public interface Bootstrap
| Modifier and Type | Method and Description |
|---|---|
static <M extends DataFrameClassifier> |
classification(int k,
smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,M> trainer)
Runs classification bootstrap validation.
|
static <T,M extends Classifier<T>> |
classification(int k,
T[] x,
int[] y,
java.util.function.BiFunction<T[],int[],M> trainer)
Runs classification bootstrap validation.
|
static Bag[] |
of(int[] category,
int k)
Stratified bootstrap sampling.
|
static Bag[] |
of(int n,
int k)
Bootstrap sampling.
|
static <M extends DataFrameRegression> |
regression(int k,
smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,M> trainer)
Runs regression bootstrap validation.
|
static <T,M extends Regression<T>> |
regression(int k,
T[] x,
double[] y,
java.util.function.BiFunction<T[],double[],M> trainer)
Runs regression bootstrap validation.
|
static Bag[] of(int n, int k)
n - the number of samples.k - the number of rounds of bootstrap.static Bag[] of(int[] category, int k)
category - the strata labels.k - the number of rounds of bootstrap.static <T,M extends Classifier<T>> ClassificationValidations<M> classification(int k, T[] x, int[] y, java.util.function.BiFunction<T[],int[],M> trainer)
k - k-fold bootstrap sampling.x - the samples.y - the sample labels.trainer - the lambda to train a model.static <M extends DataFrameClassifier> ClassificationValidations<M> classification(int k, smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,M> trainer)
k - k-fold bootstrap sampling.formula - the model specification.data - the training/validation data.trainer - the lambda to train a model.static <T,M extends Regression<T>> RegressionValidations<M> regression(int k, T[] x, double[] y, java.util.function.BiFunction<T[],double[],M> trainer)
k - k-fold bootstrap sampling.x - the samples.y - the response variable.trainer - the lambda to train a model.static <M extends DataFrameRegression> RegressionValidations<M> regression(int k, smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,M> trainer)
k - k-fold bootstrap sampling.formula - the model specification.data - the training/validation data.trainer - the lambda to train a model.