Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form

A

a - Variable in class smile.validation.metric.ContingencyTable
The row sum of contingency table.
AbstractClassifier<T> - Class in smile.classification
Abstract base class of classifiers.
AbstractClassifier(int[]) - Constructor for class smile.classification.AbstractClassifier
Constructor.
AbstractClassifier(BaseVector<?, ?, ?>) - Constructor for class smile.classification.AbstractClassifier
Constructor.
AbstractClassifier(IntSet) - Constructor for class smile.classification.AbstractClassifier
Constructor.
accuracy - Variable in class smile.validation.ClassificationMetrics
The accuracy on validation data.
Accuracy - Class in smile.validation.metric
The accuracy is the proportion of true results (both true positives and true negatives) in the population.
Accuracy() - Constructor for class smile.validation.metric.Accuracy
 
acf(double[], int) - Static method in interface smile.timeseries.TimeSeries
Autocorrelation function.
ActivationFunction - Interface in smile.base.mlp
The activation function in hidden layers.
ActivationFunction - Interface in smile.deep.activation
The activation function.
AdaBoost - Class in smile.classification
AdaBoost (Adaptive Boosting) classifier with decision trees.
AdaBoost(Formula, int, DecisionTree[], double[], double[], double[]) - Constructor for class smile.classification.AdaBoost
Constructor.
AdaBoost(Formula, int, DecisionTree[], double[], double[], double[], IntSet) - Constructor for class smile.classification.AdaBoost
Constructor.
Adam - Class in smile.deep.optimizer
Adaptive Moment optimizer.
Adam() - Constructor for class smile.deep.optimizer.Adam
Constructor.
Adam(TimeFunction) - Constructor for class smile.deep.optimizer.Adam
Constructor.
Adam(TimeFunction, double, double) - Constructor for class smile.deep.optimizer.Adam
Constructor.
Adam(TimeFunction, double, double, double) - Constructor for class smile.deep.optimizer.Adam
Constructor.
add(String, double) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, double[]) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, double, double) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, double, double, double) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, int) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, int[]) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, int, int) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, int, int, int) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, String) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, String[]) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
addEdge(Neuron) - Method in class smile.vq.hebb.Neuron
Adds an edge.
addEdge(Neuron, int) - Method in class smile.vq.hebb.Neuron
Adds an edge.
AdjustedMutualInformation - Class in smile.validation.metric
Adjusted Mutual Information (AMI) for comparing clustering.
AdjustedMutualInformation(AdjustedMutualInformation.Method) - Constructor for class smile.validation.metric.AdjustedMutualInformation
Constructor.
AdjustedMutualInformation.Method - Enum Class in smile.validation.metric
The normalization method.
adjustedR2() - Method in class smile.timeseries.AR
Returns adjusted R2 statistic.
adjustedR2() - Method in class smile.timeseries.ARMA
Returns adjusted R2 statistic.
AdjustedRandIndex - Class in smile.validation.metric
Adjusted Rand Index.
AdjustedRandIndex() - Constructor for class smile.validation.metric.AdjustedRandIndex
 
adjustedRSquared() - Method in class smile.regression.LinearModel
Returns adjusted R2 statistic.
age - Variable in class smile.vq.hebb.Edge
The age of the edges.
age() - Method in class smile.vq.hebb.Neuron
Increments the age of all edges emanating from the neuron.
AIC() - Method in class smile.classification.LogisticRegression
Returns the AIC score.
AIC() - Method in class smile.classification.Maxent
Returns the AIC score.
AIC() - Method in class smile.classification.SparseLogisticRegression
Returns the AIC score.
AIC() - Method in class smile.glm.GLM
Returns the AIC score.
AIC(double, int) - Static method in interface smile.validation.ModelSelection
Akaike information criterion.
antecedent - Variable in class smile.association.AssociationRule
Antecedent itemset.
apply(double[]) - Method in class smile.feature.extraction.KernelPCA
 
apply(double[]) - Method in class smile.feature.extraction.Projection
Project a data point to the feature space.
apply(double[][]) - Method in class smile.feature.extraction.Projection
Project a set of data to the feature space.
apply(double, FPTree) - Static method in class smile.association.ARM
Mines the association rules.
apply(int, int, int, Fitness<BitString>) - Method in class smile.feature.selection.GAFE
Genetic algorithm based feature selection for classification.
apply(String) - Method in class smile.feature.extraction.BagOfWords
Returns the bag-of-words features of a document.
apply(String) - Method in class smile.feature.extraction.HashEncoder
Returns the bag-of-words features of a document.
apply(FPTree) - Static method in class smile.association.FPGrowth
Mines the frequent item sets.
apply(DataFrame) - Method in class smile.feature.extraction.BinaryEncoder
Generates the compact representation of sparse binary features for a data frame.
apply(DataFrame) - Method in class smile.feature.extraction.Projection
 
apply(DataFrame) - Method in class smile.feature.extraction.SparseEncoder
Generates the sparse representation of a data frame.
apply(DataFrame) - Method in class smile.feature.imputation.SimpleImputer
 
apply(Tuple) - Method in class smile.feature.extraction.BagOfWords
 
apply(Tuple) - Method in class smile.feature.extraction.BinaryEncoder
Generates the compact representation of sparse binary features for given object.
apply(Tuple) - Method in class smile.feature.extraction.Projection
 
apply(Tuple) - Method in class smile.feature.extraction.SparseEncoder
Generates the sparse representation of given object.
apply(Tuple) - Method in class smile.feature.imputation.KMedoidsImputer
 
apply(Tuple) - Method in class smile.feature.imputation.KNNImputer
 
apply(Tuple) - Method in class smile.feature.imputation.SimpleImputer
 
apply(Tuple) - Method in class smile.feature.transform.Normalizer
 
apply(T) - Method in class smile.manifold.KPCA
 
apply(T[]) - Method in class smile.manifold.KPCA
Project a set of data to the feature space.
applyAsDouble(T) - Method in interface smile.classification.Classifier
 
applyAsDouble(T) - Method in interface smile.regression.Regression
 
applyAsInt(T) - Method in interface smile.classification.Classifier
 
ar() - Method in class smile.timeseries.AR
Returns the linear coefficients of AR (without intercept).
ar() - Method in class smile.timeseries.ARMA
Returns the linear coefficients of AR(p).
AR - Class in smile.timeseries
Autoregressive model.
AR(double[], double[], double, AR.Method) - Constructor for class smile.timeseries.AR
Constructor.
AR.Method - Enum Class in smile.timeseries
The fitting method.
ARM - Class in smile.association
Association Rule Mining.
ARMA - Class in smile.timeseries
Autoregressive moving-average model.
ARMA(double[], double[], double[], double, double[], double[]) - Constructor for class smile.timeseries.ARMA
Constructor.
AssociationRule - Class in smile.association
Association rule object.
AssociationRule(int[], int[], double, double, double, double) - Constructor for class smile.association.AssociationRule
Constructor.
attractors - Variable in class smile.clustering.DENCLUE
The density attractor of each observation.
auc - Variable in class smile.validation.ClassificationMetrics
The AUC on validation data.
AUC - Class in smile.validation.metric
The area under the curve (AUC).
AUC() - Constructor for class smile.validation.metric.AUC
 
avg - Variable in class smile.validation.ClassificationValidations
The average of metrics.
avg - Variable in class smile.validation.RegressionValidations
The average of metrics.

B

b - Variable in class smile.validation.metric.ContingencyTable
The column sum of contingency table.
B - Variable in class smile.vq.BIRCH
The branching factor of non-leaf nodes.
backpopagateDropout() - Method in class smile.base.mlp.Layer
Propagates the errors back through the (implicit) dropout layer.
backpropagate(boolean) - Method in class smile.base.mlp.MultilayerPerceptron
Propagates the errors back through the network.
backpropagate(double[]) - Method in class smile.base.mlp.HiddenLayer
 
backpropagate(double[]) - Method in class smile.base.mlp.InputLayer
 
backpropagate(double[]) - Method in class smile.base.mlp.Layer
Propagates the errors back to a lower layer.
backpropagate(double[]) - Method in class smile.base.mlp.OutputLayer
 
Bag - Class in smile.validation
A bag of random selected samples.
Bag(int[], int[]) - Constructor for class smile.validation.Bag
Constructor.
BagOfWords - Class in smile.feature.extraction
The bag-of-words feature of text used in natural language processing and information retrieval.
BagOfWords(String[], Function<String, String[]>, String[], boolean) - Constructor for class smile.feature.extraction.BagOfWords
Constructor.
BagOfWords(Function<String, String[]>, String[]) - Constructor for class smile.feature.extraction.BagOfWords
Constructor.
BBDTree - Class in smile.clustering
Balanced Box-Decomposition Tree.
BBDTree(double[][]) - Constructor for class smile.clustering.BBDTree
Constructs a tree out of the given n data points living in R^d.
Bernoulli - Interface in smile.glm.model
The response variable is of Bernoulli distribution.
BERNOULLI - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
The document Bernoulli model generates an indicator for each term of the vocabulary, either indicating presence of the term in the document or indicating absence.
beta - Variable in class smile.glm.GLM
The linear weights.
bias - Variable in class smile.base.mlp.Layer
The bias.
biasGradient - Variable in class smile.base.mlp.Layer
The bias gradient.
biasGradientMoment1 - Variable in class smile.base.mlp.Layer
The first moment of bias gradient.
biasGradientMoment2 - Variable in class smile.base.mlp.Layer
The second moment of bias gradient.
biasUpdate - Variable in class smile.base.mlp.Layer
The bias update.
BIC() - Method in class smile.glm.GLM
Returns the BIC score.
BIC(double, int, int) - Static method in interface smile.validation.ModelSelection
Bayesian information criterion.
binary(int, KernelMachine<int[]>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
BinaryEncoder - Class in smile.feature.extraction
Encodes categorical features using sparse one-hot scheme.
BinaryEncoder(StructType, String...) - Constructor for class smile.feature.extraction.BinaryEncoder
Constructor.
binomial(double[][], int[]) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
binomial(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
binomial(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
binomial(int, int[][], int[]) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
binomial(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
binomial(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
binomial(SparseDataset, int[]) - Static method in class smile.classification.SparseLogisticRegression
Fits binomial logistic regression.
binomial(SparseDataset, int[], double, double, int) - Static method in class smile.classification.SparseLogisticRegression
Fits binomial logistic regression.
binomial(SparseDataset, int[], Properties) - Static method in class smile.classification.SparseLogisticRegression
Fits binomial logistic regression.
Binomial - Interface in smile.glm.model
The response variable is of Binomial distribution.
Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.LogisticRegression.Binomial
Constructor.
Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.Maxent.Binomial
Constructor.
Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression.Binomial
Constructor.
BIRCH - Class in smile.vq
Balanced Iterative Reducing and Clustering using Hierarchies.
BIRCH(int, int, int, double) - Constructor for class smile.vq.BIRCH
Constructor.
Bootstrap - Interface in smile.validation
The bootstrap is a general tool for assessing statistical accuracy.
Box_Pierce - Enum constant in enum class smile.timeseries.BoxTest.Type
Box-Pierce test.
BoxTest - Class in smile.timeseries
Portmanteau test jointly that several autocorrelations of time series are zero.
BoxTest.Type - Enum Class in smile.timeseries
The type of test.
branch(Tuple) - Method in class smile.base.cart.InternalNode
Returns true if the instance goes to the true branch.
branch(Tuple) - Method in class smile.base.cart.NominalNode
 
branch(Tuple) - Method in class smile.base.cart.OrdinalNode
 
breaks - Variable in class smile.feature.selection.InformationValue
Breakpoints of intervals for numerical variables.
bubble(int) - Static method in interface smile.vq.Neighborhood
Returns the bubble neighborhood function.
build(int) - Method in class smile.base.mlp.HiddenLayerBuilder
 
build(int) - Method in class smile.base.mlp.LayerBuilder
Builds a layer.
build(int) - Method in class smile.base.mlp.OutputLayerBuilder
 
builder(String, int, double, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer.

C

CART - Class in smile.base.cart
Classification and regression tree.
CART(DataFrame, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.base.cart.CART
Constructor.
CART(Formula, StructType, StructField, Node, double[]) - Constructor for class smile.base.cart.CART
Constructor.
center() - Method in class smile.feature.extraction.PCA
Returns the center of data.
center() - Method in class smile.feature.extraction.ProbabilisticPCA
Returns the center of data.
CentroidClustering<T,U> - Class in smile.clustering
In centroid-based clustering, clusters are represented by a central vector, which may not necessarily be a member of the data set.
CentroidClustering(double, T[], int[]) - Constructor for class smile.clustering.CentroidClustering
Constructor.
centroids - Variable in class smile.clustering.CentroidClustering
The centroids of each cluster.
centroids() - Method in class smile.vq.BIRCH
Returns the cluster centroids of leaf nodes.
CLARANS<T> - Class in smile.clustering
Clustering Large Applications based upon RANdomized Search.
CLARANS(double, T[], int[], Distance<T>) - Constructor for class smile.clustering.CLARANS
Constructor.
classes - Variable in class smile.classification.AbstractClassifier
The class labels.
classes - Variable in class smile.classification.ClassLabels
The class labels.
classes() - Method in class smile.classification.AbstractClassifier
 
classes() - Method in interface smile.classification.Classifier
Returns the class labels.
classes() - Method in class smile.classification.DecisionTree
 
classes() - Method in class smile.classification.MLP
 
classes() - Method in class smile.classification.SVM
 
classification(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Repeated cross validation of classification.
classification(int, int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
Repeated cross validation of classification.
classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.Bootstrap
Runs classification bootstrap validation.
classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Cross validation of classification.
classification(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.Bootstrap
Runs classification bootstrap validation.
classification(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
Cross validation of classification.
classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
classification(T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
CLASSIFICATION_ERROR - Enum constant in enum class smile.base.cart.SplitRule
Classification error.
ClassificationMetric - Interface in smile.validation.metric
An abstract interface to measure the classification performance.
ClassificationMetrics - Class in smile.validation
The classification validation metrics.
ClassificationMetrics(double, double, int, int, double) - Constructor for class smile.validation.ClassificationMetrics
Constructor.
ClassificationMetrics(double, double, int, int, double, double) - Constructor for class smile.validation.ClassificationMetrics
Constructor of multiclass soft classifier validation.
ClassificationMetrics(double, double, int, int, double, double, double, double, double, double) - Constructor for class smile.validation.ClassificationMetrics
Constructor of binary classifier validation.
ClassificationMetrics(double, double, int, int, double, double, double, double, double, double, double, double) - Constructor for class smile.validation.ClassificationMetrics
Constructor of binary soft classifier validation.
ClassificationMetrics(double, double, int, int, double, double, double, double, double, double, double, double, double) - Constructor for class smile.validation.ClassificationMetrics
Constructor.
ClassificationValidation<M> - Class in smile.validation
Classification model validation results.
ClassificationValidation(M, double, double, int[], int[]) - Constructor for class smile.validation.ClassificationValidation
Constructor.
ClassificationValidation(M, double, double, int[], int[], double[][]) - Constructor for class smile.validation.ClassificationValidation
Constructor of soft classifier validation.
ClassificationValidations<M> - Class in smile.validation
Classification model validation results.
ClassificationValidations(List<ClassificationValidation<M>>) - Constructor for class smile.validation.ClassificationValidations
Constructor.
Classifier<T> - Interface in smile.classification
A classifier assigns an input object into one of a given number of categories.
Classifier.Trainer<T,M extends Classifier<T>> - Interface in smile.classification
The classifier trainer.
ClassLabels - Class in smile.classification
Map arbitrary class labels to [0, k), where k is the number of classes.
ClassLabels(int, int[], IntSet) - Constructor for class smile.classification.ClassLabels
Constructor.
clear() - Method in class smile.base.cart.CART
Clear the workspace of building tree.
clear(double) - Method in class smile.vq.NeuralMap
Removes staled neurons and the edges beyond lifetime.
clipNorm - Variable in class smile.base.mlp.MultilayerPerceptron
The gradient clipping norm.
clipValue - Variable in class smile.base.mlp.MultilayerPerceptron
The gradient clipping value.
clustering(double[][], double[][], int[], int[]) - Method in class smile.clustering.BBDTree
Given k cluster centroids, this method assigns data to nearest centroids.
ClusteringMetric - Interface in smile.validation.metric
An abstract interface to measure the clustering performance.
CNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
Complement Naive Bayes.
coefficients() - Method in class smile.classification.LogisticRegression.Binomial
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.LogisticRegression.Multinomial
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.Maxent.Binomial
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.Maxent.Multinomial
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.SparseLogisticRegression.Binomial
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.SparseLogisticRegression.Multinomial
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
coefficients() - Method in class smile.glm.GLM
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.regression.LinearModel
Returns the linear coefficients without intercept.
columns - Variable in class smile.feature.extraction.Projection
The fields of input space.
comparator - Static variable in class smile.base.cart.Split
The comparator on the split score.
compareTo(CentroidClustering<T, U>) - Method in class smile.clustering.CentroidClustering
 
