of input variables to be used to determine the decision at a node of the tree.
mu - Variable in class smile.glm.GLM
The fitted mean values.
mu - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The mean of predictive distribution at query points.
MultilayerPerceptron - Class in smile.base.mlp
Fully connected multilayer perceptron neural network.
MultilayerPerceptron(Layer...) - Constructor for class smile.base.mlp.MultilayerPerceptron
Constructor.
multinomial(Formula, DataFrame) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
multinomial(Formula, DataFrame, Properties) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
multinomial(double[][], int[]) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
multinomial(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
multinomial(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.LogisticRegression.Multinomial
Constructor.
multinomial(int, int[][], int[]) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
multinomial(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
multinomial(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
Learn maximum entropy classifier.
Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.Maxent.Multinomial
Constructor.
multinomial(SparseDataset, int[]) - Static method in class smile.classification.SparseLogisticRegression
Fits multinomial logistic regression.
multinomial(SparseDataset, int[], Properties) - Static method in class smile.classification.SparseLogisticRegression
Fits multinomial logistic regression.
multinomial(SparseDataset, int[], double, double, int) - Static method in class smile.classification.SparseLogisticRegression
Fits multinomial logistic regression.
Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression.Multinomial
Constructor.
MultiProbeHash - Class in smile.neighbor.lsh
The hash function for data in Euclidean spaces.
MultiProbeHash(int, int, double, int) - Constructor for class smile.neighbor.lsh.MultiProbeHash
Constructor.
MultiProbeSample - Class in smile.neighbor.lsh
Training sample for MPLSH.
MultiProbeSample(double[], List<double[]>) - Constructor for class smile.neighbor.lsh.MultiProbeSample
Constructor.
mustart(double) - Method in interface smile.glm.model.Model
The function to estimates the tarting values of means given y.
MutableLSH<E> - Class in smile.neighbor
Mutable LSH.
MutableLSH(int, int, int, double) - Constructor for class smile.neighbor.MutableLSH
Constructor.
MutualInformation - Class in smile.validation.metric
Mutual Information for comparing clustering.
MutualInformation() - Constructor for class smile.validation.metric.MutualInformation
 

N

n - Variable in class smile.base.mlp.Layer
The number of neurons in this layer
n - Variable in class smile.base.mlp.LayerBuilder
The number of neurons.
NaiveBayes - Class in smile.classification
Naive Bayes classifier.
NaiveBayes(double[], Distribution[][]) - Constructor for class smile.classification.NaiveBayes
Constructor of general naive Bayes classifier.
NaiveBayes(double[], Distribution[][], IntSet) - Constructor for class smile.classification.NaiveBayes
Constructor of general naive Bayes classifier.
name() - Method in interface smile.base.mlp.ActivationFunction
Returns the name of activation function.
nearest(E) - Method in class smile.neighbor.CoverTree
 
nearest(double[]) - Method in class smile.neighbor.KDTree
 
nearest(T) - Method in class smile.neighbor.LinearSearch
 
nearest(double[]) - Method in class smile.neighbor.LSH
 
nearest(double[]) - Method in class smile.neighbor.MPLSH
 
nearest(double[], double, int) - Method in class smile.neighbor.MPLSH
Returns the approximate nearest neighbor.
nearest(K) - Method in interface smile.neighbor.NearestNeighborSearch
Search the nearest neighbor to the given sample.
NearestNeighborSearch<K,V> - Interface in smile.neighbor
Nearest neighbor search, also known as proximity search, similarity search or closest point search, is an optimization problem for finding closest points in metric spaces.
Neighbor<K,V> - Class in smile.neighbor
The immutable object encapsulates the results of nearest neighbor search.
Neighbor(K, V, int, double) - Constructor for class smile.neighbor.Neighbor
Constructor.
neighbor - Variable in class smile.vq.hebb.Edge
The neighbor neuron.
NeighborHashValueModel - Class in smile.neighbor.lsh
Gaussian model of hash values of nearest neighbor.
NeighborHashValueModel(double[], double[], double[]) - Constructor for class smile.neighbor.lsh.NeighborHashValueModel
Constructor.
Neighborhood - Interface in smile.vq
The neighborhood function for 2-dimensional lattice topology (e.g.
neighbors - Variable in class smile.neighbor.lsh.MultiProbeSample
Neighbors of query object in terms of kNN or range search.
net - Variable in class smile.base.mlp.MultilayerPerceptron
The hidden layers.
network() - Method in class smile.vq.NeuralGas
Returns the network of neurons.
NeuralGas - Class in smile.vq
Neural Gas soft competitive learning algorithm.
NeuralGas(double[][], TimeFunction, TimeFunction, TimeFunction) - Constructor for class smile.vq.NeuralGas
Constructor.
NeuralMap - Class in smile.vq
NeuralMap is an efficient competitive learning algorithm inspired by growing neural gas and BIRCH.
NeuralMap(double, double, double, int, double) - Constructor for class smile.vq.NeuralMap
Constructor.
Neuron - Class in smile.vq.hebb
The neuron vertex in the growing neural gas network.
Neuron(double[]) - Constructor for class smile.vq.hebb.Neuron
Constructor.
Neuron(double[], double) - Constructor for class smile.vq.hebb.Neuron
Constructor.
neurons() - Method in class smile.base.mlp.LayerBuilder
Returns the number of neurons.
neurons() - Method in class smile.vq.GrowingNeuralGas
Returns the neurons in the network.
neurons() - Method in class smile.vq.NeuralGas
Returns the neurons.
neurons() - Method in class smile.vq.NeuralMap
Returns the set of neurons.
neurons() - Method in class smile.vq.SOM
Returns the lattice of neurons.
newNode(int[]) - Method in class smile.base.cart.CART
Creates a new leaf node.
newNode(int[]) - Method in class smile.classification.DecisionTree
 
newNode(int[]) - Method in class smile.regression.RegressionTree
 
ni - Variable in class smile.classification.ClassLabels
The number of samples per classes.
Node - Interface in smile.base.cart
CART tree node.
nodeSize - Variable in class smile.base.cart.CART
The number of instances in a node below which the tree will not split, setting nodeSize = 5 generally gives good results.
noise - Variable in class smile.regression.GaussianProcessRegression
The variance of noise.
NominalNode - Class in smile.base.cart
A node with a nominal split variable.
NominalNode(int, int, double, double, Node, Node) - Constructor for class smile.base.cart.NominalNode
Constructor.
NominalSplit - Class in smile.base.cart
The data about of a potential split for a leaf node.
NominalSplit(LeafNode, int, int, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.NominalSplit
Constructor.
nonoverlap(int[], int) - Static method in interface smile.validation.CrossValidation
Cross validation with non-overlapping groups.
NormalizedMutualInformation - Class in smile.validation.metric
Normalized Mutual Information (NMI) for comparing clustering.
NormalizedMutualInformation(NormalizedMutualInformation.Method) - Constructor for class smile.validation.metric.NormalizedMutualInformation
Constructor.
NormalizedMutualInformation.Method - Enum in smile.validation.metric
The normalization method.
Normalizer - Class in smile.feature
Normalize samples individually to unit norm.
Normalizer() - Constructor for class smile.feature.Normalizer
Default constructor with L2 norm.
Normalizer(Normalizer.Norm) - Constructor for class smile.feature.Normalizer
Constructor.
Normalizer.Norm - Enum in smile.feature
The types of data scaling.
nullDeviance - Variable in class smile.glm.GLM
The null deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Null Model)).
nullDeviance(double[], double) - Method in interface smile.glm.model.Model
The NULL deviance function.
nystrom(T[], double[], T[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
nystrom(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
nystrom(T[], double[], T[], MercerKernel<T>, double, boolean) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.

