Package smile.regression
Interface DataFrameRegression
- All Superinterfaces:
Regression<smile.data.Tuple>,Serializable,ToDoubleFunction<smile.data.Tuple>
- All Known Implementing Classes:
GradientTreeBoost,LinearModel,RandomForest,RegressionTree
Regression trait on DataFrame.
-
Nested Class Summary
Nested ClassesModifier and TypeInterfaceDescriptionstatic interfaceThe regression trainer. -
Method Summary
Modifier and TypeMethodDescriptionstatic DataFrameRegressionensemble(DataFrameRegression... models) Return an ensemble of multiple base models to obtain better predictive performance.smile.data.formula.Formulaformula()Returns the model formula.static DataFrameRegressionof(smile.data.formula.Formula formula, smile.data.DataFrame data, Properties params, Regression.Trainer<double[], ?> trainer) Fits a vector regression model on data frame.default double[]predict(smile.data.DataFrame data) Predicts the dependent variables of a data frame.smile.data.type.StructTypeschema()Returns the schema of predictors.Methods inherited from interface smile.regression.Regression
applyAsDouble, online, predict, predict, predict, predict, update, update, update
-
Method Details
-
formula
smile.data.formula.Formula formula()Returns the model formula.- Returns:
- the model formula.
-
schema
smile.data.type.StructType schema()Returns the schema of predictors.- Returns:
- the schema of predictors.
-
predict
default double[] predict(smile.data.DataFrame data) Predicts the dependent variables of a data frame.- Parameters:
data- the data frame.- Returns:
- the predicted values.
-
of
static DataFrameRegression of(smile.data.formula.Formula formula, smile.data.DataFrame data, Properties params, Regression.Trainer<double[], ?> trainer) Fits a vector regression model on data frame.- Parameters:
formula- a symbolic description of the model to be fitted.data- the data frame of the explanatory and response variables.params- the hyper-parameters.trainer- the training lambda.- Returns:
- the model.
-
ensemble
Return an ensemble of multiple base models to obtain better predictive performance.- Parameters:
models- the base models.- Returns:
- the ensemble model.
-