compareTo(MEC<T>) - Method in class smile.clustering.MEC
 
compareTo(InformationValue) - Method in class smile.feature.selection.InformationValue
 
compareTo(SignalNoiseRatio) - Method in class smile.feature.selection.SignalNoiseRatio
 
compareTo(SumSquaresRatio) - Method in class smile.feature.selection.SumSquaresRatio
 
compareTo(Neuron) - Method in class smile.vq.hebb.Neuron
 
CompleteLinkage - Class in smile.clustering.linkage
Complete linkage.
CompleteLinkage(double[][]) - Constructor for class smile.clustering.linkage.CompleteLinkage
Constructor.
CompleteLinkage(int, float[]) - Constructor for class smile.clustering.linkage.CompleteLinkage
Constructor.
computeGradient(double[]) - Method in class smile.base.mlp.InputLayer
 
computeGradient(double[]) - Method in class smile.base.mlp.Layer
Computes the parameter gradient for a sample of (mini-)batch.
computeGradientUpdate(double[], double, double, double) - Method in class smile.base.mlp.InputLayer
 
computeGradientUpdate(double[], double, double, double) - Method in class smile.base.mlp.Layer
Computes the parameter gradient and update the weights.
computeOutputGradient(double[], double) - Method in class smile.base.mlp.OutputLayer
Compute the network output gradient.
confidence - Variable in class smile.association.AssociationRule
The confidence value.
confusion - Variable in class smile.validation.ClassificationValidation
The confusion matrix.
ConfusionMatrix - Class in smile.validation.metric
The confusion matrix of truth and predictions.
ConfusionMatrix(int[][]) - Constructor for class smile.validation.metric.ConfusionMatrix
Constructor.
consequent - Variable in class smile.association.AssociationRule
Consequent itemset.
ContingencyTable - Class in smile.validation.metric
The contingency table.
ContingencyTable(int[], int[]) - Constructor for class smile.validation.metric.ContingencyTable
Constructor.
coordinates - Variable in class smile.manifold.IsoMap
The coordinate matrix in embedding space.
coordinates - Variable in class smile.manifold.IsotonicMDS
The coordinates.
coordinates - Variable in class smile.manifold.LaplacianEigenmap
The coordinate matrix in embedding space.
coordinates - Variable in class smile.manifold.LLE
The coordinate matrix in embedding space.
coordinates - Variable in class smile.manifold.MDS
The principal coordinates.
coordinates - Variable in class smile.manifold.SammonMapping
The coordinates.
coordinates - Variable in class smile.manifold.TSNE
The coordinate matrix in embedding space.
coordinates - Variable in class smile.manifold.UMAP
The coordinate matrix in embedding space.
coordinates() - Method in class smile.manifold.KPCA
Returns the nonlinear principal component scores, i.e., the representation of learning data in the nonlinear principal component space.
cor(double[][], String...) - Static method in class smile.feature.extraction.PCA
Fits principal component analysis with correlation matrix.
cor(DataFrame, String...) - Static method in class smile.feature.extraction.PCA
Fits principal component analysis with correlation matrix.
cost() - Method in class smile.base.mlp.OutputLayer
Returns the cost function of neural network.
cost() - Method in class smile.manifold.TSNE
Returns the cost function value.
Cost - Enum Class in smile.base.mlp
Neural network cost function.
count() - Method in class smile.base.cart.DecisionNode
Returns the number of node samples in each class.
counter - Variable in class smile.vq.hebb.Neuron
The local counter variable (e.g.
cov - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The covariance matrix of joint predictive distribution at query points.
cov(double[], int) - Static method in interface smile.timeseries.TimeSeries
Autocovariance function.
CRF - Class in smile.sequence
First-order linear conditional random field.
CRF(StructType, RegressionTree[][], double) - Constructor for class smile.sequence.CRF
Constructor.
CRFLabeler<T> - Class in smile.sequence
First-order CRF sequence labeler.
CRFLabeler(CRF, Function<T, Tuple>) - Constructor for class smile.sequence.CRFLabeler
Constructor.
crossentropy - Variable in class smile.validation.ClassificationMetrics
The cross entropy on validation data.
CrossEntropy - Interface in smile.validation.metric
Cross entropy generalizes the log loss metric to multiclass problems.
CrossValidation - Interface in smile.validation
Cross-validation is a technique for assessing how the results of a statistical analysis will generalize to an independent data set.
cumulativeVarianceProportion() - Method in class smile.feature.extraction.PCA
Returns the cumulative proportion of variance contained in principal components, ordered from largest to smallest.

D

d - Variable in class smile.vq.BIRCH
The dimensionality of data.
d(int, int) - Method in class smile.clustering.linkage.Linkage
Returns the distance/dissimilarity between two clusters/objects, which are indexed by integers.
DataFrameClassifier - Interface in smile.classification
Classification trait on DataFrame.
DataFrameClassifier.Trainer<M extends DataFrameClassifier> - Interface in smile.classification
The classifier trainer.
DataFrameRegression - Interface in smile.regression
Regression trait on DataFrame.
DataFrameRegression.Trainer<M extends DataFrameRegression> - Interface in smile.regression
The regression trainer.
DBSCAN<T> - Class in smile.clustering
Density-Based Spatial Clustering of Applications with Noise.
DBSCAN(int, double, RNNSearch<T, T>, int, int[], boolean[]) - Constructor for class smile.clustering.DBSCAN
Constructor.
DecisionNode - Class in smile.base.cart
A leaf node in decision tree.
DecisionNode(int[]) - Constructor for class smile.base.cart.DecisionNode
Constructor.
DecisionTree - Class in smile.classification
Decision tree.
DecisionTree(DataFrame, int[], StructField, int, SplitRule, int, int, int, int, int[], int[][]) - Constructor for class smile.classification.DecisionTree
Constructor.
DENCLUE - Class in smile.clustering
DENsity CLUstering.
DENCLUE(int, double[][], double[], double[][], double, int[], double) - Constructor for class smile.clustering.DENCLUE
Constructor.
depth() - Method in class smile.base.cart.InternalNode
 
depth() - Method in class smile.base.cart.LeafNode
 
depth() - Method in interface smile.base.cart.Node
Returns the maximum depth of the tree -- the number of nodes along the longest path from this node down to the farthest leaf node.
DeterministicAnnealing - Class in smile.clustering
Deterministic annealing clustering.
DeterministicAnnealing(double, double[][], int[]) - Constructor for class smile.clustering.DeterministicAnnealing
Constructor.
deviance - Variable in class smile.glm.GLM
The deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Proposed Model)).
deviance() - Method in class smile.base.cart.DecisionNode
 
deviance() - Method in class smile.base.cart.InternalNode
 
deviance() - Method in interface smile.base.cart.Node
Returns the deviance of node.
deviance() - Method in class smile.base.cart.RegressionNode
 
deviance() - Method in class smile.glm.GLM
Returns the deviance of model.
deviance(double[], double[], double[]) - Method in interface smile.glm.model.Model
The deviance function.
deviance(int[], double[]) - Static method in class smile.base.cart.DecisionNode
Returns the deviance of node.
devianceResiduals - Variable in class smile.glm.GLM
The deviance residuals.
devianceResiduals() - Method in class smile.glm.GLM
Returns the deviance residuals.
df - Variable in class smile.glm.GLM
The degrees of freedom of the residual deviance.
df - Variable in class smile.timeseries.BoxTest
The degree of freedom.
df() - Method in class smile.regression.LinearModel
Returns the degree-of-freedom of residual standard error.
df() - Method in class smile.timeseries.AR
Returns the degree-of-freedom of residual standard error.
df() - Method in class smile.timeseries.ARMA
Returns the degree-of-freedom of residual standard error.
diff(double[], int) - Static method in interface smile.timeseries.TimeSeries
Returns the first-differencing of time series.
diff(double[], int, int) - Static method in interface smile.timeseries.TimeSeries
Returns the differencing of time series.
dimension() - Method in class smile.classification.Maxent
Returns the dimension of input space.
DiscreteNaiveBayes - Class in smile.classification
Naive Bayes classifier for document classification in NLP.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes.Model - Enum Class in smile.classification
The generation models of naive Bayes classifier.
distance - Variable in class smile.vq.hebb.Neuron
The distance between the neuron and an input signal.
distance(double[]) - Method in class smile.vq.hebb.Neuron
Computes the distance between the neuron and a signal.
distance(double[], double[]) - Method in class smile.clustering.DeterministicAnnealing
 
distance(double[], double[]) - Method in class smile.clustering.GMeans
 
distance(double[], double[]) - Method in class smile.clustering.KMeans
 
distance(double[], double[]) - Method in class smile.clustering.XMeans
 
distance(double[], SparseArray) - Method in class smile.clustering.SIB
 
distance(int[], int[]) - Method in class smile.clustering.KModes
 
distance(T, T) - Method in class smile.clustering.CLARANS
 
distance(T, U) - Method in class smile.clustering.CentroidClustering
The distance function.
distortion - Variable in class smile.clustering.CentroidClustering
The total distortion.
distortion - Variable in class smile.clustering.SpectralClustering
The distortion in feature space.
dlink(double) - Method in interface smile.glm.model.Model
The derivative of link function.
dot() - Method in class smile.base.cart.CART
Returns the graphic representation in Graphviz dot format.
dot(StructType, StructField, int) - Method in class smile.base.cart.DecisionNode
 
dot(StructType, StructField, int) - Method in interface smile.base.cart.Node
Returns the dot representation of node.
dot(StructType, StructField, int) - Method in class smile.base.cart.NominalNode
 
dot(StructType, StructField, int) - Method in class smile.base.cart.OrdinalNode
 
dot(StructType, StructField, int) - Method in class smile.base.cart.RegressionNode
 
dropout - Variable in class smile.base.mlp.Layer
The dropout rate.
dropout - Variable in class smile.base.mlp.LayerBuilder
The dropout rate.

E

Edge - Class in smile.vq.hebb
The connection between neurons.
Edge(Neuron) - Constructor for class smile.vq.hebb.Edge
Constructor.
Edge(Neuron, int) - Constructor for class smile.vq.hebb.Edge
Constructor.
edges - Variable in class smile.vq.hebb.Neuron
The direct connected neighbors.
ElasticNet - Class in smile.regression
Elastic Net regularization.
ElasticNet() - Constructor for class smile.regression.ElasticNet
 
ensemble(Classifier<T>...) - Static method in interface smile.classification.Classifier
Return an ensemble of multiple base models to obtain better predictive performance.
ensemble(DataFrameClassifier...) - Static method in interface smile.classification.DataFrameClassifier
Return an ensemble of multiple base models to obtain better predictive performance.
ensemble(DataFrameRegression...) - Static method in interface smile.regression.DataFrameRegression
Return an ensemble of multiple base models to obtain better predictive performance.
ensemble(Regression<T>...) - Static method in interface smile.regression.Regression
Return an ensemble of multiple base models to obtain better predictive performance.
entropy - Variable in class smile.clustering.MEC
The conditional entropy as the objective function.
ENTROPY - Enum constant in enum class smile.base.cart.SplitRule
Used by the ID3, C4.5 and C5.0 tree generation algorithms.
epsilon - Variable in class smile.base.mlp.MultilayerPerceptron
A small constant for numerical stability in RMSProp.
equals(Object) - Method in class smile.association.AssociationRule
 
equals(Object) - Method in class smile.association.ItemSet
 
equals(Object) - Method in class smile.base.cart.DecisionNode
 
equals(Object) - Method in class smile.base.cart.RegressionNode
 
error - Variable in class smile.validation.ClassificationMetrics
The number of errors.
error() - Method in class smile.regression.LinearModel
Returns the residual standard error.
Error - Class in smile.validation.metric
The number of errors in the population.
Error() - Constructor for class smile.validation.metric.Error
 

F

f(double[]) - Method in interface smile.base.mlp.ActivationFunction
The output function.
f(double[]) - Method in enum class smile.base.mlp.OutputFunction
The output function.
f(double[]) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(double[]) - Method in interface smile.deep.activation.ActivationFunction
The output function.
f(double[]) - Method in class smile.deep.activation.LeakyReLU
 
f(double[]) - Method in class smile.deep.activation.ReLU
 
f(double[]) - Method in class smile.deep.activation.Sigmoid
 
f(double[]) - Method in class smile.deep.activation.Softmax
 
f(double[]) - Method in class smile.deep.activation.Tanh
 
f(int[]) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(SparseArray) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(T) - Method in class smile.base.rbf.RBF
The activation function.
f1 - Variable in class smile.validation.ClassificationMetrics
The F-1 score on validation data.
F1 - Static variable in class smile.validation.metric.FScore
The F_1 score, the harmonic mean of precision and recall.
F2 - Static variable in class smile.validation.metric.FScore
The F_2 score, which weighs recall higher than precision.
Fallout - Class in smile.validation.metric
Fall-out, false alarm rate, or false positive rate (FPR)
Fallout() - Constructor for class smile.validation.metric.Fallout
 
falseChild() - Method in class smile.base.cart.InternalNode
Returns the false branch child.
FDR - Class in smile.validation.metric
The false discovery rate (FDR) is ratio of false positives to combined true and false positives, which is actually 1 - precision.
FDR() - Constructor for class smile.validation.metric.FDR
 
feature - Variable in class smile.feature.selection.InformationValue
The feature name.
feature - Variable in class smile.feature.selection.SignalNoiseRatio
The feature name.
feature - Variable in class smile.feature.selection.SumSquaresRatio
The feature name.
feature() - Method in class smile.base.cart.InternalNode
Returns the split feature.
features - Variable in class smile.sequence.CRFLabeler
The feature function.
features() - Method in class smile.feature.extraction.BagOfWords
Returns the feature words.
FHalf - Static variable in class smile.validation.metric.FScore
The F_0.5 score, which weighs recall lower than precision.
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.base.cart.CART
Finds the best split for given column.
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.classification.DecisionTree
 