O

of(int, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available as stream.
of(double, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available as stream.
of(int, int[][]) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available in main memory.
of(double, int[][]) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available in main memory.
of(T[], RadialBasisFunction, Metric<T>) - Static method in class smile.base.rbf.RBF
Makes a set of RBF neurons.
of(T[], RadialBasisFunction[], Metric<T>) - Static method in class smile.base.rbf.RBF
Makes a set of RBF neurons.
of(KernelMachine<double[]>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
of(double[][]) - Static method in class smile.clustering.linkage.CompleteLinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.CompleteLinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.SingleLinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.SingleLinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.UPGMALinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMALinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.UPGMCLinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMCLinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WardLinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WardLinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WPGMALinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMALinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WPGMCLinkage
Given a set of data, computes the proximity and then the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMCLinkage
Given a set of data, computes the proximity and then the linkage.
of(double[][], int[]) - Static method in class smile.feature.SignalNoiseRatio
Univariate feature ranking.
of(double[][], int[]) - Static method in class smile.feature.SumSquaresRatio
Univariate feature ranking.
of(double[][], int) - Static method in class smile.manifold.IsoMap
Runs the C-Isomap algorithm with Euclidean distance.
of(double[][], int, int, boolean) - Static method in class smile.manifold.IsoMap
Runs the Isomap algorithm.
of(T[], Distance<T>, int) - Static method in class smile.manifold.IsoMap
Runs the C-Isomap algorithm.
of(T[], Distance<T>, int, int, boolean) - Static method in class smile.manifold.IsoMap
Runs the Isomap algorithm.
of(double[][], int) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmaps with discrete weights.
of(double[][], int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmap with Gaussian kernel.
of(T[], Distance<T>, int) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmaps with discrete weights.
of(T[], Distance<T>, int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmap with Gaussian kernel.
of(double[][], int) - Static method in class smile.manifold.LLE
Runs the LLE algorithm.
of(double[][], int, int) - Static method in class smile.manifold.LLE
Runs the LLE algorithm.
of(double[][]) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(T[], Distance<T>) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(double[][], int) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(T[], Distance<T>, int) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(double[][], int, int, int, double, double, double, int, double) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(T[], Distance<T>, int, int, int, double, double, double, int, double) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(double[][]) - Static method in class smile.mds.IsotonicMDS
Fits Kruskal's non-metric MDS with default k = 2, tolerance = 1E-4 and maxIter = 200.
of(double[][], int) - Static method in class smile.mds.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], Properties) - Static method in class smile.mds.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], int, double, int) - Static method in class smile.mds.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], double[][], double, int) - Static method in class smile.mds.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][]) - Static method in class smile.mds.MDS
Fits the classical multidimensional scaling.
of(double[][], int) - Static method in class smile.mds.MDS
Fits the classical multidimensional scaling.
of(double[][], Properties) - Static method in class smile.mds.MDS
Fits the classical multidimensional scaling.
of(double[][], int, boolean) - Static method in class smile.mds.MDS
Fits the classical multidimensional scaling.
of(double[][]) - Static method in class smile.mds.SammonMapping
Fits Sammon's mapping with default k = 2, lambda = 0.2, tolerance = 1E-4 and maxIter = 100.
of(double[][], int) - Static method in class smile.mds.SammonMapping
Fits Sammon's mapping.
of(double[][], Properties) - Static method in class smile.mds.SammonMapping
Fits Sammon's mapping.
of(double[][], int, double, double, double, int) - Static method in class smile.mds.SammonMapping
Fits Sammon's mapping.
of(double[][], double[][], double, double, double, int) - Static method in class smile.mds.SammonMapping
Fits Sammon's mapping.
of(T, int, double) - Static method in class smile.neighbor.Neighbor
Creates a neighbor object, of which key and object are the same.
of(int, int) - Static method in class smile.projection.RandomProjection
Generates a non-sparse random projection.
of(int, int) - Static method in interface smile.validation.Bootstrap
Bootstrap sampling.
of(int[], int) - Static method in interface smile.validation.Bootstrap
Stratified bootstrap sampling.
of(T[], int[], T[], int[], BiFunction<T[], int[], M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on a train/validation split.
of(Bag[], T[], int[], BiFunction<T[], int[], M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on multiple train/validation split.
of(Formula, DataFrame, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on a train/validation split.
of(Bag[], Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on multiple train/validation split.
of(int, int) - Static method in interface smile.validation.CrossValidation
Creates a k-fold cross validation.
of(int, int, boolean) - Static method in interface smile.validation.CrossValidation
Creates a k-fold cross validation.
of(int[], int) - Static method in interface smile.validation.CrossValidation
Cross validation with stratified folds.
of(int) - Static method in interface smile.validation.LOOCV
Returns the training sample index for each round.
of(int[], int[]) - Static method in class smile.validation.metric.Accuracy
Calculates the classification accuracy.
of(int[], int[]) - Static method in class smile.validation.metric.AdjustedRandIndex
Calculates the adjusted rand index.
of(int[], double[]) - Static method in class smile.validation.metric.AUC
Calculates AUC for binary classifier.
of(int[], int[]) - Static method in class smile.validation.metric.ConfusionMatrix
Creates the confusion matrix.
of(int[], double[][]) - Static method in interface smile.validation.metric.CrossEntropy
Calculates the cross entropy for multiclass classifier.
of(int[], int[]) - Static method in class smile.validation.metric.Error
Calculates the number of errors.
of(int[], int[]) - Static method in class smile.validation.metric.Fallout
Calculates the false alarm rate.
of(int[], int[]) - Static method in class smile.validation.metric.FDR
Calculates the false discovery rate.
of(double, int[], int[]) - Static method in class smile.validation.metric.FScore
Calculates the F1 score.
of(int[], double[]) - Static method in class smile.validation.metric.LogLoss
Calculates the Log Loss for binary classifier.
of(double[], double[]) - Static method in class smile.validation.metric.MAD
Calculates the mean absolute deviation error.
of(int[], int[]) - Static method in class smile.validation.metric.MatthewsCorrelation
Calculates Matthews correlation coefficient.
of(double[], double[]) - Static method in class smile.validation.metric.MSE
Calculates the mean squared error.
of(int[], int[]) - Static method in class smile.validation.metric.MutualInformation
Calculates the mutual information.
of(int[], int[]) - Static method in class smile.validation.metric.Precision
Calculates the precision.
of(double[], double[]) - Static method in class smile.validation.metric.R2
Calculates the R squared coefficient.
of(int[], int[]) - Static method in class smile.validation.metric.RandIndex
Calculates the rand index.
of(int[], int[]) - Static method in class smile.validation.metric.Recall
Calculates the recall/sensitivity.
of(double[], double[]) - Static method in class smile.validation.metric.RMSE
Calculates the root mean squared error.
of(double[], double[]) - Static method in class smile.validation.metric.RSS
Calculates the residual sum of squares.
of(int[], int[]) - Static method in class smile.validation.metric.Sensitivity
Calculates the sensitivity.
of(int[], int[]) - Static method in class smile.validation.metric.Specificity
Calculates the specificity.
of(T[], double[], T[], double[], BiFunction<T[], double[], M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on a train/validation split.
of(Bag[], T[], double[], BiFunction<T[], double[], M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on multiple train/validation split.
of(Formula, DataFrame, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on a train/validation split.
of(Bag[], Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on multiple train/validation split.
of(int, int, int) - Method in interface smile.vq.Neighborhood
Returns the changing rate of neighborhood at a given iteration.
OLS - Class in smile.regression
Ordinary least squares.
OLS() - Constructor for class smile.regression.OLS
 
ols(double[], int) - Static method in class smile.timeseries.AR
Fits an autoregressive model with least squares method.
ols(double[], int, boolean) - Static method in class smile.timeseries.AR
Fits an autoregressive model with least squares method.
OneVersusOne<T> - Class in smile.classification
One-vs-one strategy for reducing the problem of multiclass classification to multiple binary classification problems.
OneVersusOne(Classifier<T>[][], PlattScaling[][]) - Constructor for class smile.classification.OneVersusOne
Constructor.
OneVersusOne(Classifier<T>[][], PlattScaling[][], IntSet) - Constructor for class smile.classification.OneVersusOne
Constructor.
OneVersusRest<T> - Class in smile.classification
One-vs-rest (or one-vs-all) strategy for reducing the problem of multiclass classification to multiple binary classification problems.
OneVersusRest(Classifier<T>[], PlattScaling[]) - Constructor for class smile.classification.OneVersusRest
Constructor.
OneVersusRest(Classifier<T>[], PlattScaling[], IntSet) - Constructor for class smile.classification.OneVersusRest
Constructor.
OnlineClassifier<T> - Interface in smile.classification
Classifier with online learning capability.
OnlineRegression<T> - Interface in smile.regression
Regression model with online learning capability.
oob - Variable in class smile.validation.Bag
The index of testing instances.
order - Variable in class smile.base.cart.CART
An index of training values.
order(DataFrame) - Static method in class smile.base.cart.CART
Returns the index of ordered samples for each ordinal column.
ordinal - Variable in class smile.sequence.HMMLabeler
The lambda returns the ordinal numbers of symbols.
OrdinalNode - Class in smile.base.cart
A node with a ordinal split variable (real-valued or ordinal categorical value).
OrdinalNode(int, double, double, double, Node, Node) - Constructor for class smile.base.cart.OrdinalNode
Constructor.
OrdinalSplit - Class in smile.base.cart
The data about of a potential split for a leaf node.
OrdinalSplit(LeafNode, int, double, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.OrdinalSplit
Constructor.
OUTLIER - Static variable in class smile.clustering.PartitionClustering
Cluster label for outliers or noises.
OUTLIER - Static variable in interface smile.vq.VectorQuantizer
The label for outliers or noises.
output() - Method in class smile.base.cart.DecisionNode
Returns the predicted value.
output(int[], int[]) - Method in interface smile.base.cart.Loss
Calculate the node output.
output() - Method in class smile.base.cart.RegressionNode
Returns the predicted value.
output - Variable in class smile.base.mlp.Layer
The output vector.
output() - Method in class smile.base.mlp.Layer
Returns the output vector.
output - Variable in class smile.base.mlp.MultilayerPerceptron
The output layer.
OutputFunction - Enum in smile.base.mlp
The output function of neural networks.
outputGradient - Variable in class smile.base.mlp.Layer
The output gradient.
OutputLayer - Class in smile.base.mlp
The output layer in the neural network.
OutputLayer(int, int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayer
Constructor.
OutputLayerBuilder - Class in smile.base.mlp
The builder of output layers.
OutputLayerBuilder(int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayerBuilder
Constructor.

