public interface LOOCV
Modifier and Type | Method and Description |
---|---|
static ClassificationMetrics |
classification(smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameClassifier> trainer)
Runs leave-one-out cross validation tests.
|
static <T,M extends Classifier<T>> |
classification(T[] x,
int[] y,
java.util.function.BiFunction<T[],int[],M> trainer)
Runs leave-one-out cross validation tests.
|
static int[][] |
of(int n)
Returns the training sample index for each round.
|
static RegressionMetrics |
regression(smile.data.formula.Formula formula,
smile.data.DataFrame data,
java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameRegression> trainer)
Runs leave-one-out cross validation tests.
|
static <T,M extends Regression<T>> |
regression(T[] x,
double[] y,
java.util.function.BiFunction<T[],double[],M> trainer)
Runs leave-one-out cross validation tests.
|
static int[][] of(int n)
n
- the number of samples.static <T,M extends Classifier<T>> ClassificationMetrics classification(T[] x, int[] y, java.util.function.BiFunction<T[],int[],M> trainer)
static ClassificationMetrics classification(smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameClassifier> trainer)
static <T,M extends Regression<T>> RegressionMetrics regression(T[] x, double[] y, java.util.function.BiFunction<T[],double[],M> trainer)
static RegressionMetrics regression(smile.data.formula.Formula formula, smile.data.DataFrame data, java.util.function.BiFunction<smile.data.formula.Formula,smile.data.DataFrame,DataFrameRegression> trainer)