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.regression.RegressionTree
 
findBestSplit(LeafNode, int, int, boolean[]) - Method in class smile.base.cart.CART
Finds the best attribute to split on a set of samples.
fit(double[][]) - Static method in class smile.anomaly.IsolationForest
Fits an isolation forest.
fit(double[][], double[], double, double, double) - Static method in class smile.regression.SVM
Fits a linear epsilon-SVR.
fit(double[][], double[], Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model.
fit(double[][], double[], Properties) - Static method in class smile.regression.MLP
Fits a MLP model.
fit(double[][], double[], Properties) - Static method in class smile.regression.RBFNetwork
Fits a RBF network.
fit(double[][], double[], Properties) - Static method in class smile.regression.SVM
Fits an epsilon-SVR.
fit(double[][], double, int) - Static method in class smile.clustering.DENCLUE
Clustering data.
fit(double[][], double, int, double, int) - Static method in class smile.clustering.DENCLUE
Clustering data.
fit(double[][], int) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(double[][], int) - Static method in class smile.clustering.DeterministicAnnealing
Clustering data into k clusters.
fit(double[][], int) - Static method in class smile.clustering.GMeans
Clustering data with the number of clusters determined by G-Means algorithm automatically.
fit(double[][], int) - Static method in class smile.clustering.KMeans
Partitions data into k clusters up to 100 iterations.
fit(double[][], int) - Static method in class smile.clustering.XMeans
Clustering data with the number of clusters determined by X-Means algorithm automatically.
fit(double[][], int[]) - Static method in class smile.classification.FLD
Fits Fisher's linear discriminant.
fit(double[][], int[]) - Static method in class smile.classification.KNN
Fits the 1-NN classifier.
fit(double[][], int[]) - Static method in class smile.classification.LDA
Fits linear discriminant analysis.
fit(double[][], int[]) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(double[][], int[]) - Static method in class smile.classification.QDA
Fits quadratic discriminant analysis.
fit(double[][], int[], double) - Static method in class smile.classification.RDA
Fits regularized discriminant analysis.
fit(double[][], int[], double[], double) - Static method in class smile.classification.LDA
Fits linear discriminant analysis.
fit(double[][], int[], double[], double) - Static method in class smile.classification.QDA
Fits quadratic discriminant analysis.
fit(double[][], int[], double, double) - Static method in class smile.classification.SVM
Fits a binary linear SVM.
fit(double[][], int[], double, double[], double) - Static method in class smile.classification.RDA
Fits regularized discriminant analysis.
fit(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(double[][], int[], double, double, int) - Static method in class smile.classification.SVM
Fits a binary linear SVM.
fit(double[][], int[], int) - Static method in class smile.classification.KNN
Fits the K-NN classifier.
fit(double[][], int[], int, double) - Static method in class smile.classification.FLD
Fits Fisher's linear discriminant.
fit(double[][], int[], Properties) - Static method in class smile.classification.FLD
Fits Fisher's linear discriminant.
fit(double[][], int[], Properties) - Static method in class smile.classification.LDA
Fits linear discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(double[][], int[], Properties) - Static method in class smile.classification.MLP
Fits a MLP model.
fit(double[][], int[], Properties) - Static method in class smile.classification.QDA
Fits quadratic discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.RBFNetwork
Fits a RBF network.
fit(double[][], int[], Properties) - Static method in class smile.classification.RDA
Fits regularized discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.SVM
Fits a binary or multiclass SVM.
fit(double[][], int, double) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(double[][], int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data with KD-tree.
fit(double[][], int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering the data.
fit(double[][], int, double, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering the data.
fit(double[][], int, double, int, double, double) - Static method in class smile.clustering.DeterministicAnnealing
Clustering data into k clusters.
fit(double[][], int, int) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(double[][], int, int, double) - Static method in class smile.clustering.GMeans
Clustering data with the number of clusters determined by G-Means algorithm automatically.
fit(double[][], int, int, double) - Static method in class smile.clustering.KMeans
Partitions data into k clusters up to 100 iterations.
fit(double[][], int, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering with Nystrom approximation.
fit(double[][], int, int, double) - Static method in class smile.clustering.XMeans
Clustering data with the number of clusters determined by X-Means algorithm automatically.
fit(double[][], int, int, double, int) - Static method in class smile.anomaly.IsolationForest
Fits a random forest for classification.
fit(double[][], int, int, double, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering with Nystrom approximation.
fit(double[][], int, String...) - Static method in class smile.feature.extraction.ProbabilisticPCA
Fits probabilistic principal component analysis.
fit(double[][], String...) - Static method in class smile.feature.extraction.PCA
Fits principal component analysis with covariance matrix.
fit(double[][], Properties) - Static method in class smile.anomaly.IsolationForest
Fits a random forest for classification.
fit(double[], int) - Static method in class smile.timeseries.AR
Fits an autoregressive model with Yule-Walker procedure.
fit(double[], int[]) - Static method in class smile.classification.IsotonicRegressionScaling
Trains the Isotonic Regression scaling.
fit(double[], int[]) - Static method in class smile.classification.PlattScaling
Trains the Platt scaling.
fit(double[], int[], int) - Static method in class smile.classification.PlattScaling
Trains the Platt scaling.
fit(double[], int, int) - Static method in class smile.timeseries.ARMA
Fits an ARMA model with Hannan-Rissanen algorithm.
fit(int[]) - Static method in class smile.classification.ClassLabels
Fits the class label mapping.
fit(int[][], double[], int, double, double, double) - Static method in class smile.regression.SVM
Fits a linear epsilon-SVR of binary sparse data.
fit(int[][], int) - Static method in class smile.clustering.KModes
Fits k-modes clustering.
fit(int[][], int[][]) - Static method in class smile.sequence.HMM
Fits an HMM by maximum likelihood estimation.
fit(int[][], int[], int, double, double) - Static method in class smile.classification.SVM
Fits a binary linear SVM of binary sparse data.
fit(int[][], int[], int, double, double, int) - Static method in class smile.classification.SVM
Fits a binary linear SVM of binary sparse data.
fit(int[][], int, int) - Static method in class smile.clustering.KModes
Fits k-modes clustering.
fit(int, int[][], int[]) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
fit(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
fit(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
fit(Classifier<T>, T[], int[]) - Static method in class smile.classification.PlattScaling
Fits Platt Scaling to estimate posteriori probabilities.
fit(BBDTree, double[][], int, int, double) - Static method in class smile.clustering.KMeans
Partitions data into k clusters.
fit(Linkage) - Static method in class smile.clustering.HierarchicalClustering
Fits the Agglomerative Hierarchical Clustering with given linkage method, which includes proximity matrix.
fit(DataFrame) - Static method in class smile.feature.transform.WinsorScaler
Fits the data transformation with 5% lower limit and 95% upper limit.
fit(DataFrame, double, double, String...) - Static method in class smile.feature.imputation.SimpleImputer
Fits the missing value imputation values.
fit(DataFrame, double, double, String...) - Static method in class smile.feature.transform.WinsorScaler
Fits the data transformation.
fit(DataFrame, int, String...) - Static method in class smile.feature.extraction.ProbabilisticPCA
Fits probabilistic principal component analysis.
fit(DataFrame, String) - Static method in class smile.feature.selection.InformationValue
Calculates the information value.
fit(DataFrame, String) - Static method in class smile.feature.selection.SignalNoiseRatio
Calculates the signal noise ratio of numeric variables.
fit(DataFrame, String) - Static method in class smile.feature.selection.SumSquaresRatio
Calculates the sum squares ratio of numeric variables.
fit(DataFrame, String...) - Static method in class smile.feature.extraction.PCA
Fits principal component analysis with covariance matrix.
fit(DataFrame, String...) - Static method in class smile.feature.imputation.SimpleImputer
Fits the missing value imputation values.
fit(DataFrame, String...) - Static method in class smile.feature.transform.MaxAbsScaler
Fits the data transformation.
fit(DataFrame, String...) - Static method in class smile.feature.transform.RobustStandardizer
Fits the data transformation.
fit(DataFrame, String...) - Static method in class smile.feature.transform.Scaler
Fits the data transformation.
fit(DataFrame, String...) - Static method in class smile.feature.transform.Standardizer
Fits the data transformation.
fit(DataFrame, String, int) - Static method in class smile.feature.selection.InformationValue
Calculates the information value.
fit(DataFrame, Function<String, String[]>, int, String...) - Static method in class smile.feature.extraction.BagOfWords
Learns a vocabulary dictionary of top-k frequent tokens in the raw documents.
fit(DataFrame, Distance<Tuple>, int) - Static method in class smile.feature.imputation.KMedoidsImputer
Fits the missing value imputation values.
fit(DataFrame, MercerKernel<double[]>, int, double, String...) - Static method in class smile.feature.extraction.KernelPCA
Fits kernel principal component analysis.
fit(DataFrame, MercerKernel<double[]>, int, String...) - Static method in class smile.feature.extraction.KernelPCA
Fits kernel principal component analysis.
fit(Formula, DataFrame) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(Formula, DataFrame) - Method in interface smile.classification.DataFrameClassifier.Trainer
Fits a classification model with the default hyper-parameters.
fit(Formula, DataFrame) - Static method in class smile.classification.DecisionTree
Fits a classification tree.
fit(Formula, DataFrame) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(Formula, DataFrame) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame) - Method in interface smile.regression.DataFrameRegression.Trainer
Fits a regression model with the default hyper-parameters.
fit(Formula, DataFrame) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame) - Static method in class smile.regression.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame) - Static method in class smile.regression.RegressionTree
Fits a regression tree.
fit(Formula, DataFrame) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, double) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, double) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, double[], double[], double[]) - Static method in class smile.regression.RidgeRegression
Fits a generalized ridge regression model that minimizes a weighted least squares criterion augmented with a generalized ridge penalty:
fit(Formula, DataFrame, double, double) - Static method in class smile.regression.ElasticNet
Fits an Elastic Net model.
fit(Formula, DataFrame, double, double, double, int) - Static method in class smile.regression.ElasticNet
Fits an Elastic Net model.
fit(Formula, DataFrame, double, double, int) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, int, int, int) - Static method in class smile.regression.RegressionTree
Fits a regression tree.
fit(Formula, DataFrame, int, int, int, int) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(Formula, DataFrame, int, int, int, int, double, double) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(Formula, DataFrame, int, int, int, int, int, double) - Static method in class smile.regression.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame, int, int, int, int, int, double, LongStream) - Static method in class smile.regression.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[]) - Static method in class smile.classification.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[], LongStream) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, String, boolean, boolean) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary data frame classifiers.
fit(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary data frame classifiers.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(Formula, DataFrame, Properties) - Method in interface smile.classification.DataFrameClassifier.Trainer
Fits a classification model.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.DecisionTree
Fits a classification tree.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, Properties) - Method in interface smile.regression.DataFrameRegression.Trainer
Fits a regression model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.ElasticNet
Fits an Elastic Net model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RegressionTree
Fits a regression tree.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, Loss, int, int, int, int, double, double) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame, SplitRule, int, int, int) - Static method in class smile.classification.DecisionTree
Fits a classification tree.
fit(Formula, DataFrame, Model) - Static method in class smile.glm.GLM
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
fit(Formula, DataFrame, Model, double, int) - Static method in class smile.glm.GLM
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
fit(Formula, DataFrame, Model, Properties) - Static method in class smile.glm.GLM
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
fit(SparseDataset, int[]) - Static method in class smile.classification.SparseLogisticRegression
Fits logistic regression.
fit(SparseDataset, int[], double, double, int) - Static method in class smile.classification.SparseLogisticRegression
Fits logistic regression.
fit(SparseDataset, int[], Properties) - Static method in class smile.classification.SparseLogisticRegression
Fits logistic regression.
fit(Tuple[][], int[][]) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(Tuple[][], int[][], int, int, int, int, double) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(Tuple[][], int[][], Properties) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(BaseVector<?, ?, ?>) - Static method in class smile.classification.ClassLabels
Fits the class label mapping.
fit(Matrix, int) - Static method in class smile.clustering.SpectralClustering
Spectral graph clustering.
fit(Matrix, int, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral graph clustering.
fit(SparseArray[], double[], int, double, double, double) - Static method in class smile.regression.SVM
Fits a linear epsilon-SVR of sparse data.
fit(SparseArray[], int) - Static method in class smile.clustering.SIB
Clustering data into k clusters up to 100 iterations.
fit(SparseArray[], int[], int, double, double) - Static method in class smile.classification.SVM
Fits a binary linear SVM.
fit(SparseArray[], int[], int, double, double, int) - Static method in class smile.classification.SVM
Fits a binary linear SVM.
fit(SparseArray[], int, int) - Static method in class smile.clustering.SIB
Clustering data into k clusters.
fit(T[]) - Method in class smile.base.svm.OCSVM
Fits an one-class support vector machine.
fit(T[][], int[][], Function<T, Tuple>) - Static method in class smile.sequence.CRFLabeler
Fits a CRF model.
fit(T[][], int[][], Function<T, Tuple>, int, int, int, int, double) - Static method in class smile.sequence.CRFLabeler
Fits a CRF.
fit(T[][], int[][], Function<T, Tuple>, Properties) - Static method in class smile.sequence.CRFLabeler
Fits a CRF model.
fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMM
Fits an HMM by maximum likelihood estimation.
fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMMLabeler
Fits an HMM by maximum likelihood estimation.
fit(T[], double[]) - Method in class smile.base.svm.SVR
Fits an epsilon support vector regression model.
fit(T[], double[]) - Method in interface smile.regression.Regression.Trainer
Fits a regression model with the default hyper-parameters.
fit(T[], double[], Properties) - Method in interface smile.regression.Regression.Trainer
Fits a regression model.
fit(T[], double[], RBF<T>[]) - Static method in class smile.regression.RBFNetwork
Fits a RBF network.
fit(T[], double[], RBF<T>[], boolean) - Static method in class smile.regression.RBFNetwork
Fits a RBF network.
fit(T[], double[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model by the method of subset of regressors.
fit(T[], double[], MercerKernel<T>, double, boolean, double, int) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model.
fit(T[], double[], MercerKernel<T>, double, double, double) - Static method in class smile.regression.SVM
Fits an epsilon-SVR.
fit(T[], double[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model.
fit(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model by the method of subset of regressors.
fit(T[], double[], T[], MercerKernel<T>, double, boolean) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model by the method of subset of regressors.
fit(T[], double[], T[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model by the method of subset of regressors.
fit(T[], int[]) - Method in interface smile.classification.Classifier.Trainer
Fits a classification model with the default hyper-parameters.
fit(T[], int[], int) - Method in class smile.base.svm.LASVM
Trains the model.
fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary classifiers.
fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary classifiers.
fit(T[], int[], int, Distance<T>) - Static method in class smile.classification.KNN
Fits the K-NN classifier.
fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary classifiers.
fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary classifiers.
fit(T[], int[], Properties) - Method in interface smile.classification.Classifier.Trainer
Fits a classification model.
fit(T[], int[], RBF<T>[]) - Static method in class smile.classification.RBFNetwork
Fits a RBF network.
fit(T[], int[], RBF<T>[], boolean) - Static method in class smile.classification.RBFNetwork
Fits a RBF network.
fit(T[], int[], Distance<T>) - Static method in class smile.classification.KNN
Fits the 1-NN classifier.
fit(T[], int[], MercerKernel<T>, double, double) - Static method in class smile.classification.SVM
Fits a binary SVM.
fit(T[], int[], MercerKernel<T>, double, double, int) - Static method in class smile.classification.SVM
Fits a binary SVM.
fit(T[], Distance<T>, int) - Static method in class smile.clustering.CLARANS
Clustering data into k clusters.
fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data.
fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.MEC
Clustering the data.
fit(T[], Distance<T>, int, int) - Static method in class smile.clustering.CLARANS
Constructor.
fit(T[], Metric<T>, int) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(T[], Metric<T>, int, double) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(T[], Metric<T>, int, int) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(T[], MercerKernel<T>) - Static method in class smile.anomaly.SVM
Fits an one-class SVM.
fit(T[], MercerKernel<T>, double, double) - Static method in class smile.anomaly.SVM
Fits an one-class SVM.
fit(T[], MercerKernel<T>, int) - Static method in class smile.manifold.KPCA
Fits kernel principal component analysis.
fit(T[], MercerKernel<T>, int, double) - Static method in class smile.manifold.KPCA
Fits kernel principal component analysis.
fit(T[], RNNSearch<T, T>, int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data.
fit(T[], RNNSearch<T, T>, int, double, int[], double) - Static method in class smile.clustering.MEC
Clustering the data.
fitness(double[][], double[], double[][], double[], RegressionMetric, BiFunction<double[][], double[], Regression<double[]>>) - Static method in class smile.feature.selection.GAFE
Returns the fitness of the regression model.
fitness(double[][], int[], double[][], int[], ClassificationMetric, BiFunction<double[][], int[], Classifier<double[]>>) - Static method in class smile.feature.selection.GAFE
Returns the fitness of the classification model.
fitness(String, DataFrame, DataFrame, ClassificationMetric, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.feature.selection.GAFE
Returns the fitness of the classification model.
fitness(String, DataFrame, DataFrame, RegressionMetric, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.feature.selection.GAFE
Returns the fitness of the regression model.
fittedValues() - Method in class smile.glm.GLM
Returns the fitted mean values.
fittedValues() - Method in class smile.regression.LinearModel
Returns the fitted values.
fittedValues() - Method in class smile.timeseries.AR
Returns the fitted values.
fittedValues() - Method in class smile.timeseries.ARMA
Returns the fitted values.
fitTime - Variable in class smile.validation.ClassificationMetrics
The time in milliseconds of fitting the model.
fitTime - Variable in class smile.validation.RegressionMetrics
The time in milliseconds of fitting the model.
FLD - Class in smile.classification
Fisher's linear discriminant.
FLD(double[], double[][], Matrix) - Constructor for class smile.classification.FLD
Constructor.
FLD(double[], double[][], Matrix, IntSet) - Constructor for class smile.classification.FLD
Constructor.
forecast() - Method in class smile.timeseries.AR
Returns 1-step ahead forecast.
forecast() - Method in class smile.timeseries.ARMA
Returns 1-step ahead forecast.
forecast(int) - Method in class smile.timeseries.AR
Returns l-step ahead forecast.
forecast(int) - Method in class smile.timeseries.ARMA
Returns l-step ahead forecast.
formula - Variable in class smile.base.cart.CART
The model formula.
formula - Variable in class smile.glm.GLM
The symbolic description of the model to be fitted.
formula() - Method in class smile.classification.AdaBoost
 