P

p - Variable in class smile.base.mlp.Layer
The number of input variables.
p - Variable in class smile.base.mlp.MultilayerPerceptron
The dimensionality of input data.
p(int[], int[]) - Method in class smile.sequence.HMM
Returns the joint probability of an observation sequence along a state sequence given this HMM.
p(int[]) - Method in class smile.sequence.HMM
Returns the probability of an observation sequence given this HMM.
p(T[], int[]) - Method in class smile.sequence.HMMLabeler
Returns the joint probability of an observation sequence along a state sequence.
p(T[]) - Method in class smile.sequence.HMMLabeler
Returns the probability of an observation sequence.
p() - Method in class smile.timeseries.AR
Returns the order of AR.
p() - Method in class smile.timeseries.ARMA
Returns the order of AR.
pacf(double[], int) - Static method in interface smile.timeseries.TimeSeries
Partial autocorrelation function.
partition(int) - Method in class smile.clustering.HierarchicalClustering
Cuts a tree into several groups by specifying the desired number.
partition(double) - Method in class smile.clustering.HierarchicalClustering
Cuts a tree into several groups by specifying the cut height.
PartitionClustering - Class in smile.clustering
Partition clustering.
PartitionClustering(int, int[]) - Constructor for class smile.clustering.PartitionClustering
Constructor.
PCA - Class in smile.projection
Principal component analysis.
PCA(double[], double[], Matrix) - Constructor for class smile.projection.PCA
Constructor.
pierce(double[], int) - Static method in class smile.timeseries.BoxTest
Box-Pierce test.
PlattScaling - Class in smile.classification
Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.
PlattScaling(double, double) - Constructor for class smile.classification.PlattScaling
Constructor.
points() - Method in class smile.neighbor.lsh.Bucket
Returns the points in the bucket.
Poisson - Interface in smile.glm.model
The response variable is of Poisson distribution.
posteriori(double[]) - Method in class smile.base.cart.DecisionNode
Returns the class probability.
posteriori(int[], double[]) - Static method in class smile.base.cart.DecisionNode
Returns the class probability.
posteriori - Variable in class smile.validation.ClassificationValidation
The posteriori probability of prediction if the model is a soft classifier.
PosterioriModel - Class in smile.neighbor.lsh
Pre-computed posteriori probabilities for generating multiple probes.
PosterioriModel(MultiProbeHash, MultiProbeSample[], int, double) - Constructor for class smile.neighbor.lsh.PosterioriModel
Constructor.
pr - Variable in class smile.neighbor.lsh.PrH
The probability
precision - Variable in class smile.validation.ClassificationMetrics
The precision on validation data.
Precision - Class in smile.validation.metric
The precision or positive predictive value (PPV) is ratio of true positives to combined true and false positives, which is different from sensitivity.
Precision() - Constructor for class smile.validation.metric.Precision
 
predicate() - Method in class smile.base.cart.NominalSplit
 
predicate() - Method in class smile.base.cart.OrdinalSplit
 
predicate() - Method in class smile.base.cart.Split
Returns the lambda that tests on the split feature.
predict(Tuple) - Method in class smile.base.cart.InternalNode
Evaluates the tree over an instance.
predict(Tuple) - Method in class smile.base.cart.LeafNode
 
predict(Tuple) - Method in interface smile.base.cart.Node
Evaluate the tree over an instance.
predict(Tuple) - Method in class smile.base.cart.NominalNode
 
predict(Tuple) - Method in class smile.base.cart.OrdinalNode
 
predict(Tuple) - Method in class smile.classification.AdaBoost
 
predict(Tuple, double[]) - Method in class smile.classification.AdaBoost
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(T) - Method in interface smile.classification.Classifier
Predicts the class label of an instance.
predict(T[]) - Method in interface smile.classification.Classifier
Predicts the class labels of an array of instances.
predict(Tuple) - Method in interface smile.classification.DataFrameClassifier
Predicts the class label of an instance.
predict(DataFrame) - Method in interface smile.classification.DataFrameClassifier
Predicts the class labels of a data frame.
predict(Tuple) - Method in class smile.classification.DecisionTree
 
predict(Tuple, double[]) - Method in class smile.classification.DecisionTree
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(int[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(int[], double[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(SparseArray) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(SparseArray, double[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(double[]) - Method in class smile.classification.FLD
 
predict(Tuple) - Method in class smile.classification.GradientTreeBoost
 
predict(Tuple, double[]) - Method in class smile.classification.GradientTreeBoost
 
predict(double) - Method in class smile.classification.IsotonicRegressionScaling
Returns the posterior probability estimate P(y = 1 | x).
predict(T) - Method in class smile.classification.KNN
 
predict(T, double[]) - Method in class smile.classification.KNN
 
predict(double[]) - Method in class smile.classification.LDA
 
predict(double[], double[]) - Method in class smile.classification.LDA
 
predict(double[]) - Method in class smile.classification.LogisticRegression.Binomial
 
predict(double[], double[]) - Method in class smile.classification.LogisticRegression.Binomial
 
predict(double[]) - Method in class smile.classification.LogisticRegression.Multinomial
 
predict(double[], double[]) - Method in class smile.classification.LogisticRegression.Multinomial
 
predict(int[]) - Method in class smile.classification.Maxent.Binomial
 
predict(int[], double[]) - Method in class smile.classification.Maxent.Binomial
 
predict(int[]) - Method in class smile.classification.Maxent.Multinomial
 
predict(int[], double[]) - Method in class smile.classification.Maxent.Multinomial
 
predict(double[], double[]) - Method in class smile.classification.MLP
 
predict(double[]) - Method in class smile.classification.MLP
 
predict(double[]) - Method in class smile.classification.NaiveBayes
Predict the class of an instance.
predict(double[], double[]) - Method in class smile.classification.NaiveBayes
Predict the class of an instance.
predict(T) - Method in class smile.classification.OneVersusOne
Prediction is based on voting.
predict(T, double[]) - Method in class smile.classification.OneVersusOne
Prediction is based posteriori probability estimation.
predict(T) - Method in class smile.classification.OneVersusRest
 
predict(T, double[]) - Method in class smile.classification.OneVersusRest
 
predict(double[]) - Method in class smile.classification.QDA
 
predict(double[], double[]) - Method in class smile.classification.QDA
 
predict(Tuple) - Method in class smile.classification.RandomForest
 
predict(Tuple, double[]) - Method in class smile.classification.RandomForest
 
predict(T) - Method in class smile.classification.RBFNetwork
 
predict(T, double[]) - Method in interface smile.classification.SoftClassifier
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(T[], double[][]) - Method in interface smile.classification.SoftClassifier
Predicts the class labels of an array of instances.
predict(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
predict(SparseArray, double[]) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
predict(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Multinomial
 
predict(SparseArray, double[]) - Method in class smile.classification.SparseLogisticRegression.Multinomial
 
predict(T) - Method in class smile.classification.SVM
 
predict(U) - Method in class smile.clustering.CentroidClustering
Classifies a new observation.
predict(T) - Method in class smile.clustering.DBSCAN
Classifies a new observation.
predict(double[]) - Method in class smile.clustering.DENCLUE
Classifies a new observation.
predict(T) - Method in class smile.clustering.MEC
Cluster a new instance.
predict(Tuple) - Method in class smile.glm.GLM
Predicts the mean response.
predict(DataFrame) - Method in class smile.glm.GLM
Predicts the mean response.
predict(Tuple) - Method in interface smile.regression.DataFrameRegression
Predicts the dependent variable of a tuple instance.
predict(DataFrame) - Method in interface smile.regression.DataFrameRegression
Predicts the dependent variables of a data frame.
predict(T) - Method in class smile.regression.GaussianProcessRegression
 
predict(T, double[]) - Method in class smile.regression.GaussianProcessRegression
Predicts the mean and standard deviation of an instance.
predict(Tuple) - Method in class smile.regression.GradientTreeBoost
 
predict(T) - Method in class smile.regression.KernelMachine
 
predict(double[]) - Method in class smile.regression.LinearModel
 
predict(Tuple) - Method in class smile.regression.LinearModel
 
predict(DataFrame) - Method in class smile.regression.LinearModel
 
predict(double[]) - Method in class smile.regression.MLP
 
predict(Tuple) - Method in class smile.regression.RandomForest
 
predict(T) - Method in class smile.regression.RBFNetwork
 
predict(T) - Method in interface smile.regression.Regression
Predicts the dependent variable of an instance.
predict(T[]) - Method in interface smile.regression.Regression
Predicts the dependent variables of an array of instances.
predict(Tuple) - Method in class smile.regression.RegressionTree
 
predict(Tuple[]) - Method in class smile.sequence.CRF
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
predict(T[]) - Method in class smile.sequence.CRFLabeler
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
predict(int[]) - Method in class smile.sequence.HMM
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of P(I | O, HMM).
predict(T[]) - Method in class smile.sequence.HMMLabeler
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of P(I | O, HMM).
predict(T[]) - Method in interface smile.sequence.SequenceLabeler
Predicts the sequence labels.
prediction - Variable in class smile.validation.ClassificationValidation
The model prediction.
prediction - Variable in class smile.validation.RegressionValidation
The model prediction.
predictors(Tuple) - Method in class smile.base.cart.CART
Returns the predictors by the model formula if it is not null.
PrH - Class in smile.neighbor.lsh
Probability for given query object and hash function.
PrH(int, double) - Constructor for class smile.neighbor.lsh.PrH
Constructor.
prh - Variable in class smile.neighbor.lsh.PrZ
The n_i probabilities for h_m hash function, where n_i = u_i_max - u_i_min + 1.
priori - Variable in class smile.classification.ClassLabels
The estimated priori probabilities.
priori() - Method in class smile.classification.DiscreteNaiveBayes
Returns a priori probabilities.
priori() - Method in class smile.classification.LDA
Returns a priori probabilities.
priori() - Method in class smile.classification.NaiveBayes
Returns a priori probabilities.
priori() - Method in class smile.classification.QDA
Returns a priori probabilities.
ProbabilisticClassificationMetric - Interface in smile.validation.metric
An abstract interface to measure the probabilistic classification performance.
ProbabilisticPCA - Class in smile.projection
Probabilistic principal component analysis.
ProbabilisticPCA(double, double[], Matrix, Matrix) - Constructor for class smile.projection.ProbabilisticPCA
Constructor.
Probe - Class in smile.neighbor.lsh
Probe to check for nearest neighbors.
Probe(int[]) - Constructor for class smile.neighbor.lsh.Probe
Constructor.
project(double[]) - Method in class smile.classification.FLD
 
