M
- the model type.public class ClassificationValidation<M>
extends java.lang.Object
implements java.io.Serializable
Modifier and Type | Field and Description |
---|---|
ConfusionMatrix |
confusion
The confusion matrix.
|
ClassificationMetrics |
metrics
The classification metrics.
|
M |
model
The model.
|
double[][] |
posteriori
The posteriori probability of prediction if the model is a soft classifier.
|
int[] |
prediction
The model prediction.
|
int[] |
truth
The true class labels of validation data.
|
Constructor and Description |
---|
ClassificationValidation(M model,
int[] truth,
int[] prediction,
double[][] posteriori,
double fitTime,
double scoreTime)
Constructor of soft classifier validation.
|
ClassificationValidation(M model,
int[] truth,
int[] prediction,
double fitTime,
double scoreTime)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static <M extends DataFrameClassifier> |
of(Bag[] bags,
smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,M> trainer)
Trains and validates a model on multiple train/validation split.
|
static <T,M extends Classifier<T>> |
of(Bag[] bags,
T[] x,
int[] y,
java.util.function.BiFunction<T[],int[],M> trainer)
Trains and validates a model on multiple train/validation split.
|
static <M extends DataFrameClassifier> |
of(smile.data.formula.Formula formula,
smile.data.DataFrame train,
smile.data.DataFrame test,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,M> trainer)
Trains and validates a model on a train/validation split.
|
static <T,M extends Classifier<T>> |
of(T[] x,
int[] y,
T[] testx,
int[] testy,
java.util.function.BiFunction<T[],int[],M> trainer)
Trains and validates a model on a train/validation split.
|
java.lang.String |
toString() |
public final M model
public final int[] truth
public final int[] prediction
public final double[][] posteriori
public final ConfusionMatrix confusion
public final ClassificationMetrics metrics
public ClassificationValidation(M model, int[] truth, int[] prediction, double fitTime, double scoreTime)
public ClassificationValidation(M model, int[] truth, int[] prediction, double[][] posteriori, double fitTime, double scoreTime)
public java.lang.String toString()
toString
in class java.lang.Object
public static <T,M extends Classifier<T>> ClassificationValidation<M> of(T[] x, int[] y, T[] testx, int[] testy, java.util.function.BiFunction<T[],int[],M> trainer)
public static <T,M extends Classifier<T>> ClassificationValidations<M> of(Bag[] bags, T[] x, int[] y, java.util.function.BiFunction<T[],int[],M> trainer)
public static <M extends DataFrameClassifier> ClassificationValidation<M> of(smile.data.formula.Formula formula, smile.data.DataFrame train, smile.data.DataFrame test, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,M> trainer)
public static <M extends DataFrameClassifier> ClassificationValidations<M> of(Bag[] bags, smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,M> trainer)