formula() - Method in interface smile.classification.DataFrameClassifier
Returns the formula associated with the model.
formula() - Method in class smile.classification.DecisionTree
Returns null if the tree is part of ensemble algorithm.
formula() - Method in class smile.classification.GradientTreeBoost
 
formula() - Method in class smile.classification.RandomForest
 
formula() - Method in interface smile.feature.importance.TreeSHAP
Returns the formula associated with the model.
formula() - Method in interface smile.regression.DataFrameRegression
Returns the model formula.
formula() - Method in class smile.regression.GradientTreeBoost
 
formula() - Method in class smile.regression.LinearModel
 
formula() - Method in class smile.regression.RandomForest
 
formula() - Method in class smile.regression.RegressionTree
Returns null if the tree is part of ensemble algorithm.
FPGrowth - Class in smile.association
Frequent item set mining based on the FP-growth (frequent pattern growth) algorithm, which employs an extended prefix-tree (FP-tree) structure to store the database in a compressed form.
FPTree - Class in smile.association
FP-tree data structure used in FP-growth (frequent pattern growth) algorithm for frequent item set mining.
FScore - Class in smile.validation.metric
The F-score (or F-measure) considers both the precision and the recall of the test to compute the score.
FScore() - Constructor for class smile.validation.metric.FScore
Constructor of F1 score.
FScore(double) - Constructor for class smile.validation.metric.FScore
Constructor of general F-score.
ftest() - Method in class smile.regression.LinearModel
Returns the F-statistic of goodness-of-fit.

G

g(double[], double[]) - Method in interface smile.base.mlp.ActivationFunction
The gradient function.
g(double[], double[]) - Method in interface smile.deep.activation.ActivationFunction
The gradient function.
g(double[], double[]) - Method in class smile.deep.activation.LeakyReLU
 
g(double[], double[]) - Method in class smile.deep.activation.ReLU
 
g(double[], double[]) - Method in class smile.deep.activation.Sigmoid
 
g(double[], double[]) - Method in class smile.deep.activation.Softmax
 
g(double[], double[]) - Method in class smile.deep.activation.Tanh
 
g(Cost, double[], double[]) - Method in enum class smile.base.mlp.OutputFunction
The gradient function.
GAFE - Class in smile.feature.selection
Genetic algorithm based feature selection.
GAFE() - Constructor for class smile.feature.selection.GAFE
Constructor.
GAFE(Selection, int, Crossover, double, double) - Constructor for class smile.feature.selection.GAFE
Constructor.
Gaussian(double, double) - Static method in interface smile.vq.Neighborhood
Returns Gaussian neighborhood function.
GaussianProcessRegression<T> - Class in smile.regression
Gaussian Process for Regression.
GaussianProcessRegression(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.GaussianProcessRegression
Constructor.
GaussianProcessRegression(MercerKernel<T>, T[], double[], double, double, double) - Constructor for class smile.regression.GaussianProcessRegression
Constructor.
GaussianProcessRegression(MercerKernel<T>, T[], double[], double, double, double, Matrix.Cholesky, double) - Constructor for class smile.regression.GaussianProcessRegression
Constructor.
GaussianProcessRegression.JointPrediction - Class in smile.regression
The joint prediction of multiple data points.
getClipNorm() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the gradient clipping norm.
getClipValue() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the gradient clipping value.
getExtensionLevel() - Method in class smile.anomaly.IsolationForest
Returns the extension level.
getInitialStateProbabilities() - Method in class smile.sequence.HMM
Returns the initial state probabilities.
getInputSize() - Method in class smile.base.mlp.Layer
Returns the dimension of input vector (not including bias value).
getLearningRate() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the learning rate.
getLearningRate() - Method in class smile.classification.LogisticRegression
Returns the learning rate of stochastic gradient descent.
getLearningRate() - Method in class smile.classification.Maxent
Returns the learning rate of stochastic gradient descent.
getLearningRate() - Method in class smile.classification.SparseLogisticRegression
Returns the learning rate of stochastic gradient descent.
getMomentum() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the momentum factor.
getOutputSize() - Method in class smile.base.mlp.Layer
Returns the dimension of output vector.
getProjection() - Method in class smile.classification.FLD
Returns the projection matrix W.
getProjection(double) - Method in class smile.feature.extraction.PCA
Returns the projection with top principal components that contain (more than) the given percentage of variance.
getProjection(int) - Method in class smile.feature.extraction.PCA
Returns the projection with given number of principal components.
getStateTransitionProbabilities() - Method in class smile.sequence.HMM
Returns the state transition probabilities.
getSymbolEmissionProbabilities() - Method in class smile.sequence.HMM
Returns the symbol emission probabilities.
getWeightDecay() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the weight decay factor.
GHA - Class in smile.feature.extraction
Generalized Hebbian Algorithm.
GHA(double[][], TimeFunction, String...) - Constructor for class smile.feature.extraction.GHA
Constructor.
GHA(int, int, TimeFunction, String...) - Constructor for class smile.feature.extraction.GHA
Constructor.
GINI - Enum constant in enum class smile.base.cart.SplitRule
Used by the CART algorithm, Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it were randomly labeled according to the distribution of labels in the subset.
GLM - Class in smile.glm
Generalized linear models.
GLM(Formula, String[], Model, double[], double, double, double, double[], double[], double[][]) - Constructor for class smile.glm.GLM
Constructor.
GMeans - Class in smile.clustering
G-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters by normality test.
GMeans(double, double[][], int[]) - Constructor for class smile.clustering.GMeans
Constructor.
gradient() - Method in class smile.base.mlp.Layer
Returns the output gradient vector.
GradientTreeBoost - Class in smile.classification
Gradient boosting for classification.
GradientTreeBoost - Class in smile.regression
Gradient boosting for regression.
GradientTreeBoost(Formula, RegressionTree[][], double, double[]) - Constructor for class smile.classification.GradientTreeBoost
Constructor of multi-class.
GradientTreeBoost(Formula, RegressionTree[][], double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
Constructor of multi-class.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.classification.GradientTreeBoost
Constructor of binary class.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.regression.GradientTreeBoost
Constructor.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
Constructor of binary class.
graph - Variable in class smile.manifold.IsoMap
The nearest neighbor graph.
graph - Variable in class smile.manifold.LaplacianEigenmap
Nearest neighbor graph.
graph - Variable in class smile.manifold.LLE
Nearest neighbor graph.
graph - Variable in class smile.manifold.UMAP
The nearest neighbor graph.
grid() - Method in class smile.hpo.Hyperparameters
Generates a stream of hyperparameters for grid search.
GrowingNeuralGas - Class in smile.vq
Growing Neural Gas.
GrowingNeuralGas(int) - Constructor for class smile.vq.GrowingNeuralGas
Constructor.
GrowingNeuralGas(int, double, double, int, int, double, double) - Constructor for class smile.vq.GrowingNeuralGas
Constructor.

H

hashCode() - Method in class smile.association.AssociationRule
 
hashCode() - Method in class smile.association.ItemSet
 
HashEncoder - Class in smile.feature.extraction
Feature hashing, also known as the hashing trick, is a fast and space-efficient way of vectorizing features, i.e.
HashEncoder(Function<String, String[]>, int) - Constructor for class smile.feature.extraction.HashEncoder
Constructor.
HashEncoder(Function<String, String[]>, int, boolean) - Constructor for class smile.feature.extraction.HashEncoder
Constructor.
hasMissing(Tuple) - Static method in class smile.feature.imputation.SimpleImputer
Return true if the tuple x has missing values.
height() - Method in class smile.clustering.HierarchicalClustering
Returns a set of n-1 non-decreasing real values, which are the clustering height, i.e., the value of the criterion associated with the clustering method for the particular agglomeration.
HiddenLayer - Class in smile.base.mlp
A hidden layer in the neural network.
HiddenLayer(int, int, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayer
Constructor.
HiddenLayerBuilder - Class in smile.base.mlp
The builder of hidden layers.
HiddenLayerBuilder(int, double, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayerBuilder
Constructor.
HierarchicalClustering - Class in smile.clustering
Agglomerative Hierarchical Clustering.
HierarchicalClustering(int[][], double[]) - Constructor for class smile.clustering.HierarchicalClustering
Constructor.
HMM - Class in smile.sequence
First-order Hidden Markov Model.
HMM(double[], Matrix, Matrix) - Constructor for class smile.sequence.HMM
Constructor.
HMMLabeler<T> - Class in smile.sequence
First-order Hidden Markov Model sequence labeler.
HMMLabeler(HMM, ToIntFunction<T>) - Constructor for class smile.sequence.HMMLabeler
Constructor.
huber(double) - Static method in interface smile.base.cart.Loss
Huber loss function for M-regression, which attempts resistance to long-tailed error distributions and outliers while maintaining high efficiency for normally distributed errors.
Huber - Enum constant in enum class smile.base.cart.Loss.Type
Huber loss function for M-regression, which attempts resistance to long-tailed error distributions and outliers while maintaining high efficiency for normally distributed errors.
Hyperparameters - Class in smile.hpo
Hyperparameter configuration.
Hyperparameters() - Constructor for class smile.hpo.Hyperparameters
Constructor.

I

importance - Variable in class smile.base.cart.CART
Variable importance.
importance() - Method in class smile.base.cart.CART
Returns the variable importance.
importance() - Method in class smile.classification.AdaBoost
Returns the variable importance.
importance() - Method in class smile.classification.GradientTreeBoost
Returns the variable importance.
importance() - Method in class smile.classification.RandomForest
Returns the variable importance.
importance() - Method in class smile.regression.GradientTreeBoost
Returns the variable importance.
importance() - Method in class smile.regression.RandomForest
Returns the variable importance.
impurity() - Method in class smile.base.cart.RegressionNode
Returns the residual sum of squares.
impurity(LeafNode) - Method in class smile.base.cart.CART
Returns the impurity of node.
impurity(LeafNode) - Method in class smile.classification.DecisionTree
 
impurity(LeafNode) - Method in class smile.regression.RegressionTree
 
impurity(SplitRule) - Method in class smile.base.cart.DecisionNode
Returns the impurity of node.
impurity(SplitRule, int, int[]) - Static method in class smile.base.cart.DecisionNode
Returns the impurity of samples.
impute(double[][]) - Static method in class smile.feature.imputation.SimpleImputer
Impute the missing values with column averages.
impute(double[][], int, int) - Static method in interface smile.feature.imputation.SVDImputer
Impute missing values in the dataset.
index - Variable in class smile.base.cart.CART
An index of samples to their original locations in training dataset.
index - Variable in class smile.manifold.IsoMap
The original sample index.
index - Variable in class smile.manifold.LaplacianEigenmap
The original sample index.
index - Variable in class smile.manifold.LLE
The original sample index.
index - Variable in class smile.manifold.UMAP
The original sample index.
indexOf(int[]) - Method in class smile.classification.ClassLabels
Maps the class labels to index.
InformationValue - Class in smile.feature.selection
Information Value (IV) measures the predictive strength of a feature for a binary dependent variable.
InformationValue(String, double, double[], double[]) - Constructor for class smile.feature.selection.InformationValue
Constructor.
input(int) - Static method in class smile.base.mlp.Layer
Returns an input layer.
input(int, double) - Static method in class smile.base.mlp.Layer
Returns an input layer.
InputLayer - Class in smile.base.mlp
An input layer in the neural network.
InputLayer(int) - Constructor for class smile.base.mlp.InputLayer
Constructor.
InputLayer(int, double) - Constructor for class smile.base.mlp.InputLayer
Constructor.
instance - Static variable in class smile.validation.metric.Accuracy
Default instance.
instance - Static variable in class smile.validation.metric.AdjustedRandIndex
Default instance.
instance - Static variable in class smile.validation.metric.AUC
Default instance.
instance - Static variable in class smile.validation.metric.Error
Default instance.
instance - Static variable in class smile.validation.metric.Fallout
Default instance.
instance - Static variable in class smile.validation.metric.FDR
Default instance.
instance - Static variable in class smile.validation.metric.LogLoss
Default instance.
instance - Static variable in class smile.validation.metric.MAD
Default instance.
instance - Static variable in class smile.validation.metric.MatthewsCorrelation
Default instance.
instance - Static variable in class smile.validation.metric.MSE
Default instance.
instance - Static variable in class smile.validation.metric.MutualInformation
Default instance.
instance - Static variable in class smile.validation.metric.Precision
Default instance.
instance - Static variable in class smile.validation.metric.R2
Default instance.
instance - Static variable in class smile.validation.metric.RandIndex
Default instance.
instance - Static variable in class smile.validation.metric.Recall
Default instance.
instance - Static variable in class smile.validation.metric.RMSE
Default instance.
instance - Static variable in class smile.validation.metric.RSS
Default instance.
instance - Static variable in class smile.validation.metric.Sensitivity
Default instance.
instance - Static variable in class smile.validation.metric.Specificity
Default instance.
intercept() - Method in class smile.base.svm.KernelMachine
Returns the intercept.
intercept() - Method in class smile.regression.LinearModel
Returns the intercept.
intercept() - Method in class smile.timeseries.AR
Returns the intercept.
intercept() - Method in class smile.timeseries.ARMA
Returns the intercept.
intercept(double[]) - Method in interface smile.base.cart.Loss
Returns the intercept of model.
InternalNode - Class in smile.base.cart
An internal node in CART.
InternalNode(int, double, double, Node, Node) - Constructor for class smile.base.cart.InternalNode
Constructor.
invlink(double) - Method in interface smile.glm.model.Model
The inverse of link function (aka the mean function).
isNormalized() - Method in class smile.classification.RBFNetwork
Returns true if the model is normalized.
isNormalized() - Method in class smile.regression.RBFNetwork
Returns true if the model is normalized.
IsolationForest - Class in smile.anomaly
Isolation forest is an unsupervised learning algorithm for anomaly detection that works on the principle of isolating anomalies.
IsolationForest(int, int, IsolationTree...) - Constructor for class smile.anomaly.IsolationForest
Constructor.
IsolationTree - Class in smile.anomaly
Isolation tree.
IsolationTree(List<double[]>, int, int) - Constructor for class smile.anomaly.IsolationTree
Constructor.
IsoMap - Class in smile.manifold
Isometric feature mapping.
IsoMap(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.IsoMap
Constructor.
IsotonicMDS - Class in smile.manifold
Kruskal's non-metric MDS.
IsotonicMDS(double, double[][]) - Constructor for class smile.manifold.IsotonicMDS
Constructor.
IsotonicRegressionScaling - Class in smile.classification
A method to calibrate decision function value to probability.
IsotonicRegressionScaling(double[], double[]) - Constructor for class smile.classification.IsotonicRegressionScaling
Constructor.
items - Variable in class smile.association.ItemSet
The set of items.
ItemSet - Class in smile.association
A set of items.
ItemSet(int[], int) - Constructor for class smile.association.ItemSet
Constructor.
iterator() - Method in class smile.association.ARM
 
iterator() - Method in class smile.association.FPGrowth
 
iv - Variable in class smile.feature.selection.InformationValue
Information value.