project(double[][]) - Method in class smile.classification.FLD
 
project(T) - Method in class smile.projection.KPCA
 
project(T[]) - Method in class smile.projection.KPCA
 
project(double[]) - Method in interface smile.projection.LinearProjection
 
project(double[][]) - Method in interface smile.projection.LinearProjection
 
project(double[]) - Method in class smile.projection.PCA
 
project(double[][]) - Method in class smile.projection.PCA
 
project(double[]) - Method in class smile.projection.ProbabilisticPCA
 
project(double[][]) - Method in class smile.projection.ProbabilisticPCA
 
project(T) - Method in interface smile.projection.Projection
Project a data point to the feature space.
project(T[]) - Method in interface smile.projection.Projection
Project a set of data to the feature space.
Projection<T> - Interface in smile.projection
A projection is a kind of feature extraction technique that transforms data from the input space to a feature space, linearly or nonlinearly.
propagate(double[]) - Method in class smile.base.mlp.Layer
Propagates signals from a lower layer to this layer.
propagate(double[]) - Method in class smile.base.mlp.MultilayerPerceptron
Propagates the signals through the neural network.
proportion - Variable in class smile.mds.MDS
The proportion of variance contained in each principal component.
proximity(double[][]) - Static method in class smile.clustering.linkage.Linkage
Calculate the proximity matrix (linearized in column major) with Euclidean distance.
proximity(T[], Distance<T>) - Static method in class smile.clustering.linkage.Linkage
Calculate the proximity matrix (linearized in column major).
prune(DataFrame) - Method in class smile.classification.DecisionTree
Returns a new decision tree by reduced error pruning.
prune(DataFrame) - Method in class smile.classification.RandomForest
Returns a new random forest by reduced error pruning.
PrZ - Class in smile.neighbor.lsh
Probability list of all buckets for given query object.
PrZ(int, PrH[]) - Constructor for class smile.neighbor.lsh.PrZ
Constructor.
put(double[], E) - Method in class smile.neighbor.LSH
Insert an item into the hash table.
put(double[], E) - Method in class smile.neighbor.MutableLSH
 
put(K, V) - Method in class smile.neighbor.SNLSH
Adds a new item.
pvalue() - Method in class smile.regression.LinearModel
Returns the p-value of goodness-of-fit test.
pvalue - Variable in class smile.timeseries.BoxTest
p-value

Q

q() - Method in class smile.timeseries.ARMA
Returns the order of MA.
q - Variable in class smile.timeseries.BoxTest
Box-Pierce or Ljung-Box statistic.
QDA - Class in smile.classification
Quadratic discriminant analysis.
QDA(double[], double[][], double[][], Matrix[]) - Constructor for class smile.classification.QDA
Constructor.
QDA(double[], double[][], double[][], Matrix[], IntSet) - Constructor for class smile.classification.QDA
Constructor.
quantile(double) - Static method in interface smile.base.cart.Loss
Quantile regression.
quantize(double[]) - Method in class smile.vq.BIRCH
 
quantize(double[]) - Method in class smile.vq.GrowingNeuralGas
 
quantize(double[]) - Method in class smile.vq.NeuralGas
 
quantize(double[]) - Method in class smile.vq.NeuralMap
 
quantize(double[]) - Method in class smile.vq.SOM
 
quantize(double[]) - Method in interface smile.vq.VectorQuantizer
Quantize a new observation.
query - Variable in class smile.neighbor.lsh.MultiProbeSample
The query object.
query(T[]) - Method in class smile.regression.GaussianProcessRegression
Evaluates the Gaussian Process at some query points.

R

R2 - Class in smile.validation.metric
R2.
R2() - Constructor for class smile.validation.metric.R2
 
r2 - Variable in class smile.validation.RegressionMetrics
The R-squared score on validation data.
radius - Variable in class smile.clustering.DBSCAN
The neighborhood radius.
radius - Variable in class smile.clustering.MEC
The range of neighborhood.
RandIndex - Class in smile.validation.metric
Rand Index.
RandIndex() - Constructor for class smile.validation.metric.RandIndex
 
random() - Method in class smile.validation.Hyperparameters
Generates a stream of hyperparameters for random search.
RandomForest - Class in smile.classification
Random forest for classification.
RandomForest(Formula, int, RandomForest.Model[], ClassificationMetrics, double[]) - Constructor for class smile.classification.RandomForest
Constructor.
RandomForest(Formula, int, RandomForest.Model[], ClassificationMetrics, double[], IntSet) - Constructor for class smile.classification.RandomForest
Constructor.
RandomForest - Class in smile.regression
Random forest for regression.
RandomForest(Formula, RandomForest.Model[], RegressionMetrics, double[]) - Constructor for class smile.regression.RandomForest
Constructor.
RandomForest.Model - Class in smile.classification
The base model.
RandomForest.Model - Class in smile.regression
The base model.
RandomProjection - Class in smile.projection
Random projection is a promising dimensionality reduction technique for learning mixtures of Gaussians.
RandomProjection(Matrix) - Constructor for class smile.projection.RandomProjection
Constructor.
range(E, double, List<Neighbor<E, E>>) - Method in class smile.neighbor.BKTree
 
range(E, int, List<Neighbor<E, E>>) - Method in class smile.neighbor.BKTree
Search the neighbors in the given radius of query object, i.e.
range(E, double, List<Neighbor<E, E>>) - Method in class smile.neighbor.CoverTree
 
range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.KDTree
 
range(T, double, List<Neighbor<T, T>>) - Method in class smile.neighbor.LinearSearch
 
range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.LSH
 
range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.MPLSH
 
range(double[], double, List<Neighbor<double[], E>>, double, int) - Method in class smile.neighbor.MPLSH
Search the neighbors in the given radius of query object, i.e.
range(K, double, List<Neighbor<K, V>>) - Method in interface smile.neighbor.RNNSearch
Search the neighbors in the given radius of query object, i.e.
range(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.SNLSH
 
rank(double[][], int[]) - Method in interface smile.feature.FeatureRanking
Univariate feature ranking.
rank(double[][], int[]) - Method in class smile.feature.SignalNoiseRatio
 
rank(double[][], int[]) - Method in class smile.feature.SumSquaresRatio
 
RBF<T> - Class in smile.base.rbf
A neuron in radial basis function network.
RBF(T, RadialBasisFunction, Metric<T>) - Constructor for class smile.base.rbf.RBF
Constructor.
RBFNetwork<T> - Class in smile.classification
Radial basis function networks.
RBFNetwork(int, RBF<T>[], Matrix, boolean) - Constructor for class smile.classification.RBFNetwork
Constructor.
RBFNetwork(int, RBF<T>[], Matrix, boolean, IntSet) - Constructor for class smile.classification.RBFNetwork
Constructor.
RBFNetwork<T> - Class in smile.regression
Radial basis function network.
RBFNetwork(RBF<T>[], double[], boolean) - Constructor for class smile.regression.RBFNetwork
Constructor.
RDA - Class in smile.classification
Regularized discriminant analysis.
RDA(double[], double[][], double[][], Matrix[]) - Constructor for class smile.classification.RDA
Constructor.
RDA(double[], double[][], double[][], Matrix[], IntSet) - Constructor for class smile.classification.RDA
Constructor.
Recall - Class in smile.validation.metric
In information retrieval area, sensitivity is called recall.
Recall() - Constructor for class smile.validation.metric.Recall
 
rectifier() - Static method in interface smile.base.mlp.ActivationFunction
The rectifier activation function max(0, x).
rectifier(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with rectified linear activation function.
Regression<T> - Interface in smile.regression
Regression analysis includes any techniques for modeling and analyzing the relationship between a dependent variable and one or more independent variables.
regression(int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.Bootstrap
Runs regression bootstrap validation.
regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.Bootstrap
Runs regression bootstrap validation.
regression(int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.CrossValidation
Runs regression cross validation.
regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Runs regression cross validation.
regression(T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
Regression.Metric - Class in smile.regression
Regression metrics.
RegressionMetric - Interface in smile.validation.metric
An abstract interface to measure the regression performance.
RegressionMetrics - Class in smile.validation
The regression validation metrics.
RegressionMetrics(double, double, int, double, double, double, double, double) - Constructor for class smile.validation.RegressionMetrics
Constructor.
RegressionNode - Class in smile.base.cart
A leaf node in regression tree.
RegressionNode(int, double, double, double) - Constructor for class smile.base.cart.RegressionNode
Constructor.
RegressionTree - Class in smile.regression
Regression tree.
RegressionTree(DataFrame, Loss, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.regression.RegressionTree
Constructor.
RegressionValidation<M> - Class in smile.validation
Regression model validation results.
RegressionValidation(M, double[], double[], RegressionMetrics) - Constructor for class smile.validation.RegressionValidation
Constructor.
RegressionValidations<M> - Class in smile.validation
Regression model validation results.
RegressionValidations(List<RegressionValidation<M>>) - Constructor for class smile.validation.RegressionValidations
Constructor.
regressors - Variable in class smile.regression.GaussianProcessRegression
The regressors.
remove(int) - Method in class smile.neighbor.lsh.Bucket
Removes a point from bucket.
remove(double[], E) - Method in class smile.neighbor.MutableLSH
Remove an entry from the hash table.
removeEdge(Neuron) - Method in class smile.vq.hebb.Neuron
Removes an edge.
replace(Node, Node) - Method in class smile.base.cart.InternalNode
Returns a new internal node with children replaced.
replace(Node, Node) - Method in class smile.base.cart.NominalNode
 
replace(Node, Node) - Method in class smile.base.cart.OrdinalNode
 
residual() - Method in interface smile.base.cart.Loss
Returns the residual vector.
residuals() - Method in class smile.regression.LinearModel
Returns the residuals, that is response minus fitted values.
residuals - Variable in class smile.regression.Regression.Metric
The residuals, that is response minus fitted values.
residuals() - Method in class smile.timeseries.AR
Returns the residuals, that is response minus fitted values.
residuals() - Method in class smile.timeseries.ARMA
Returns the residuals, that is response minus fitted values.
response - Variable in class smile.base.cart.CART
The schema of response variable.
response() - Method in interface smile.base.cart.Loss
Returns the response variable for next iteration.
rho - Variable in class smile.base.mlp.MultilayerPerceptron
The discounting factor for the history/coming gradient in RMSProp.
RidgeRegression - Class in smile.regression
Ridge Regression.
RidgeRegression() - Constructor for class smile.regression.RidgeRegression
 
rmsBiasGradient - Variable in class smile.base.mlp.Layer
The accumulate bias gradient.
RMSE - Variable in class smile.regression.Regression.Metric
Root mean squared error.
RMSE - Class in smile.validation.metric
Root mean squared error.
RMSE() - Constructor for class smile.validation.metric.RMSE
 
rmse - Variable in class smile.validation.RegressionMetrics
The root mean squared error on validation data.
rmsWeightGradient - Variable in class smile.base.mlp.Layer
The accumulate weight gradient.
RNNSearch<K,V> - Interface in smile.neighbor
A range nearest neighbor search retrieves the nearest neighbors to a query in a range.
RobustStandardizer - Class in smile.feature
Robustly standardizes numeric feature by subtracting the median and dividing by the IQR.
RobustStandardizer(StructType, double[], double[]) - Constructor for class smile.feature.RobustStandardizer
Constructor.
root - Variable in class smile.base.cart.CART
The root of decision tree.
root() - Method in class smile.base.cart.CART
Returs the root node.
rounds - Variable in class smile.validation.ClassificationValidations
The multiple round validations.
rounds - Variable in class smile.validation.RegressionValidations
The multiple round validations.
RSquared() - Method in class smile.regression.LinearModel
Returns R2 statistic.
RSquared - Variable in class smile.regression.Regression.Metric
R2 coefficient of determination.
RSquared() - Method in class smile.timeseries.AR
Returns R2 statistic.
RSquared() - Method in class smile.timeseries.ARMA
Returns R2 statistic.
RSS() - Method in class smile.regression.LinearModel
Returns the residual sum of squares.
RSS - Variable in class smile.regression.Regression.Metric
Residual sum of squares.
RSS() - Method in class smile.timeseries.AR
Returns the residual sum of squares.
RSS() - Method in class smile.timeseries.ARMA
Returns the residual sum of squares.
RSS - Class in smile.validation.metric
Residual sum of squares.
RSS() - Constructor for class smile.validation.metric.RSS
 
rss - Variable in class smile.validation.RegressionMetrics
The residual sum of squares.
run(int, Supplier<T>) - Static method in class smile.clustering.PartitionClustering
Runs a clustering algorithm multiple times and return the best one (e.g.

S

SammonMapping - Class in smile.mds
The Sammon's mapping is an iterative technique for making interpoint distances in the low-dimensional projection as close as possible to the interpoint distances in the high-dimensional object.
SammonMapping(double, double[][]) - Constructor for class smile.mds.SammonMapping
Constructor.
sample(int) - Method in class smile.regression.GaussianProcessRegression.JointPrediction
Draw samples from Gaussian process.
samples - Variable in class smile.base.cart.CART
The samples for training this node.
samples - Variable in class smile.validation.Bag
The random samples.
scale() - Method in class smile.classification.ClassLabels
Returns the nominal scale for the class labels.
scale(double) - Method in class smile.classification.PlattScaling
Returns the posterior probability estimate P(y = 1 | x).
Scaler - Class in smile.feature
Scales all numeric variables into the range [0, 1].
Scaler(StructType, double[], double[]) - Constructor for class smile.feature.Scaler
Constructor.
schema - Variable in class smile.base.cart.CART
The schema of predictors.
schema() - Method in class smile.classification.AdaBoost
 
schema() - Method in interface smile.classification.DataFrameClassifier
Returns the design matrix schema.
schema() - Method in class smile.classification.DecisionTree
 
schema() - Method in class smile.classification.GradientTreeBoost
 
schema() - Method in class smile.classification.RandomForest
 
schema - Variable in class smile.feature.MaxAbsScaler
The schema of data.
schema() - Method in interface smile.regression.DataFrameRegression
Returns the schema of predictors.
schema() - Method in class smile.regression.GradientTreeBoost
 
schema() - Method in class smile.regression.LinearModel
 
schema() - Method in class smile.regression.RandomForest
 
schema() - Method in class smile.regression.RegressionTree
 
score() - Method in class smile.base.cart.InternalNode
Returns the split score (reduction of impurity).
score(T) - Method in class smile.base.svm.KernelMachine
Returns the decision function value.
score(T) - Method in interface smile.classification.Classifier
The classification score function.
score(int[], int[]) - Method in class smile.validation.metric.Accuracy
 
score(int[], int[]) - Method in class smile.validation.metric.AdjustedMutualInformation
 
score(int[], int[]) - Method in class smile.validation.metric.AdjustedRandIndex
 
score(int[], double[]) - Method in class smile.validation.metric.AUC
 
score(int[], int[]) - Method in interface smile.validation.metric.ClassificationMetric
Returns a score to measure the quality of classification.
score(int[], int[]) - Method in interface smile.validation.metric.ClusteringMetric
Returns a score to measure the quality of clustering.
score(int[], int[]) - Method in class smile.validation.metric.Error
 
score(int[], int[]) - Method in class smile.validation.metric.Fallout
 
score(int[], int[]) - Method in class smile.validation.metric.FDR
 
score(int[], int[]) - Method in class smile.validation.metric.FScore
 
score(int[], double[]) - Method in class smile.validation.metric.LogLoss
 
score(double[], double[]) - Method in class smile.validation.metric.MAD
 
score(int[], int[]) - Method in class smile.validation.metric.MatthewsCorrelation
 
score(double[], double[]) - Method in class smile.validation.metric.MSE
 
score(int[], int[]) - Method in class smile.validation.metric.MutualInformation
 
score(int[], int[]) - Method in class smile.validation.metric.NormalizedMutualInformation
 
score(int[], int[]) - Method in class smile.validation.metric.Precision
 
score(int[], double[]) - Method in interface smile.validation.metric.ProbabilisticClassificationMetric
Returns a score to measure the quality of classification.
score(double[], double[]) - Method in class smile.validation.metric.R2
 
score(int[], int[]) - Method in class smile.validation.metric.RandIndex
 
score(int[], int[]) - Method in class smile.validation.metric.Recall
 
score(double[], double[]) - Method in interface smile.validation.metric.RegressionMetric
Returns a score to measure the quality of regression.
score(double[], double[]) - Method in class smile.validation.metric.RMSE
 
score(double[], double[]) - Method in class smile.validation.metric.RSS
 
score(int[], int[]) - Method in class smile.validation.metric.Sensitivity
 
score(int[], int[]) - Method in class smile.validation.metric.Specificity
 
scores - Variable in class smile.mds.MDS
The component scores.
scoreTime - Variable in class smile.validation.ClassificationMetrics
The time in milliseconds of scoring the validation data.
scoreTime - Variable in class smile.validation.RegressionMetrics
The time in milliseconds of scoring the validation data.
sd() - Method in class smile.neighbor.lsh.HashValueParzenModel
Returns the standard deviation.
sd - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The standard deviation of predictive distribution at query points.
sd - Variable in class smile.regression.GaussianProcessRegression
The standard deviation of responsible variable.
sd - Variable in class smile.validation.ClassificationValidations
The standard deviation of metrics.
sd - Variable in class smile.validation.RegressionValidations
The standard deviation of metrics.
seed(T[], T[], int[], ToDoubleBiFunction<T, T>) - Static method in class smile.clustering.PartitionClustering
Initialize cluster membership of input objects with K-Means++ algorithm.
seed(int, double[][]) - Static method in class smile.vq.NeuralGas
Selects random samples as initial neurons of Neural Gas.
sensitivity - Variable in class smile.validation.ClassificationMetrics
The sensitivity on validation data.
Sensitivity - Class in smile.validation.metric
Sensitivity or true positive rate (TPR) (also called hit rate, recall) is a statistical measures of the performance of a binary classification test.
Sensitivity() - Constructor for class smile.validation.metric.Sensitivity
 