J

joint(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / H(y1, y2).
JOINT - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
I(y1, y2) / H(y1, y2)
JOINT - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with max normalization.
JointPrediction(T[], double[], double[], Matrix) - Constructor for class smile.regression.GaussianProcessRegression.JointPrediction
Constructor.

K

k - Variable in class smile.classification.ClassLabels
The number of classes.
k - Variable in class smile.clustering.PartitionClustering
The number of clusters.
kernel - Variable in class smile.regression.GaussianProcessRegression
The covariance/kernel function.
kernel() - Method in class smile.base.svm.KernelMachine
Returns the kernel function.
KernelMachine<T> - Class in smile.base.svm
Kernel machines.
KernelMachine<T> - Class in smile.regression
The learning methods building on kernels.
KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.base.svm.KernelMachine
Constructor.
KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.regression.KernelMachine
Constructor.
KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.base.svm.KernelMachine
Constructor.
KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.KernelMachine
Constructor.
KernelPCA - Class in smile.feature.extraction
Kernel PCA transform.
KernelPCA(KPCA<double[]>, String...) - Constructor for class smile.feature.extraction.KernelPCA
Constructor.
KMeans - Class in smile.clustering
K-Means clustering.
KMeans(double, double[][], int[]) - Constructor for class smile.clustering.KMeans
Constructor.
KMedoidsImputer - Class in smile.feature.imputation
Missing value imputation by K-Medoids clustering.
KMedoidsImputer(CLARANS<Tuple>) - Constructor for class smile.feature.imputation.KMedoidsImputer
Constructor.
KModes - Class in smile.clustering
K-Modes clustering.
KModes(double, int[][], int[]) - Constructor for class smile.clustering.KModes
Constructor.
KNN<T> - Class in smile.classification
K-nearest neighbor classifier.
KNN(KNNSearch<T, T>, int[], int) - Constructor for class smile.classification.KNN
Constructor.
KNNImputer - Class in smile.feature.imputation
Missing value imputation with k-nearest neighbors.
KNNImputer(DataFrame, int, String...) - Constructor for class smile.feature.imputation.KNNImputer
Constructor with Euclidean distance on selected columns.
KNNImputer(DataFrame, int, Distance<Tuple>) - Constructor for class smile.feature.imputation.KNNImputer
Constructor.
kpca - Variable in class smile.feature.extraction.KernelPCA
Kernel PCA.
KPCA<T> - Class in smile.manifold
Kernel principal component analysis.
KPCA(T[], MercerKernel<T>, double[], double, double[][], double[], Matrix) - Constructor for class smile.manifold.KPCA
Constructor.

L

L - Variable in class smile.regression.GaussianProcessRegression
The log marginal likelihood, which may be not available (NaN) when the model is fit with approximate methods.
L - Variable in class smile.vq.BIRCH
The number of CF entries in the leaf nodes.
L_INF - Enum constant in enum class smile.feature.transform.Normalizer.Norm
Normalize L-infinity vector norm.
L1 - Enum constant in enum class smile.feature.transform.Normalizer.Norm
Normalize L1 vector norm.
L2 - Enum constant in enum class smile.feature.transform.Normalizer.Norm
Normalize L2 vector norm.
lad() - Static method in interface smile.base.cart.Loss
Least absolute deviation regression loss.
lambda - Variable in class smile.base.mlp.MultilayerPerceptron
The L2 regularization factor, which is also the weight decay factor.
LaplacianEigenmap - Class in smile.manifold
Laplacian Eigenmap.
LaplacianEigenmap(double, int[], double[][], AdjacencyList) - Constructor for class smile.manifold.LaplacianEigenmap
Constructor with Gaussian kernel.
LaplacianEigenmap(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.LaplacianEigenmap
Constructor with discrete weights.
LASSO - Class in smile.regression
Lasso (least absolute shrinkage and selection operator) regression.
LASSO() - Constructor for class smile.regression.LASSO
 
LASVM<T> - Class in smile.base.svm
LASVM is an approximate SVM solver that uses online approximation.
LASVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.LASVM
Constructor.
LASVM(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.LASVM
Constructor.
lattice(int, int, double[][]) - Static method in class smile.vq.SOM
Creates a lattice of which the weight vectors are randomly selected from samples.
Layer - Class in smile.base.mlp
A layer in the neural network.
Layer(int, int) - Constructor for class smile.base.mlp.Layer
Constructor.
Layer(int, int, double) - Constructor for class smile.base.mlp.Layer
Constructor.
Layer(Matrix, double[]) - Constructor for class smile.base.mlp.Layer
Constructor.
Layer(Matrix, double[], double) - Constructor for class smile.base.mlp.Layer
Constructor.
LayerBuilder - Class in smile.base.mlp
The builder of layers.
LayerBuilder(int, double) - Constructor for class smile.base.mlp.LayerBuilder
Constructor.
LDA - Class in smile.classification
Linear discriminant analysis.
LDA(double[], double[][], double[], Matrix) - Constructor for class smile.classification.LDA
Constructor.
LDA(double[], double[][], double[], Matrix, IntSet) - Constructor for class smile.classification.LDA
Constructor.
LeafNode - Class in smile.base.cart
A leaf node in decision tree.
LeafNode(int) - Constructor for class smile.base.cart.LeafNode
Constructor.
leaky() - Static method in interface smile.base.mlp.ActivationFunction
The leaky rectifier activation function max(x, 0.01x).
leaky() - Static method in interface smile.deep.activation.ActivationFunction
Returns the leaky rectifier activation function max(x, 0.01x).
leaky(double) - Static method in interface smile.base.mlp.ActivationFunction
The leaky rectifier activation function max(x, ax) where 0 <= a < 1.
leaky(double) - Static method in interface smile.deep.activation.ActivationFunction
Returns the leaky rectifier activation function max(x, ax) where 0 <= a < 1.
leaky(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with leaky rectified linear activation function.
leaky(int, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with leaky rectified linear activation function.
leaky(int, double, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with leaky rectified linear activation function.
LeakyReLU - Class in smile.deep.activation
The leaky rectifier activation function max(x, ax) where 0 <= a < 1.
LeakyReLU(double) - Constructor for class smile.deep.activation.LeakyReLU
Constructor.
learningRate - Variable in class smile.base.mlp.MultilayerPerceptron
The learning rate.
LeastAbsoluteDeviation - Enum constant in enum class smile.base.cart.Loss.Type
Least absolute deviation regression.
LeastSquares - Enum constant in enum class smile.base.cart.Loss.Type
Least squares regression.
leaves() - Method in class smile.base.cart.InternalNode
 
leaves() - Method in class smile.base.cart.LeafNode
 
leaves() - Method in interface smile.base.cart.Node
Returns the number of leaf nodes in the subtree.
leverage - Variable in class smile.association.AssociationRule
The difference between the probability of the rule and the expected probability if the items were statistically independent.
lift - Variable in class smile.association.AssociationRule
How many times more often antecedent and consequent occur together than expected if they were statistically independent.
LIKELIHOOD - Enum constant in enum class smile.base.mlp.Cost
Negative likelihood (or log-likelihood) cost.
linear() - Static method in interface smile.base.mlp.ActivationFunction
Linear/Identity activation function.
linear(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with linear activation function.
linear(int, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with linear activation function.
LINEAR - Enum constant in enum class smile.base.mlp.OutputFunction
Linear/Identity function.
LinearKernelMachine - Class in smile.base.svm
Linear kernel machine.
LinearKernelMachine(double[], double) - Constructor for class smile.base.svm.LinearKernelMachine
Constructor.
LinearModel - Class in smile.regression
Linear model.
LinearModel(Formula, StructType, Matrix, double[], double[], double) - Constructor for class smile.regression.LinearModel
Constructor.
link(double) - Method in interface smile.glm.model.Model
The link function.
Linkage - Class in smile.clustering.linkage
A measure of dissimilarity between clusters (i.e.
Linkage(double[][]) - Constructor for class smile.clustering.linkage.Linkage
Constructor.
Linkage(int, float[]) - Constructor for class smile.clustering.linkage.Linkage
Constructor.
ljung(double[], int) - Static method in class smile.timeseries.BoxTest
Box-Pierce test.
Ljung_Box - Enum constant in enum class smile.timeseries.BoxTest.Type
Ljung-Box test.
LLE - Class in smile.manifold
Locally Linear Embedding.
LLE(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.LLE
Constructor.
lloyd(double[][], int) - Static method in class smile.clustering.KMeans
The implementation of Lloyd algorithm as a benchmark.
lloyd(double[][], int, int, double) - Static method in class smile.clustering.KMeans
The implementation of Lloyd algorithm as a benchmark.
loadings() - Method in class smile.feature.extraction.PCA
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
loadings() - Method in class smile.feature.extraction.ProbabilisticPCA
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
log() - Static method in interface smile.glm.model.Poisson
log link function.
logistic(int[]) - Static method in interface smile.base.cart.Loss
Logistic regression loss for binary classification.
logistic(int, int, int[], double[][]) - Static method in interface smile.base.cart.Loss
Logistic regression loss for multi-class classification.
LogisticRegression - Class in smile.classification
Logistic regression.
LogisticRegression(int, double, double, IntSet) - Constructor for class smile.classification.LogisticRegression
Constructor.
LogisticRegression.Binomial - Class in smile.classification
Binomial logistic regression.
LogisticRegression.Multinomial - Class in smile.classification
Multinomial logistic regression.
logit() - Static method in interface smile.glm.model.Bernoulli
logit link function.
logit(int[]) - Static method in interface smile.glm.model.Binomial
logit link function.
loglikelihood() - Method in class smile.classification.LogisticRegression
Returns the log-likelihood of model.
loglikelihood() - Method in class smile.classification.Maxent
Returns the log-likelihood of model.
loglikelihood() - Method in class smile.classification.SparseLogisticRegression
Returns the log-likelihood of model.
logLikelihood - Variable in class smile.glm.GLM
Log-likelihood.
logLikelihood() - Method in class smile.glm.GLM
Returns the log-likelihood of model.
logLikelihood(double[], double[]) - Method in interface smile.glm.model.Model
The log-likelihood function.
logloss - Variable in class smile.validation.ClassificationMetrics
The log loss on validation data.
LogLoss - Class in smile.validation.metric
Log loss is a evaluation metric for binary classifiers and it is sometimes the optimization objective as well in case of logistic regression and neural networks.
LogLoss() - Constructor for class smile.validation.metric.LogLoss
 
logp(int[]) - Method in class smile.sequence.HMM
Returns the logarithm probability of an observation sequence given this HMM.
logp(int[], int[]) - Method in class smile.sequence.HMM
Returns the log joint probability of an observation sequence along a state sequence given this HMM.
logp(T[]) - Method in class smile.sequence.HMMLabeler
Returns the logarithm probability of an observation sequence.
logp(T[], int[]) - Method in class smile.sequence.HMMLabeler
Returns the log joint probability of an observation sequence along a state sequence.
LOOCV - Interface in smile.validation
Leave-one-out cross validation.
Loss - Interface in smile.base.cart
Regression loss function.
Loss.Type - Enum Class in smile.base.cart
The type of loss.
ls() - Static method in interface smile.base.cart.Loss
Least squares regression loss.
ls(double[]) - Static method in interface smile.base.cart.Loss
Least squares regression loss.

M

ma() - Method in class smile.timeseries.ARMA
Returns the linear coefficients of MA(q).
mad - Variable in class smile.validation.RegressionMetrics
The mean absolute deviation on validation data.
MAD - Class in smile.validation.metric
Mean absolute deviation error.
MAD() - Constructor for class smile.validation.metric.MAD
 
mask - Variable in class smile.base.mlp.Layer
The dropout mask.
matrix - Variable in class smile.validation.metric.ConfusionMatrix
Confusion matrix.
MatthewsCorrelation - Class in smile.validation.metric
Matthews correlation coefficient.
MatthewsCorrelation() - Constructor for class smile.validation.metric.MatthewsCorrelation
 
max(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (max(H(y1), H(y2)) - E(MI)).
max(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / max(H(y1), H(y2)).
MAX - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
I(y1, y2) / max(H(y1), H(y2))
MAX - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
I(y1, y2) / max(H(y1), H(y2))
MAX - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with max normalization.
MAX - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with max normalization.
MaxAbsScaler - Class in smile.feature.transform
Scales each feature by its maximum absolute value.
MaxAbsScaler() - Constructor for class smile.feature.transform.MaxAbsScaler
 
maxDepth - Variable in class smile.base.cart.CART
The maximum depth of the tree.
Maxent - Class in smile.classification
Maximum Entropy Classifier.
Maxent(int, double, double, IntSet) - Constructor for class smile.classification.Maxent
Constructor.
Maxent.Binomial - Class in smile.classification
Binomial maximum entropy classifier.
Maxent.Multinomial - Class in smile.classification
Multinomial maximum entropy classifier.
maxNodes - Variable in class smile.base.cart.CART
The maximum number of leaf nodes in the tree.
mcc - Variable in class smile.validation.ClassificationMetrics
The Matthews correlation coefficient on validation data.
MDS - Class in smile.manifold
Classical multidimensional scaling, also known as principal coordinates analysis.
MDS(double[], double[], double[][]) - Constructor for class smile.manifold.MDS
Constructor.
mean - Variable in class smile.regression.GaussianProcessRegression
The mean of responsible variable.
mean() - Method in class smile.base.cart.RegressionNode
Returns the mean of response variable.
mean() - Method in class smile.timeseries.AR
Returns the mean of time series.
mean() - Method in class smile.timeseries.ARMA
Returns the mean of time series.
MEAN_SQUARED_ERROR - Enum constant in enum class smile.base.mlp.Cost
Mean squares error cost.
MEC<T> - Class in smile.clustering
Non-parametric Minimum Conditional Entropy Clustering.
MEC(double, double, RNNSearch<T, T>, int, int[]) - Constructor for class smile.clustering.MEC
Constructor.
merge() - Method in class smile.base.cart.InternalNode
 