SequenceLabeler<T> - Interface in smile.sequence
A sequence labeler assigns a class label to each position of the sequence.
setEdgeAge(Neuron, int) - Method in class smile.vq.hebb.Neuron
Sets the age of edge.
setLearningRate(TimeFunction) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the learning rate.
setLearningRate(double) - Method in class smile.classification.LogisticRegression
Sets the learning rate of stochastic gradient descent.
setLearningRate(double) - Method in class smile.classification.Maxent
Sets the learning rate of stochastic gradient descent.
setLearningRate(double) - Method in class smile.classification.SparseLogisticRegression
Sets the learning rate of stochastic gradient descent.
setLearningRate(double) - Method in class smile.projection.GHA
Set the learning rate.
setMomentum(TimeFunction) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the momentum factor.
setProb(PrZ[]) - Method in class smile.neighbor.lsh.Probe
Calculate the probability of the probe.
setProjection(int) - Method in class smile.projection.PCA
Set the projection matrix with given number of principal components.
setProjection(double) - Method in class smile.projection.PCA
Set the projection matrix with top principal components that contain (more than) the given percentage of variance.
setRMSProp(double, double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets RMSProp parameters.
setWeightDecay(double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the weight decay factor.
shap(DataFrame) - Method in class smile.base.cart.CART
Returns the average of absolute SHAP values over a data frame.
shap(Tuple) - Method in class smile.base.cart.CART
 
shap(DataFrame) - Method in class smile.classification.GradientTreeBoost
Returns the average of absolute SHAP values over a data frame.
shap(Tuple) - Method in class smile.classification.GradientTreeBoost
 
SHAP<T> - Interface in smile.feature
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.
shap(T) - Method in interface smile.feature.SHAP
Returns the SHAP values.
shap(Stream<T>) - Method in interface smile.feature.SHAP
Returns the average of absolute SHAP values over a data set.
shap(Tuple) - Method in interface smile.feature.TreeSHAP
 
shap(DataFrame) - Method in interface smile.feature.TreeSHAP
Returns the average of absolute SHAP values over a data frame.
shift() - Method in class smile.neighbor.lsh.Probe
This operation shifts to the right the last nonzero component if it is equal to one and if it is not the last one.
SIB - Class in smile.clustering
The Sequential Information Bottleneck algorithm.
SIB(double, double[][], int[]) - Constructor for class smile.clustering.SIB
Constructor.
sigmoid() - Static method in interface smile.base.mlp.ActivationFunction
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
sigmoid(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with sigmoid activation function.
SignalNoiseRatio - Class in smile.feature
The signal-to-noise (S2N) metric ratio is a univariate feature ranking metric, which can be used as a feature selection criterion for binary classification problems.
SignalNoiseRatio() - Constructor for class smile.feature.SignalNoiseRatio
 
SingleLinkage - Class in smile.clustering.linkage
Single linkage.
SingleLinkage(double[][]) - Constructor for class smile.clustering.linkage.SingleLinkage
Constructor.
SingleLinkage(int, float[]) - Constructor for class smile.clustering.linkage.SingleLinkage
Constructor.
size() - Method in class smile.association.FPGrowth
Returns the number transactions in the database.
size() - Method in class smile.association.FPTree
Returns the number transactions in the database.
size() - Method in class smile.base.cart.CART
Returns the number of nodes in the tree.
size() - Method in class smile.base.cart.InternalNode
 
size - Variable in class smile.base.cart.LeafNode
The number of samples in the node.
size() - Method in class smile.base.cart.LeafNode
 
size() - Method in interface smile.base.cart.Node
Returns the number of samples in the node.
size() - Method in class smile.classification.AdaBoost
Returns the number of trees in the model.
size() - Method in class smile.classification.GradientTreeBoost
Returns the number of trees in the model.
size() - Method in class smile.classification.RandomForest
Returns the number of trees in the model.
size() - Method in class smile.clustering.linkage.Linkage
Returns the proximity matrix size.
size - Variable in class smile.clustering.PartitionClustering
The number of observations in each cluster.
size() - Method in class smile.regression.GradientTreeBoost
Returns the number of trees in the model.
size() - Method in class smile.regression.RandomForest
Returns the number of trees in the model.
size - Variable in class smile.validation.ClassificationMetrics
The validation data size.
size - Variable in class smile.validation.RegressionMetrics
The validation data size.
smile.association - package smile.association
Frequent item set mining and association rule mining.
smile.base.cart - package smile.base.cart
Classification and regression tree base package.
smile.base.mlp - package smile.base.mlp
Multilayer perceptron neural network base package.
smile.base.rbf - package smile.base.rbf
RBF network base package.
smile.base.svm - package smile.base.svm
Support vector machine base package.
smile.classification - package smile.classification
Classification algorithms.
smile.clustering - package smile.clustering
Clustering analysis.
smile.clustering.linkage - package smile.clustering.linkage
Cluster dissimilarity measures.
smile.feature - package smile.feature
Feature generation, normalization and selection.
smile.glm - package smile.glm
Generalized linear models.
smile.glm.model - package smile.glm.model
The error distribution models.
smile.imputation - package smile.imputation
Missing value imputation.
smile.manifold - package smile.manifold
Manifold learning finds a low-dimensional basis for describing high-dimensional data.
smile.mds - package smile.mds
Multidimensional scaling.
smile.neighbor - package smile.neighbor
Nearest neighbor search.
smile.neighbor.lsh - package smile.neighbor.lsh
LSH internal classes.
smile.projection - package smile.projection
Feature extraction.
smile.projection.ica - package smile.projection.ica
The contrast functions in FastICA.
smile.regression - package smile.regression
Regression analysis.
smile.sequence - package smile.sequence
Learning algorithms for sequence data.
smile.timeseries - package smile.timeseries
Time series analysis.
smile.validation - package smile.validation
Model validation and selection.
smile.validation.metric - package smile.validation.metric
 
smile.vq - package smile.vq
Vector quantization is a lossy compression technique used in speech and image coding.
smile.vq.hebb - package smile.vq.hebb
Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell.
SNLSH<K,V> - Class in smile.neighbor
Locality-Sensitive Hashing for Signatures.
SNLSH(int, SimHash<K>) - Constructor for class smile.neighbor.SNLSH
Constructor.
SoftClassifier<T> - Interface in smile.classification
Soft classifiers calculate a posteriori probabilities besides the class label of an instance.
SOM - Class in smile.vq
Self-Organizing Map.
SOM(double[][][], TimeFunction, Neighborhood) - Constructor for class smile.vq.SOM
Constructor.
sparse(int, KernelMachine<SparseArray>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
sparse(int, int) - Static method in class smile.projection.RandomProjection
Generates a sparse random projection.
SparseLogisticRegression - Class in smile.classification
Logistic regression on sparse data.
SparseLogisticRegression(int, double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression
Constructor.
SparseLogisticRegression.Binomial - Class in smile.classification
Binomial logistic regression.
SparseLogisticRegression.Multinomial - Class in smile.classification
Multinomial logistic regression.
SparseOneHotEncoder - Class in smile.feature
Encode categorical integer features using sparse one-hot scheme.
SparseOneHotEncoder(StructType) - Constructor for class smile.feature.SparseOneHotEncoder
Constructor.
specificity - Variable in class smile.validation.ClassificationMetrics
The specificity on validation data.
Specificity - Class in smile.validation.metric
Specificity (SPC) or True Negative Rate is a statistical measures of the performance of a binary classification test.
Specificity() - Constructor for class smile.validation.metric.Specificity
 
SpectralClustering - Class in smile.clustering
Spectral Clustering.
SpectralClustering(double, int, int[]) - Constructor for class smile.clustering.SpectralClustering
Constructor.
split(Split, PriorityQueue<Split>) - Method in class smile.base.cart.CART
Split a node into two children nodes.
Split - Class in smile.base.cart
The data about of a potential split for a leaf node.
Split(LeafNode, int, double, int, int, int, int) - Constructor for class smile.base.cart.Split
Constructor.
SplitRule - Enum in smile.base.cart
The criterion to choose variable to split instances.
SQRT - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with sqrt normalization.
sqrt(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (sqrt(H(y1) * H(y2)) - E(MI)).
SQRT - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with sqrt normalization.
sqrt(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / sqrt(H(y1) * H(y2)).
Standardizer - Class in smile.feature
Standardizes numeric feature to 0 mean and unit variance.
Standardizer(StructType, double[], double[]) - Constructor for class smile.feature.Standardizer
Constructor.
stress - Variable in class smile.mds.IsotonicMDS
The final stress achieved.
stress - Variable in class smile.mds.SammonMapping
The final stress achieved.
SUM - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with sum normalization.
sum(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (0.5 * (H(y1) + H(y2)) - E(MI)).
SUM - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with sum normalization.
sum(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of 2 * I(y1, y2) / (H(y1) + H(y2)).
SumSquaresRatio - Class in smile.feature
The ratio of between-groups to within-groups sum of squares is a univariate feature ranking metric, which can be used as a feature selection criterion for multi-class classification problems.
SumSquaresRatio() - Constructor for class smile.feature.SumSquaresRatio
 
support - Variable in class smile.association.AssociationRule
The support value.
support - Variable in class smile.association.ItemSet
The associated support of item set.
SupportVector<T> - Class in smile.base.svm
Support vector.
SupportVector(int, T, int, double, double, double, double, double) - Constructor for class smile.base.svm.SupportVector
 
SVDImputation - Class in smile.imputation
Missing value imputation with singular value decomposition.
SVDImputation(int) - Constructor for class smile.imputation.SVDImputation
Constructor.
SVM<T> - Class in smile.classification
Support vector machines for classification.
SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.classification.SVM
Constructor.
SVR<T> - Class in smile.base.svm
Epsilon support vector regression.
SVR(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.SVR
Constructor.
SVR - Class in smile.regression
Epsilon support vector regression.
SVR() - Constructor for class smile.regression.SVR
 

T

t - Variable in class smile.base.mlp.MultilayerPerceptron
The training iterations.
T - Variable in class smile.vq.BIRCH
THe maximum radius of a sub-cluster.
tanh() - Static method in interface smile.base.mlp.ActivationFunction
Hyperbolic tangent activation function.
tanh(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with hyperbolic tangent activation function.
target - Variable in class smile.base.mlp.MultilayerPerceptron
The buffer to store desired target value of training instance.
test(DataFrame) - Method in class smile.classification.AdaBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.classification.GradientTreeBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.classification.RandomForest
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.regression.GradientTreeBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.regression.RandomForest
Test the model on a validation dataset.
TimeSeries - Interface in smile.timeseries
Time series utility functions.
toNode(Node, Node) - Method in class smile.base.cart.NominalSplit
 
toNode(Node, Node) - Method in class smile.base.cart.OrdinalSplit
 
toNode(Node, Node) - Method in class smile.base.cart.Split
Returns an internal node with the feature, value, and score of this split.
toString() - Method in class smile.association.AssociationRule
 
toString() - Method in class smile.association.ItemSet
 
toString() - Method in class smile.base.cart.CART
Returns a text representation of the tree in R's rpart format.
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.DecisionNode
 
toString(StructType, boolean) - Method in class smile.base.cart.InternalNode
Returns the string representation of branch.
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.InternalNode
 
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in interface smile.base.cart.Node
Adds the string representation (R's rpart format) to a collection.
toString(StructType, boolean) - Method in class smile.base.cart.NominalNode
 
toString(StructType, boolean) - Method in class smile.base.cart.OrdinalNode
 
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.RegressionNode
 
toString() - Method in class smile.base.cart.Split
 
toString() - Method in class smile.base.mlp.HiddenLayer
 
toString() - Method in class smile.base.mlp.HiddenLayerBuilder
 
toString() - Method in class smile.base.mlp.MultilayerPerceptron
 
toString() - Method in class smile.base.mlp.OutputLayer
 
toString() - Method in class smile.base.mlp.OutputLayerBuilder
 
toString() - Method in class smile.base.svm.KernelMachine
 
toString() - Method in class smile.classification.IsotonicRegressionScaling
 
toString() - Method in class smile.clustering.CentroidClustering
 
toString() - Method in class smile.clustering.linkage.CompleteLinkage
 
toString() - Method in class smile.clustering.linkage.SingleLinkage
 
toString() - Method in class smile.clustering.linkage.UPGMALinkage
 
toString() - Method in class smile.clustering.linkage.UPGMCLinkage
 
toString() - Method in class smile.clustering.linkage.WardLinkage
 
toString() - Method in class smile.clustering.linkage.WPGMALinkage
 
toString() - Method in class smile.clustering.linkage.WPGMCLinkage
 
toString() - Method in class smile.clustering.MEC
 
toString() - Method in class smile.clustering.PartitionClustering
 
toString() - Method in class smile.feature.MaxAbsScaler
 
toString() - Method in class smile.feature.Normalizer
 
toString() - Method in class smile.feature.RobustStandardizer
 
toString() - Method in class smile.feature.Scaler
 
toString() - Method in class smile.feature.Standardizer
 
toString() - Method in class smile.feature.WinsorScaler
 
toString() - Method in class smile.glm.GLM
 
toString() - Method in class smile.neighbor.BKTree
 
toString() - Method in class smile.neighbor.CoverTree
 
toString() - Method in class smile.neighbor.KDTree
 
toString() - Method in class smile.neighbor.LinearSearch
 
toString() - Method in class smile.neighbor.LSH
 
toString() - Method in class smile.neighbor.MPLSH
 
toString() - Method in class smile.neighbor.Neighbor
 
toString() - Method in class smile.regression.GaussianProcessRegression.JointPrediction
 
toString() - Method in class smile.regression.GaussianProcessRegression
 
toString() - Method in class smile.regression.LinearModel
 
toString() - Method in class smile.sequence.CRFLabeler
 
toString() - Method in class smile.sequence.HMM
 
toString() - Method in class smile.sequence.HMMLabeler
 
toString() - Method in class smile.timeseries.AR
 
toString() - Method in class smile.timeseries.ARMA
 
toString() - Method in class smile.timeseries.BoxTest
 
toString() - Method in class smile.validation.ClassificationMetrics
 
toString() - Method in class smile.validation.ClassificationValidation
 
toString() - Method in class smile.validation.ClassificationValidations
 
toString() - Method in class smile.validation.metric.Accuracy
 
toString() - Method in class smile.validation.metric.AdjustedMutualInformation
 
toString() - Method in class smile.validation.metric.AdjustedRandIndex
 
toString() - Method in class smile.validation.metric.AUC
 
toString() - Method in class smile.validation.metric.ConfusionMatrix
 
toString() - Method in class smile.validation.metric.Error
 
toString() - Method in class smile.validation.metric.Fallout
 
toString() - Method in class smile.validation.metric.FDR
 
toString() - Method in class smile.validation.metric.FScore
 
toString() - Method in class smile.validation.metric.LogLoss
 
toString() - Method in class smile.validation.metric.MAD
 
toString() - Method in class smile.validation.metric.MatthewsCorrelation
 
toString() - Method in class smile.validation.metric.MSE
 
toString() - Method in class smile.validation.metric.MutualInformation
 
toString() - Method in class smile.validation.metric.NormalizedMutualInformation
 
toString() - Method in class smile.validation.metric.Precision
 
toString() - Method in class smile.validation.metric.R2
 
toString() - Method in class smile.validation.metric.RandIndex
 
toString() - Method in class smile.validation.metric.Recall
 
toString() - Method in class smile.validation.metric.RMSE
 
toString() - Method in class smile.validation.metric.RSS
 
toString() - Method in class smile.validation.metric.Sensitivity
 
toString() - Method in class smile.validation.metric.Specificity
 
toString() - Method in class smile.validation.RegressionMetrics
 
toString() - Method in class smile.validation.RegressionValidation
 
toString() - Method in class smile.validation.RegressionValidations
 
toSVM() - Method in class smile.base.svm.KernelMachine
Convert the kernel machine to SVM instance.
transform(double[]) - Method in interface smile.feature.FeatureTransform
Transform a feature vector.
transform(double[][]) - Method in interface smile.feature.FeatureTransform
Transform a data frame.
transform(Tuple) - Method in interface smile.feature.FeatureTransform
Transform a feature vector.
transform(DataFrame) - Method in interface smile.feature.FeatureTransform
Transform a data frame.
transform(double[]) - Method in class smile.feature.MaxAbsScaler
 
transform(Tuple) - Method in class smile.feature.MaxAbsScaler
 
transform(DataFrame) - Method in class smile.feature.MaxAbsScaler
 
transform(double[]) - Method in class smile.feature.Normalizer
 
transform(Tuple) - Method in class smile.feature.Normalizer
 
transform(DataFrame) - Method in class smile.feature.Normalizer
 
transform(double[]) - Method in class smile.feature.Scaler
 
transform(Tuple) - Method in class smile.feature.Scaler
 
transform(DataFrame) - Method in class smile.feature.Scaler
 
transform(double[]) - Method in class smile.feature.Standardizer
 
transform(Tuple) - Method in class smile.feature.Standardizer
 
transform(DataFrame) - Method in class smile.feature.Standardizer
 
tree - Variable in class smile.classification.RandomForest.Model
The decision tree.
tree - Variable in class smile.regression.RandomForest.Model
The decision tree.
trees() - Method in class smile.classification.AdaBoost
Returns the decision trees.
trees() - Method in class smile.classification.GradientTreeBoost
Returns the regression trees.
trees() - Method in class smile.classification.RandomForest
 
trees() - Method in interface smile.feature.TreeSHAP
Returns the classification/regression trees.
trees() - Method in class smile.regression.GradientTreeBoost
 
trees() - Method in class smile.regression.RandomForest
 
TreeSHAP - Interface in smile.feature
SHAP of ensemble tree methods.
trim(int) - Method in class smile.classification.AdaBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.classification.GradientTreeBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.classification.RandomForest
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.regression.GradientTreeBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.regression.RandomForest
Trims the tree model set to a smaller size in case of over-fitting.
trueChild() - Method in class smile.base.cart.InternalNode
Returns the true branch child.
truth - Variable in class smile.validation.ClassificationValidation
The true class labels of validation data.
truth - Variable in class smile.validation.RegressionValidation
The true response variable of validation data.
TSNE - Class in smile.manifold
The t-distributed stochastic neighbor embedding.
TSNE(double[][], int) - Constructor for class smile.manifold.TSNE
Constructor.
TSNE(double[][], int, double, double, int) - Constructor for class smile.manifold.TSNE
Constructor.
ttest() - Method in class smile.regression.LinearModel
Returns the t-test of the coefficients (including intercept).
ttest() - Method in class smile.timeseries.AR
Returns the t-test of the coefficients (including intercept).
ttest() - Method in class smile.timeseries.ARMA
Returns the t-test of the coefficients (including intercept).
type - Variable in class smile.timeseries.BoxTest
The type of test.