merge() - Method in class smile.base.cart.LeafNode
 
merge() - Method in interface smile.base.cart.Node
Try to merge the children nodes and return a leaf node.
merge(int, int) - Method in class smile.clustering.linkage.CompleteLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.Linkage
Merges two clusters into one and update the proximity matrix.
merge(int, int) - Method in class smile.clustering.linkage.SingleLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.UPGMALinkage
 
merge(int, int) - Method in class smile.clustering.linkage.UPGMCLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WardLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WPGMALinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WPGMCLinkage
 
merge(RandomForest) - Method in class smile.classification.RandomForest
Merges two random forests.
merge(RandomForest) - Method in class smile.regression.RandomForest
Merges two random forests.
metrics - Variable in class smile.classification.RandomForest.Model
The performance metrics on out-of-bag samples.
metrics - Variable in class smile.regression.RandomForest.Model
The performance metrics on out-of-bag samples.
metrics - Variable in class smile.validation.ClassificationValidation
The classification metrics.
metrics - Variable in class smile.validation.RegressionValidation
The regression metrics.
metrics() - Method in class smile.classification.RandomForest
Returns the overall out-of-bag metric estimations.
metrics() - Method in class smile.regression.RandomForest
Returns the overall out-of-bag metric estimations.
min(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (min(H(y1), H(y2)) - E(MI)).
min(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / min(H(y1), H(y2)).
MIN - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
I(y1, y2) / min(H(y1), H(y2))
MIN - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
I(y1, y2) / min(H(y1), H(y2))
MIN - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with min normalization.
MIN - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with min normalization.
minPts - Variable in class smile.clustering.DBSCAN
The minimum number of points required to form a cluster
minSupport() - Method in class smile.association.FPTree
Returns the required minimum support of item sets in terms of frequency.
mle(int, OutputFunction) - Static method in class smile.base.mlp.Layer
Returns an output layer with (log-)likelihood cost function.
MLP - Class in smile.classification
Fully connected multilayer perceptron neural network for classification.
MLP - Class in smile.regression
Fully connected multilayer perceptron neural network for regression.
MLP(LayerBuilder...) - Constructor for class smile.classification.MLP
Constructor.
MLP(LayerBuilder...) - Constructor for class smile.regression.MLP
Constructor.
MLP(Scaler, LayerBuilder...) - Constructor for class smile.regression.MLP
Constructor.
MLP(IntSet, LayerBuilder...) - Constructor for class smile.classification.MLP
Constructor.
model - Variable in class smile.glm.GLM
The model specifications (link function, deviance, etc.).
model - Variable in class smile.sequence.CRFLabeler
The CRF model.
model - Variable in class smile.sequence.HMMLabeler
The HMM model.
model - Variable in class smile.validation.ClassificationValidation
The model.
model - Variable in class smile.validation.RegressionValidation
The model.
Model - Interface in smile.glm.model
The GLM model specification.
models() - Method in class smile.classification.RandomForest
Returns the base models.
models() - Method in class smile.regression.RandomForest
Returns the base models.
ModelSelection - Interface in smile.validation
Model selection criteria.
momentum - Variable in class smile.base.mlp.MultilayerPerceptron
The momentum factor.
mse - Variable in class smile.validation.RegressionMetrics
The mean squared error on validation data.
mse(int, OutputFunction) - Static method in class smile.base.mlp.Layer
Returns an output layer with mean squared error cost function.
MSE - Class in smile.validation.metric
Mean squared error.
MSE() - Constructor for class smile.validation.metric.MSE
 
mtry - Variable in class smile.base.cart.CART
The number of input variables to be used to determine the decision at a node of the tree.
mu - Variable in class smile.glm.GLM
The fitted mean values.
mu - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The mean of predictive distribution at query points.
MultilayerPerceptron - Class in smile.base.mlp
Fully connected multilayer perceptron neural network.
MultilayerPerceptron(Layer...) - Constructor for class smile.base.mlp.MultilayerPerceptron
Constructor.
multinomial(double[][], int[]) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
multinomial(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
multinomial(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
multinomial(int, int[][], int[]) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
multinomial(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
multinomial(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
multinomial(SparseDataset, int[]) - Static method in class smile.classification.SparseLogisticRegression
Fits multinomial logistic regression.
multinomial(SparseDataset, int[], double, double, int) - Static method in class smile.classification.SparseLogisticRegression
Fits multinomial logistic regression.
multinomial(SparseDataset, int[], Properties) - Static method in class smile.classification.SparseLogisticRegression
Fits multinomial logistic regression.
Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.LogisticRegression.Multinomial
Constructor.
Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.Maxent.Multinomial
Constructor.
Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression.Multinomial
Constructor.
MULTINOMIAL - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
The document multinomial model generates one term from the vocabulary in each position of the document.
mustart(double) - Method in interface smile.glm.model.Model
The function to estimates the starting value of mean given y.
MutualInformation - Class in smile.validation.metric
Mutual Information for comparing clustering.
MutualInformation() - Constructor for class smile.validation.metric.MutualInformation
 

N

n - Variable in class smile.base.mlp.Layer
The number of neurons in this layer
n - Variable in class smile.validation.metric.ContingencyTable
The number of observations.
n1 - Variable in class smile.validation.metric.ContingencyTable
The number of clusters of first clustering.
n2 - Variable in class smile.validation.metric.ContingencyTable
The number of clusters of second clustering.
NaiveBayes - Class in smile.classification
Naive Bayes classifier.
NaiveBayes(double[], Distribution[][]) - Constructor for class smile.classification.NaiveBayes
Constructor of general naive Bayes classifier.
NaiveBayes(double[], Distribution[][], IntSet) - Constructor for class smile.classification.NaiveBayes
Constructor of general naive Bayes classifier.
name() - Method in interface smile.base.mlp.ActivationFunction
Returns the name of activation function.
name() - Method in interface smile.deep.activation.ActivationFunction
Returns the name of activation function.
name() - Method in class smile.deep.activation.LeakyReLU
 
name() - Method in class smile.deep.activation.ReLU
 
name() - Method in class smile.deep.activation.Sigmoid
 
name() - Method in class smile.deep.activation.Softmax
 
name() - Method in class smile.deep.activation.Tanh
 
neighbor - Variable in class smile.vq.hebb.Edge
The neighbor neuron.
Neighborhood - Interface in smile.vq
The neighborhood function for 2-dimensional lattice topology (e.g.
net - Variable in class smile.base.mlp.MultilayerPerceptron
The input and hidden layers.
network() - Method in class smile.vq.NeuralGas
Returns the network of neurons.
NeuralGas - Class in smile.vq
Neural Gas soft competitive learning algorithm.
NeuralGas(double[][], TimeFunction, TimeFunction, TimeFunction) - Constructor for class smile.vq.NeuralGas
Constructor.
NeuralMap - Class in smile.vq
NeuralMap is an efficient competitive learning algorithm inspired by growing neural gas and BIRCH.
NeuralMap(double, double, double, int, double) - Constructor for class smile.vq.NeuralMap
Constructor.
Neuron - Class in smile.vq.hebb
The neuron vertex in the growing neural gas network.
Neuron(double[]) - Constructor for class smile.vq.hebb.Neuron
Constructor.
Neuron(double[], double) - Constructor for class smile.vq.hebb.Neuron
Constructor.
neurons - Variable in class smile.base.mlp.LayerBuilder
The number of neurons.
neurons() - Method in class smile.base.mlp.LayerBuilder
Returns the number of neurons.
neurons() - Method in class smile.vq.GrowingNeuralGas
Returns the neurons in the network.
neurons() - Method in class smile.vq.NeuralGas
Returns the neurons.
neurons() - Method in class smile.vq.NeuralMap
Returns the neurons.
neurons() - Method in class smile.vq.SOM
Returns the lattice of neurons.
newNode(int[]) - Method in class smile.base.cart.CART
Creates a new leaf node.
newNode(int[]) - Method in class smile.classification.DecisionTree
 
newNode(int[]) - Method in class smile.regression.RegressionTree
 
ni - Variable in class smile.classification.ClassLabels
The number of samples per classes.
Node - Interface in smile.base.cart
CART tree node.
nodeSize - Variable in class smile.base.cart.CART
The number of instances in a node below which the tree will not split, setting nodeSize = 5 generally gives good results.
noise - Variable in class smile.regression.GaussianProcessRegression
The variance of noise.
NominalNode - Class in smile.base.cart
A node with a nominal split variable.
NominalNode(int, int, double, double, Node, Node) - Constructor for class smile.base.cart.NominalNode
Constructor.
NominalSplit - Class in smile.base.cart
The data about of a potential split for a leaf node.
NominalSplit(LeafNode, int, int, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.NominalSplit
Constructor.
nonoverlap(int[], int) - Static method in interface smile.validation.CrossValidation
Cross validation with non-overlapping groups.
NormalizedMutualInformation - Class in smile.validation.metric
Normalized Mutual Information (NMI) for comparing clustering.
NormalizedMutualInformation(NormalizedMutualInformation.Method) - Constructor for class smile.validation.metric.NormalizedMutualInformation
Constructor.
NormalizedMutualInformation.Method - Enum Class in smile.validation.metric
The normalization method.
Normalizer - Class in smile.feature.transform
Normalize samples individually to unit norm.
Normalizer(Normalizer.Norm, String...) - Constructor for class smile.feature.transform.Normalizer
Constructor.
Normalizer.Norm - Enum Class in smile.feature.transform
Vector norm.
nullDeviance - Variable in class smile.glm.GLM
The null deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Null Model)).
nullDeviance(double[], double) - Method in interface smile.glm.model.Model
The NULL deviance function.
numClasses() - Method in class smile.classification.AbstractClassifier
 
numClasses() - Method in interface smile.classification.Classifier
Returns the number of classes.
numClasses() - Method in class smile.classification.DecisionTree
 
numClasses() - Method in class smile.classification.MLP
 
numClasses() - Method in class smile.classification.SVM
 
nystrom(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
nystrom(T[], double[], T[], MercerKernel<T>, double, boolean) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
nystrom(T[], double[], T[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.

O

OCSVM<T> - Class in smile.base.svm
One-class support vector machine.
OCSVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.OCSVM
Constructor.
of(double[][]) - Static method in class smile.clustering.linkage.CompleteLinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.SingleLinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.UPGMALinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.UPGMCLinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WardLinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WPGMALinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WPGMCLinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.manifold.IsotonicMDS
Fits Kruskal's non-metric MDS with default k = 2, tolerance = 1E-4 and maxIter = 200.
of(double[][]) - Static method in class smile.manifold.MDS
Fits the classical multidimensional scaling.
of(double[][]) - Static method in class smile.manifold.SammonMapping
Fits Sammon's mapping with default k = 2, lambda = 0.2, tolerance = 1E-4 and maxIter = 100.
of(double[][]) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(double[][], double[][], double, double, double, int) - Static method in class smile.manifold.SammonMapping
Fits Sammon's mapping.
of(double[][], double[][], double, int) - Static method in class smile.manifold.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], int) - Static method in class smile.manifold.IsoMap
Runs the C-Isomap algorithm with Euclidean distance.
of(double[][], int) - Static method in class smile.manifold.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], int) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmaps with discrete weights.
of(double[][], int) - Static method in class smile.manifold.LLE
Runs the LLE algorithm.
of(double[][], int) - Static method in class smile.manifold.MDS
Fits the classical multidimensional scaling.
of(double[][], int) - Static method in class smile.manifold.SammonMapping
Fits Sammon's mapping.
of(double[][], int) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(double[][], int, boolean) - Static method in class smile.manifold.MDS
Fits the classical multidimensional scaling.
of(double[][], int, double, double, double, int) - Static method in class smile.manifold.SammonMapping
Fits Sammon's mapping.
of(double[][], int, double, int) - Static method in class smile.manifold.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], int, int) - Static method in class smile.manifold.LLE
Runs the LLE algorithm.
of(double[][], int, int, boolean) - Static method in class smile.manifold.IsoMap
Runs the Isomap algorithm.
of(double[][], int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmap with Gaussian kernel.
of(double[][], int, int, int, double, double, double, int, double) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(double[][], Properties) - Static method in class smile.manifold.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], Properties) - Static method in class smile.manifold.MDS
Fits the classical multidimensional scaling.
of(double[][], Properties) - Static method in class smile.manifold.SammonMapping
Fits Sammon's mapping.
of(double[], double[]) - Static method in class smile.validation.metric.MAD
Calculates the mean absolute deviation error.
of(double[], double[]) - Static method in class smile.validation.metric.MSE
Calculates the mean squared error.
of(double[], double[]) - Static method in class smile.validation.metric.R2
Calculates the R squared coefficient.
of(double[], double[]) - Static method in class smile.validation.metric.RMSE
Calculates the root mean squared error.
of(double[], double[]) - Static method in class smile.validation.metric.RSS
Calculates the residual sum of squares.
of(double, double, double[], double[]) - Static method in class smile.validation.RegressionMetrics
Computes the regression metrics.
of(double, double, int[], int[]) - Static method in class smile.validation.ClassificationMetrics
Computes the classification metrics.
of(double, double, int[], int[], double[][]) - Static method in class smile.validation.ClassificationMetrics
Computes the soft classification metrics.
of(double, int[][]) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available in main memory.
of(double, int[], int[]) - Static method in class smile.validation.metric.FScore
Calculates the F1 score.
of(double, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available as stream.
of(double, M, Formula, DataFrame) - Static method in class smile.validation.ClassificationMetrics
Validates a model on a test data.
of(double, M, Formula, DataFrame) - Static method in class smile.validation.RegressionMetrics
Trains and validates a model on a train/validation split.
of(double, M, T[], double[]) - Static method in class smile.validation.RegressionMetrics
Validates a model on a test data.
of(double, M, T[], int[]) - Static method in class smile.validation.ClassificationMetrics
Validates a model on a test data.
of(int) - Static method in interface smile.validation.LOOCV
Returns the training sample index for each round.
of(int[], double[]) - Static method in class smile.validation.metric.AUC
Calculates AUC for binary classifier.
of(int[], double[]) - Static method in class smile.validation.metric.LogLoss
Calculates the Log Loss for binary classifier.
of(int[], double[][]) - Static method in interface smile.validation.metric.CrossEntropy
Calculates the cross entropy for multiclass classifier.
of(int[], int) - Static method in interface smile.validation.Bootstrap
Stratified bootstrap sampling.
of(int[], int[]) - Static method in class smile.validation.metric.Accuracy
Calculates the classification accuracy.
of(int[], int[]) - Static method in class smile.validation.metric.AdjustedRandIndex
Calculates the adjusted rand index.
of(int[], int[]) - Static method in class smile.validation.metric.ConfusionMatrix
Creates the confusion matrix.
of(int[], int[]) - Static method in class smile.validation.metric.Error
Calculates the number of errors.
of(int[], int[]) - Static method in class smile.validation.metric.Fallout
Calculates the false alarm rate.
of(int[], int[]) - Static method in class smile.validation.metric.FDR
Calculates the false discovery rate.
of(int[], int[]) - Static method in class smile.validation.metric.MatthewsCorrelation
Calculates Matthews correlation coefficient.
of(int[], int[]) - Static method in class smile.validation.metric.MutualInformation
Calculates the mutual information.
of(int[], int[]) - Static method in class smile.validation.metric.Precision
Calculates the precision.
of(int[], int[]) - Static method in class smile.validation.metric.RandIndex
Calculates the rand index.
of(int[], int[]) - Static method in class smile.validation.metric.Recall
Calculates the recall/sensitivity.
of(int[], int[]) - Static method in class smile.validation.metric.Sensitivity
Calculates the sensitivity.
of(int[], int[]) - Static method in class smile.validation.metric.Specificity
Calculates the specificity.
of(int, int) - Static method in interface smile.validation.Bootstrap
Bootstrap sampling.
of(int, int) - Static method in interface smile.validation.CrossValidation
Creates a k-fold cross validation.
of(int, int[][]) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available in main memory.
of(int, int, int) - Method in interface smile.vq.Neighborhood
Returns the changing rate of neighborhood at a given iteration.
of(int, int, String) - Static method in class smile.base.mlp.Layer
Returns the layer builders given a string representation such as "Input(10, 0.2)|ReLU(50, 0.5)|Sigmoid(30, 0.5)|...".
of(int, int, String...) - Static method in class smile.feature.extraction.RandomProjection
Generates a non-sparse random projection.
of(int, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available as stream.
of(M, Formula, DataFrame) - Static method in class smile.validation.ClassificationMetrics
Validates a model on a test data.
of(M, Formula, DataFrame) - Static method in class smile.validation.RegressionMetrics
Trains and validates a model on a train/validation split.
of(M, T[], double[]) - Static method in class smile.validation.RegressionMetrics
Validates a model on a test data.
of(M, T[], int[]) - Static method in class smile.validation.ClassificationMetrics
Validates a model on a test data.
of(KernelMachine<double[]>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
of(Formula, DataFrame, Properties, Classifier.Trainer<double[], ?>) - Static method in interface smile.classification.DataFrameClassifier
Fits a vector classifier on data frame.
of(Formula, DataFrame, Properties, Regression.Trainer<double[], ?>) - Static method in interface smile.regression.DataFrameRegression
Fits a vector regression model on data frame.
of(Formula, DataFrame, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on a train/validation split.
of(Formula, DataFrame, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on a train/validation split.
of(Bag[], Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on multiple train/validation split.
of(Bag[], Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on multiple train/validation split.
of(Bag[], T[], double[], BiFunction<T[], double[], M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on multiple train/validation split.
of(Bag[], T[], int[], BiFunction<T[], int[], M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on multiple train/validation split.
of(T[], double[], T[], double[], BiFunction<T[], double[], M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on a train/validation split.
of(T[], int[], T[], int[], BiFunction<T[], int[], M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on a train/validation split.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.CompleteLinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.SingleLinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMALinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMCLinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WardLinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMALinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMCLinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(T[], Distance<T>, int) - Static method in class smile.manifold.IsoMap
Runs the C-Isomap algorithm.
of(T[], Distance<T>, int) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmaps with discrete weights.
of(T[], Distance<T>, int) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(T[], Distance<T>, int, int, boolean) - Static method in class smile.manifold.IsoMap
Runs the Isomap algorithm.
of(T[], Distance<T>, int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmap with Gaussian kernel.
of(T[], Distance<T>, int, int, int, double, double, double, int, double) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(T[], RadialBasisFunction[], Metric<T>) - Static method in class smile.base.rbf.RBF
Makes a set of RBF neurons.
of(T[], RadialBasisFunction, Metric<T>) - Static method in class smile.base.rbf.RBF
Makes a set of RBF neurons.
ols(double[], int) - Static method in class smile.timeseries.AR
Fits an autoregressive model with least squares method.
ols(double[], int, boolean) - Static method in class smile.timeseries.AR
Fits an autoregressive model with least squares method.
OLS - Class in smile.regression
Ordinary least squares.
OLS - Enum constant in enum class smile.timeseries.AR.Method
Ordinary least squares.
OLS() - Constructor for class smile.regression.OLS
 
OneVersusOne<T> - Class in smile.classification
One-vs-one strategy for reducing the problem of multiclass classification to multiple binary classification problems.
OneVersusOne(Classifier<T>[][], PlattScaling[][]) - Constructor for class smile.classification.OneVersusOne
Constructor.
OneVersusOne(Classifier<T>[][], PlattScaling[][], IntSet) - Constructor for class smile.classification.OneVersusOne
Constructor.
OneVersusRest<T> - Class in smile.classification
One-vs-rest (or one-vs-all) strategy for reducing the problem of multiclass classification to multiple binary classification problems.
OneVersusRest(Classifier<T>[], PlattScaling[]) - Constructor for class smile.classification.OneVersusRest
Constructor.
OneVersusRest(Classifier<T>[], PlattScaling[], IntSet) - Constructor for class smile.classification.OneVersusRest
Constructor.
online() - Method in interface smile.classification.Classifier
Returns true if this is an online learner.
online() - Method in class smile.classification.DiscreteNaiveBayes
 
online() - Method in class smile.classification.LogisticRegression
 
online() - Method in class smile.classification.Maxent
 
online() - Method in class smile.classification.MLP
 
online() - Method in class smile.classification.SparseLogisticRegression
 
online() - Method in class smile.regression.LinearModel
 
online() - Method in class smile.regression.MLP
 
online() - Method in interface smile.regression.Regression
Returns true if this is an online learner.
oob - Variable in class smile.validation.Bag
The index of testing instances.
Optimizer - Interface in smile.deep.optimizer
The neural network optimizer.
order - Variable in class smile.base.cart.CART
An index of training values.
order(DataFrame) - Static method in class smile.base.cart.CART
Returns the index of ordered samples for each ordinal column.
ordinal - Variable in class smile.sequence.HMMLabeler
The lambda returns the ordinal numbers of symbols.
OrdinalNode - Class in smile.base.cart
A node with a ordinal split variable (real-valued or ordinal categorical value).
OrdinalNode(int, double, double, double, Node, Node) - Constructor for class smile.base.cart.OrdinalNode
Constructor.
OrdinalSplit - Class in smile.base.cart
The data about of a potential split for a leaf node.
OrdinalSplit(LeafNode, int, double, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.OrdinalSplit
Constructor.
OUTLIER - Static variable in class smile.clustering.PartitionClustering
Cluster label for outliers or noises.
OUTLIER - Static variable in interface smile.vq.VectorQuantizer
The label for outliers or noises.
output - Variable in class smile.base.mlp.Layer
The output vector.
output - Variable in class smile.base.mlp.MultilayerPerceptron
The output layer.
output() - Method in class smile.base.cart.DecisionNode
Returns the predicted value.
output() - Method in class smile.base.cart.RegressionNode
Returns the predicted value.
output() - Method in class smile.base.mlp.Layer
Returns the output vector.
output(int[], int[]) - Method in interface smile.base.cart.Loss
Calculate the node output.
OutputFunction - Enum Class in smile.base.mlp
The output function of neural networks.
outputGradient - Variable in class smile.base.mlp.Layer
The output gradient.
OutputLayer - Class in smile.base.mlp
The output layer in the neural network.
OutputLayer(int, int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayer
Constructor.
OutputLayerBuilder - Class in smile.base.mlp
The builder of output layers.
OutputLayerBuilder(int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayerBuilder
Constructor.

P

p - Variable in class smile.base.mlp.Layer
The number of input variables.
p - Variable in class smile.base.mlp.MultilayerPerceptron
The dimensionality of input data.
p() - Method in class smile.timeseries.AR
Returns the order of AR.
p() - Method in class smile.timeseries.ARMA
Returns the order of AR.
p(int[]) - Method in class smile.sequence.HMM
Returns the probability of an observation sequence given this HMM.
p(int[], int[]) - Method in class smile.sequence.HMM
Returns the joint probability of an observation sequence along a state sequence given this HMM.
p(T[]) - Method in class smile.sequence.HMMLabeler
Returns the probability of an observation sequence.
p(T[], int[]) - Method in class smile.sequence.HMMLabeler
Returns the joint probability of an observation sequence along a state sequence.
pacf(double[], int) - Static method in interface smile.timeseries.TimeSeries
Partial autocorrelation function.
partition(double) - Method in class smile.clustering.HierarchicalClustering
Cuts a tree into several groups by specifying the cut height.
partition(int) - Method in class smile.clustering.HierarchicalClustering
Cuts a tree into several groups by specifying the desired number.
PartitionClustering - Class in smile.clustering
Partition clustering.
PartitionClustering(int, int[]) - Constructor for class smile.clustering.PartitionClustering
Constructor.
path(double[]) - Method in class smile.anomaly.IsolationTree
Returns the path length from the root to the leaf node.
PCA - Class in smile.feature.extraction
Principal component analysis.
PCA(double[], double[], Matrix, Matrix, String...) - Constructor for class smile.feature.extraction.PCA
Constructor.
pierce(double[], int) - Static method in class smile.timeseries.BoxTest
Box-Pierce test.
PlattScaling - Class in smile.classification
Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.
PlattScaling(double, double) - Constructor for class smile.classification.PlattScaling
Constructor.
Poisson - Interface in smile.glm.model
The response variable is of Poisson distribution.
POLYAURN - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
The document Polya Urn model is similar to MULTINOMIAL but different in the conditional probability update during learning.
posteriori - Variable in class smile.validation.ClassificationValidation
The posteriori probability of prediction if the model is a soft classifier.
posteriori(double[]) - Method in class smile.base.cart.DecisionNode
Returns the class probability.
posteriori(int[], double[]) - Static method in class smile.base.cart.DecisionNode
Returns the class probability.
postprocess(double[]) - Method in class smile.feature.extraction.PCA
 
postprocess(double[]) - Method in class smile.feature.extraction.ProbabilisticPCA
 
postprocess(double[]) - Method in class smile.feature.extraction.Projection
Postprocess the output vector after projection.
precision - Variable in class smile.validation.ClassificationMetrics
The precision on validation data.
Precision - Class in smile.validation.metric
The precision or positive predictive value (PPV) is ratio of true positives to combined true and false positives, which is different from sensitivity.
Precision() - Constructor for class smile.validation.metric.Precision
 
predicate() - Method in class smile.base.cart.NominalSplit
 
predicate() - Method in class smile.base.cart.OrdinalSplit
 
predicate() - Method in class smile.base.cart.Split
Returns the lambda that tests on the split feature.
predict(double) - Method in class smile.classification.IsotonicRegressionScaling
Returns the posterior probability estimate P(y = 1 | x).
predict(double[]) - Method in class smile.classification.FLD
 
predict(double[]) - Method in class smile.classification.LDA
 
predict(double[]) - Method in class smile.classification.LogisticRegression.Binomial
 
predict(double[]) - Method in class smile.classification.LogisticRegression.Multinomial
 
predict(double[]) - Method in class smile.classification.MLP
 
predict(double[]) - Method in class smile.classification.NaiveBayes
Predict the class of an instance.
predict(double[]) - Method in class smile.classification.QDA
 
predict(double[]) - Method in class smile.clustering.DENCLUE
Classifies a new observation.
predict(double[]) - Method in class smile.regression.LinearModel
Predicts the dependent variable of an instance.
predict(double[]) - Method in class smile.regression.MLP
 
predict(double[], double[]) - Method in class smile.classification.LDA
 
predict(double[], double[]) - Method in class smile.classification.LogisticRegression.Binomial
 
predict(double[], double[]) - Method in class smile.classification.LogisticRegression.Multinomial
 
predict(double[], double[]) - Method in class smile.classification.MLP
 
predict(double[], double[]) - Method in class smile.classification.NaiveBayes
Predict the class of an instance.
predict(double[], double[]) - Method in class smile.classification.QDA
 
predict(int[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(int[]) - Method in class smile.classification.Maxent.Binomial
 
predict(int[]) - Method in class smile.classification.Maxent.Multinomial
 
predict(int[]) - Method in class smile.sequence.HMM
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of P(I | O, HMM).
predict(int[], double[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(int[], double[]) - Method in class smile.classification.Maxent.Binomial
 
predict(int[], double[]) - Method in class smile.classification.Maxent.Multinomial
 
predict(List<T>) - Method in interface smile.classification.Classifier
Predicts the class labels of a list of instances.
predict(List<T>) - Method in interface smile.regression.Regression
Predicts the dependent variable of a list of instances.
predict(List<T>, List<double[]>) - Method in interface smile.classification.Classifier
Predicts the class labels of a list of instances.
predict(DataFrame) - Method in interface smile.classification.DataFrameClassifier
Predicts the class labels of a data frame.
predict(DataFrame) - Method in class smile.glm.GLM
Predicts the mean response.
predict(DataFrame) - Method in interface smile.regression.DataFrameRegression
Predicts the dependent variables of a data frame.
predict(DataFrame) - Method in class smile.regression.LinearModel
 
predict(DataFrame, List<double[]>) - Method in interface smile.classification.DataFrameClassifier
Predicts the class labels of a dataset.
predict(Dataset<T>) - Method in interface smile.classification.Classifier
Predicts the class labels of a dataset.
predict(Dataset<T>) - Method in interface smile.regression.Regression
Predicts the dependent variable of a dataset.
predict(Dataset<T>, List<double[]>) - Method in interface smile.classification.Classifier
Predicts the class labels of a dataset.
predict(Tuple) - Method in class smile.base.cart.InternalNode
 
predict(Tuple) - Method in class smile.base.cart.LeafNode
 
predict(Tuple) - Method in interface smile.base.cart.Node
Evaluate the tree over an instance.
predict(Tuple) - Method in class smile.base.cart.NominalNode
 
predict(Tuple) - Method in class smile.base.cart.OrdinalNode
 
predict(Tuple) - Method in class smile.classification.AdaBoost
 
predict(Tuple) - Method in class smile.classification.DecisionTree
 
predict(Tuple) - Method in class smile.classification.GradientTreeBoost
 
predict(Tuple) - Method in class smile.classification.RandomForest
 
predict(Tuple) - Method in class smile.glm.GLM
Predicts the mean response.
predict(Tuple) - Method in class smile.regression.GradientTreeBoost
 
predict(Tuple) - Method in class smile.regression.LinearModel
 
predict(Tuple) - Method in class smile.regression.RandomForest
 
predict(Tuple) - Method in class smile.regression.RegressionTree
 
predict(Tuple[]) - Method in class smile.sequence.CRF
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
predict(Tuple, double[]) - Method in class smile.classification.AdaBoost
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(Tuple, double[]) - Method in class smile.classification.DecisionTree
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(Tuple, double[]) - Method in class smile.classification.GradientTreeBoost
 
predict(Tuple, double[]) - Method in class smile.classification.RandomForest
 
predict(SparseArray) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
predict(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Multinomial
 
predict(SparseArray, double[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(SparseArray, double[]) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
predict(SparseArray, double[]) - Method in class smile.classification.SparseLogisticRegression.Multinomial
 
predict(T) - Method in interface smile.classification.Classifier
Predicts the class label of an instance.
predict(T) - Method in class smile.classification.KNN
 
predict(T) - Method in class smile.classification.OneVersusOne
Prediction is based on voting.
predict(T) - Method in class smile.classification.OneVersusRest
 
predict(T) - Method in class smile.classification.RBFNetwork
 
predict(T) - Method in class smile.classification.SVM
 
predict(T) - Method in class smile.clustering.DBSCAN
Classifies a new observation.
predict(T) - Method in class smile.clustering.MEC
Cluster a new instance.
predict(T) - Method in class smile.regression.GaussianProcessRegression
 