U

u - Variable in class smile.neighbor.lsh.PrH
The index of bucket.
UMAP - Class in smile.manifold
Uniform Manifold Approximation and Projection.
UMAP(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.UMAP
Constructor.
umatrix() - Method in class smile.vq.SOM
Calculates the unified distance matrix (u-matrix) for visualization.
update(int, double, double, double, double, double) - Method in class smile.base.mlp.Layer
Adjust network weights by back-propagation algorithm.
update(int) - Method in class smile.base.mlp.MultilayerPerceptron
Updates the weights for mini-batch training.
update(int[], int) - Method in class smile.classification.DiscreteNaiveBayes
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
update(SparseArray, int) - Method in class smile.classification.DiscreteNaiveBayes
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
update(int[][], int[]) - Method in class smile.classification.DiscreteNaiveBayes
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
update(SparseArray[], int[]) - Method in class smile.classification.DiscreteNaiveBayes
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
update(double[], int) - Method in class smile.classification.LogisticRegression.Binomial
 
update(double[], int) - Method in class smile.classification.LogisticRegression.Multinomial
 
update(int[], int) - Method in class smile.classification.Maxent.Binomial
 
update(int[], int) - Method in class smile.classification.Maxent.Multinomial
 
update(double[], int) - Method in class smile.classification.MLP
Updates the model with a single sample.
update(double[][], int[]) - Method in class smile.classification.MLP
Updates the model with a mini-batch.
update(T[], int[]) - Method in interface smile.classification.OnlineClassifier
Updates the model with a (micro-)batch of new samples.
update(T, int) - Method in interface smile.classification.OnlineClassifier
Online update the classifier with a new training instance.
update(SparseArray, int) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
update(SparseArray, int) - Method in class smile.classification.SparseLogisticRegression.Multinomial
 
update(int) - Method in class smile.manifold.TSNE
Performs additional iterations.
update(double[], E) - Method in class smile.neighbor.MutableLSH
Update an entry with new key.
update(double[]) - Method in class smile.projection.GHA
Update the model with a new sample.
update(Tuple) - Method in class smile.regression.LinearModel
Online update the regression model with a new training instance.
update(DataFrame) - Method in class smile.regression.LinearModel
Online update the regression model with a new data frame.
update(double[], double) - Method in class smile.regression.LinearModel
Growing window recursive least squares with lambda = 1.
update(double[], double, double) - Method in class smile.regression.LinearModel
Recursive least squares.
update(double[], double) - Method in class smile.regression.MLP
Updates the model with a single sample.
update(double[][], double[]) - Method in class smile.regression.MLP
Updates the model with a mini-batch.
update(T[], double[]) - Method in interface smile.regression.OnlineRegression
Updates the model with a (micro-)batch of new samples.
update(T, double) - Method in interface smile.regression.OnlineRegression
Online update the regression model with a new training instance.
update(T[][], int, ToIntFunction<T>) - Method in class smile.sequence.HMM
Updates the HMM by the Baum-Welch algorithm.
update(int[][], int) - Method in class smile.sequence.HMM
Updates the HMM by the Baum-Welch algorithm.
update(T[][], int) - Method in class smile.sequence.HMMLabeler
Updates the HMM by the Baum-Welch algorithm.
update(double[]) - Method in class smile.vq.BIRCH
 
update(double[]) - Method in class smile.vq.GrowingNeuralGas
 
update(double[], double) - Method in class smile.vq.hebb.Neuron
Updates the reference vector by w += eps * (x - w).
update(double[]) - Method in class smile.vq.NeuralGas
 
update(double[]) - Method in class smile.vq.NeuralMap
 
update(double[]) - Method in class smile.vq.SOM
 
update(double[]) - Method in interface smile.vq.VectorQuantizer
Update the codebook with a new observation.
UPGMALinkage - Class in smile.clustering.linkage
Unweighted Pair Group Method with Arithmetic mean (also known as average linkage).
UPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMALinkage
Constructor.
UPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMALinkage
Constructor.
UPGMCLinkage - Class in smile.clustering.linkage
Unweighted Pair Group Method using Centroids (also known as centroid linkage).
UPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
Constructor.
UPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
Constructor.

V

value - Variable in class smile.neighbor.Neighbor
The data object of neighbor.
valueOf(String) - Static method in enum smile.base.cart.Loss.Type
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in interface smile.base.cart.Loss
Parses the loss.
valueOf(String) - Static method in enum smile.base.cart.SplitRule
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.base.mlp.Cost
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.base.mlp.OutputFunction
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.classification.DiscreteNaiveBayes.Model
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.feature.Normalizer.Norm
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.timeseries.AR.Method
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.timeseries.BoxTest.Type
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.validation.metric.AdjustedMutualInformation.Method
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum smile.validation.metric.NormalizedMutualInformation.Method
Returns the enum constant of this type with the specified name.
values() - Static method in enum smile.base.cart.Loss.Type
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.base.cart.SplitRule
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.base.mlp.Cost
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.base.mlp.OutputFunction
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.classification.DiscreteNaiveBayes.Model
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.feature.Normalizer.Norm
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Method in class smile.neighbor.MutableLSH
Returns the values.
values() - Static method in enum smile.timeseries.AR.Method
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.timeseries.BoxTest.Type
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.validation.metric.AdjustedMutualInformation.Method
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum smile.validation.metric.NormalizedMutualInformation.Method
Returns an array containing the constants of this enum type, in the order they are declared.
var - Variable in class smile.neighbor.lsh.NeighborHashValueModel
Variance of hash values of neighbors.
variance(double) - Method in interface smile.glm.model.Model
The variance function.
variance() - Method in class smile.timeseries.AR
Returns the residual variance.
variance() - Method in class smile.timeseries.ARMA
Returns the residual variance.
VectorQuantizer - Interface in smile.vq
Vector quantizer with competitive learning.
viterbi(Tuple[]) - Method in class smile.sequence.CRF
Labels sequence with Viterbi algorithm.
viterbi(T[]) - Method in class smile.sequence.CRFLabeler
Labels sequence with Viterbi algorithm.
vote(Tuple, double[]) - Method in class smile.classification.RandomForest
Predict and estimate the probability by voting.

W

w - Variable in class smile.neighbor.LSH
The width of projection.
w - Variable in class smile.regression.GaussianProcessRegression
The linear weights.
w - Variable in class smile.vq.hebb.Neuron
The reference vector.
WardLinkage - Class in smile.clustering.linkage
Ward's linkage.
WardLinkage(double[][]) - Constructor for class smile.clustering.linkage.WardLinkage
Constructor.
WardLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WardLinkage
Constructor.
weight - Variable in class smile.base.mlp.Layer
The affine transformation matrix.
weight - Variable in class smile.classification.RandomForest.Model
The weight of tree, which can be used when aggregating tree votes.
weightGradient - Variable in class smile.base.mlp.Layer
The weight gradient.
weights() - Method in class smile.base.svm.KernelMachine
Returns the weights of instances.
weightUpdate - Variable in class smile.base.mlp.Layer
The weight update.
width - Variable in class smile.manifold.LaplacianEigenmap
The width of heat kernel.
WinsorScaler - Class in smile.feature
Scales all numeric variables into the range [0, 1].
WinsorScaler(StructType, double[], double[]) - Constructor for class smile.feature.WinsorScaler
Constructor.
WPGMALinkage - Class in smile.clustering.linkage
Weighted Pair Group Method with Arithmetic mean.
WPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMALinkage
Constructor.
WPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMALinkage
Constructor.
WPGMCLinkage - Class in smile.clustering.linkage
Weighted Pair Group Method using Centroids (also known as median linkage).
WPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
Constructor.
WPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
Constructor.

X

x - Variable in class smile.base.cart.CART
The training data.
x - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The query points where the GP is evaluated.
x() - Method in class smile.timeseries.AR
Returns the time series.
x() - Method in class smile.timeseries.ARMA
Returns the time series.
XMeans - Class in smile.clustering
X-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters based on BIC scores.
XMeans(double, double[][], int[]) - Constructor for class smile.clustering.XMeans
Constructor.

Y

y - Variable in class smile.classification.ClassLabels
The sample class id in [0, k).
y - Variable in class smile.clustering.PartitionClustering
The cluster labels of data.
y - Variable in class smile.regression.Regression.Metric
The values of responsible variable.

Z

ztest - Variable in class smile.glm.GLM
The coefficients, their standard errors, z-scores, and p-values.
ztest() - Method in class smile.glm.GLM
Returns the z-test of the coefficients (including intercept).
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links