predict(T) - Method in class smile.regression.KernelMachine
 
predict(T) - Method in class smile.regression.RBFNetwork
 
predict(T) - Method in interface smile.regression.Regression
Predicts the dependent variable of an instance.
predict(T[]) - Method in interface smile.classification.Classifier
Predicts the class labels of an array of instances.
predict(T[]) - Method in interface smile.regression.Regression
Predicts the dependent variable of an array of instances.
predict(T[]) - Method in class smile.sequence.CRFLabeler
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
predict(T[]) - Method in class smile.sequence.HMMLabeler
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of P(I | O, HMM).
predict(T[]) - Method in interface smile.sequence.SequenceLabeler
Predicts the sequence labels.
predict(T[], double[][]) - Method in interface smile.classification.Classifier
Predicts the class labels of an array of instances.
predict(T, double[]) - Method in interface smile.classification.Classifier
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(T, double[]) - Method in class smile.classification.KNN
 
predict(T, double[]) - Method in class smile.classification.OneVersusOne
Prediction is based posteriori probability estimation.
predict(T, double[]) - Method in class smile.classification.OneVersusRest
 
predict(T, double[]) - Method in class smile.regression.GaussianProcessRegression
Predicts the mean and standard deviation of an instance.
predict(U) - Method in class smile.clustering.CentroidClustering
Classifies a new observation.
prediction - Variable in class smile.validation.ClassificationValidation
The model prediction.
prediction - Variable in class smile.validation.RegressionValidation
The model prediction.
predictors(Tuple) - Method in class smile.base.cart.CART
Returns the predictors by the model formula if it is not null.
preprocess(double[]) - Method in class smile.feature.extraction.Projection
Preprocess the input vector before projection.
priori - Variable in class smile.classification.ClassLabels
The estimated priori probabilities.
priori() - Method in class smile.classification.DiscreteNaiveBayes
Returns a priori probabilities.
priori() - Method in class smile.classification.LDA
Returns a priori probabilities.
priori() - Method in class smile.classification.NaiveBayes
Returns a priori probabilities.
priori() - Method in class smile.classification.QDA
Returns a priori probabilities.
ProbabilisticClassificationMetric - Interface in smile.validation.metric
An abstract interface to measure the probabilistic classification performance.
ProbabilisticPCA - Class in smile.feature.extraction
Probabilistic principal component analysis.
ProbabilisticPCA(double, double[], Matrix, Matrix, String...) - Constructor for class smile.feature.extraction.ProbabilisticPCA
Constructor.
project(double[]) - Method in class smile.classification.FLD
Projects a sample to the feature space.
project(double[][]) - Method in class smile.classification.FLD
Projects samples to the feature space.
projection - Variable in class smile.feature.extraction.Projection
The projection matrix.
projection() - Method in class smile.manifold.KPCA
Returns the projection matrix.
Projection - Class in smile.feature.extraction
A projection is a kind of feature extraction technique that transforms data from the input space to a feature space, linearly or non-linearly.
Projection(Matrix, String, String...) - Constructor for class smile.feature.extraction.Projection
Constructor.
propagate(double[]) - Method in class smile.base.mlp.InputLayer
 
propagate(double[]) - Method in class smile.base.mlp.Layer
Propagates the signals from a lower layer to this layer.
propagate(double[], boolean) - Method in class smile.base.mlp.MultilayerPerceptron
Propagates the signals through the neural network.
propagateDropout() - Method in class smile.base.mlp.Layer
Propagates the output signals through the implicit dropout layer.
proportion - Variable in class smile.manifold.MDS
The proportion of variance contained in each principal component.
proximity(double[][]) - Static method in class smile.clustering.linkage.Linkage
Computes the proximity matrix (linearized in column major) based on Euclidean distance.
proximity(T[], Distance<T>) - Static method in class smile.clustering.linkage.Linkage
Computes the proximity matrix (linearized in column major).
prune(DataFrame) - Method in class smile.classification.DecisionTree
Returns a new decision tree by reduced error pruning.
prune(DataFrame) - Method in class smile.classification.RandomForest
Returns a new random forest by reduced error pruning.
pvalue - Variable in class smile.timeseries.BoxTest
p-value
pvalue() - Method in class smile.regression.LinearModel
Returns the p-value of goodness-of-fit test.

Q

q - Variable in class smile.timeseries.BoxTest
Box-Pierce or Ljung-Box statistic.
q() - Method in class smile.timeseries.ARMA
Returns the order of MA.
QDA - Class in smile.classification
Quadratic discriminant analysis.
QDA(double[], double[][], double[][], Matrix[]) - Constructor for class smile.classification.QDA
Constructor.
QDA(double[], double[][], double[][], Matrix[], IntSet) - Constructor for class smile.classification.QDA
Constructor.
quantile(double) - Static method in interface smile.base.cart.Loss
Quantile regression loss.
Quantile - Enum constant in enum class smile.base.cart.Loss.Type
Quantile regression.
quantize(double[]) - Method in class smile.vq.BIRCH
 
quantize(double[]) - Method in class smile.vq.GrowingNeuralGas
 
quantize(double[]) - Method in class smile.vq.NeuralGas
 
quantize(double[]) - Method in class smile.vq.NeuralMap
 
quantize(double[]) - Method in class smile.vq.SOM
 
quantize(double[]) - Method in interface smile.vq.VectorQuantizer
Quantize a new observation.
query(T[]) - Method in class smile.regression.GaussianProcessRegression
Evaluates the Gaussian Process at some query points.

R

r2 - Variable in class smile.validation.RegressionMetrics
The R-squared score on validation data.
R2 - Class in smile.validation.metric
R2.
R2() - Constructor for class smile.validation.metric.R2
 
R2() - Method in class smile.timeseries.AR
Returns R2 statistic.
R2() - Method in class smile.timeseries.ARMA
Returns R2 statistic.
radius - Variable in class smile.clustering.DBSCAN
The neighborhood radius.
radius - Variable in class smile.clustering.MEC
The range of neighborhood.
RandIndex - Class in smile.validation.metric
Rand Index.
RandIndex() - Constructor for class smile.validation.metric.RandIndex
 
random() - Method in class smile.hpo.Hyperparameters
Generates a stream of hyperparameters for random search.
RandomForest - Class in smile.classification
Random forest for classification.
RandomForest - Class in smile.regression
Random forest for regression.
RandomForest(Formula, int, RandomForest.Model[], ClassificationMetrics, double[]) - Constructor for class smile.classification.RandomForest
Constructor.
RandomForest(Formula, int, RandomForest.Model[], ClassificationMetrics, double[], IntSet) - Constructor for class smile.classification.RandomForest
Constructor.
RandomForest(Formula, RandomForest.Model[], RegressionMetrics, double[]) - Constructor for class smile.regression.RandomForest
Constructor.
RandomForest.Model - Class in smile.classification
The base model.
RandomForest.Model - Class in smile.regression
The base model.
RandomProjection - Class in smile.feature.extraction
Random projection is a promising dimensionality reduction technique for learning mixtures of Gaussians.
RandomProjection(Matrix, String...) - Constructor for class smile.feature.extraction.RandomProjection
Constructor.
RBF<T> - Class in smile.base.rbf
A neuron in radial basis function network.
RBF(T, RadialBasisFunction, Metric<T>) - Constructor for class smile.base.rbf.RBF
Constructor.
RBFNetwork<T> - Class in smile.classification
Radial basis function networks.
RBFNetwork<T> - Class in smile.regression
Radial basis function network.
RBFNetwork(int, RBF<T>[], Matrix, boolean) - Constructor for class smile.classification.RBFNetwork
Constructor.
RBFNetwork(int, RBF<T>[], Matrix, boolean, IntSet) - Constructor for class smile.classification.RBFNetwork
Constructor.
RBFNetwork(RBF<T>[], double[], boolean) - Constructor for class smile.regression.RBFNetwork
Constructor.
RDA - Class in smile.classification
Regularized discriminant analysis.
RDA(double[], double[][], double[][], Matrix[]) - Constructor for class smile.classification.RDA
Constructor.
RDA(double[], double[][], double[][], Matrix[], IntSet) - Constructor for class smile.classification.RDA
Constructor.
Recall - Class in smile.validation.metric
In information retrieval area, sensitivity is called recall.
Recall() - Constructor for class smile.validation.metric.Recall
 
rectifier() - Static method in interface smile.base.mlp.ActivationFunction
The rectifier activation function max(0, x).
rectifier(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with rectified linear activation function.
rectifier(int, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with rectified linear activation function.
regression(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Repeated cross validation of regression.
regression(int, int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.CrossValidation
Repeated cross validation of regression.
regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.Bootstrap
Runs regression bootstrap validation.
regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Cross validation of regression.
regression(int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.Bootstrap
Runs regression bootstrap validation.
regression(int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.CrossValidation
Cross validation of regression.
regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
regression(T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
Regression<T> - Interface in smile.regression
Regression analysis includes any techniques for modeling and analyzing the relationship between a dependent variable and one or more independent variables.
Regression.Trainer<T,M extends Regression<T>> - Interface in smile.regression
The regression trainer.
RegressionMetric - Interface in smile.validation.metric
An abstract interface to measure the regression performance.
RegressionMetrics - Class in smile.validation
The regression validation metrics.
RegressionMetrics(double, double, int, double, double, double, double, double) - Constructor for class smile.validation.RegressionMetrics
Constructor.
RegressionNode - Class in smile.base.cart
A leaf node in regression tree.
RegressionNode(int, double, double, double) - Constructor for class smile.base.cart.RegressionNode
Constructor.
RegressionTree - Class in smile.regression
Regression tree.
RegressionTree(DataFrame, Loss, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.regression.RegressionTree
Constructor.
RegressionValidation<M> - Class in smile.validation
Regression model validation results.
RegressionValidation(M, double[], double[], RegressionMetrics) - Constructor for class smile.validation.RegressionValidation
Constructor.
RegressionValidations<M> - Class in smile.validation
Regression model validation results.
RegressionValidations(List<RegressionValidation<M>>) - Constructor for class smile.validation.RegressionValidations
Constructor.
regressors - Variable in class smile.regression.GaussianProcessRegression
The regressors.
relu() - Static method in interface smile.deep.activation.ActivationFunction
Returns the rectifier activation function max(0, x).
ReLU - Class in smile.deep.activation
The rectifier activation function max(0, x).
ReLU() - Constructor for class smile.deep.activation.ReLU
Constructor.
removeEdge(Neuron) - Method in class smile.vq.hebb.Neuron
Removes an edge.
replace(Node, Node) - Method in class smile.base.cart.InternalNode
Returns a new internal node with children replaced.
replace(Node, Node) - Method in class smile.base.cart.NominalNode
 
replace(Node, Node) - Method in class smile.base.cart.OrdinalNode
 
residual() - Method in interface smile.base.cart.Loss
Returns the residual vector.
residuals() - Method in class smile.regression.LinearModel
Returns the residuals, which is response minus fitted values.
residuals() - Method in class smile.timeseries.AR
Returns the residuals, that is response minus fitted values.
residuals() - Method in class smile.timeseries.ARMA
Returns the residuals, that is response minus fitted values.
response - Variable in class smile.base.cart.CART
The schema of response variable.
response() - Method in interface smile.base.cart.Loss
Returns the response variable for next iteration.
rho - Variable in class smile.base.mlp.MultilayerPerceptron
The discounting factor for the history/coming gradient in RMSProp.
RidgeRegression - Class in smile.regression
Ridge Regression.
RidgeRegression() - Constructor for class smile.regression.RidgeRegression
 
rmse - Variable in class smile.validation.RegressionMetrics
The root mean squared error on validation data.
RMSE - Class in smile.validation.metric
Root mean squared error.
RMSE() - Constructor for class smile.validation.metric.RMSE
 
RMSProp - Class in smile.deep.optimizer
RMSProp optimizer with adaptive learning rate.
RMSProp() - Constructor for class smile.deep.optimizer.RMSProp
Constructor.
RMSProp(TimeFunction) - Constructor for class smile.deep.optimizer.RMSProp
Constructor.
RMSProp(TimeFunction, double, double) - Constructor for class smile.deep.optimizer.RMSProp
Constructor.
RobustStandardizer - Class in smile.feature.transform
Robustly standardizes numeric feature by subtracting the median and dividing by the IQR.
RobustStandardizer() - Constructor for class smile.feature.transform.RobustStandardizer
 
root - Variable in class smile.base.cart.CART
The root of decision tree.
root() - Method in class smile.base.cart.CART
Returs the root node.
rounds - Variable in class smile.validation.ClassificationValidations
The multiple round validations.
rounds - Variable in class smile.validation.RegressionValidations
The multiple round validations.
RSquared() - Method in class smile.regression.LinearModel
Returns R2 statistic.
rss - Variable in class smile.validation.RegressionMetrics
The residual sum of squares on validation data.
RSS - Class in smile.validation.metric
Residual sum of squares.
RSS() - Constructor for class smile.validation.metric.RSS
 
RSS() - Method in class smile.regression.LinearModel
Returns the residual sum of squares.
RSS() - Method in class smile.timeseries.AR
Returns the residual sum of squares.
RSS() - Method in class smile.timeseries.ARMA
Returns the residual sum of squares.
run(int, Supplier<T>) - Static method in class smile.clustering.PartitionClustering
Runs a clustering algorithm multiple times and return the best one (e.g.

S

s2n - Variable in class smile.feature.selection.SignalNoiseRatio
Signal noise ratio.
SammonMapping - Class in smile.manifold
The Sammon's mapping is an iterative technique for making interpoint distances in the low-dimensional projection as close as possible to the interpoint distances in the high-dimensional object.
SammonMapping(double, double[][]) - Constructor for class smile.manifold.SammonMapping
Constructor.
sample(int) - Method in class smile.regression.GaussianProcessRegression.JointPrediction
Draw samples from Gaussian process.
samples - Variable in class smile.base.cart.CART
The samples for training this node.
samples - Variable in class smile.validation.Bag
The random samples.
scale() - Method in class smile.classification.ClassLabels
Returns the nominal scale of the class labels.
scale(double) - Method in class smile.classification.PlattScaling
Returns the posterior probability estimate P(y = 1 | x).
Scaler - Class in smile.feature.transform
Scales the numeric variables into the range [0, 1].
Scaler() - Constructor for class smile.feature.transform.Scaler
 
schema - Variable in class smile.base.cart.CART
The schema of predictors.
schema - Variable in class smile.feature.extraction.Projection
The schema of output space.
schema() - Method in class smile.classification.AdaBoost
 
schema() - Method in interface smile.classification.DataFrameClassifier
Returns the predictor schema.
schema() - Method in class smile.classification.DecisionTree
 
schema() - Method in class smile.classification.GradientTreeBoost
 
schema() - Method in class smile.classification.RandomForest
 
schema() - Method in interface smile.regression.DataFrameRegression
Returns the schema of predictors.
schema() - Method in class smile.regression.GradientTreeBoost
 
schema() - Method in class smile.regression.LinearModel
 
schema() - Method in class smile.regression.RandomForest
 
schema() - Method in class smile.regression.RegressionTree
 
score() - Method in class smile.base.cart.InternalNode
Returns the split score (reduction of impurity).
score(double[]) - Method in class smile.anomaly.IsolationForest
Returns the anomaly score.
score(double[]) - Method in class smile.classification.LogisticRegression.Binomial
 
score(double[][]) - Method in class smile.anomaly.IsolationForest
Returns the anomaly scores.
score(double[], double[]) - Method in class smile.validation.metric.MAD
 
score(double[], double[]) - Method in class smile.validation.metric.MSE
 
score(double[], double[]) - Method in class smile.validation.metric.R2
 
score(double[], double[]) - Method in interface smile.validation.metric.RegressionMetric
Returns a score to measure the quality of regression.
score(double[], double[]) - Method in class smile.validation.metric.RMSE
 
score(double[], double[]) - Method in class smile.validation.metric.RSS
 
score(int[]) - Method in class smile.classification.Maxent.Binomial
 
score(int[], double[]) - Method in class smile.validation.metric.AUC
 
score(int[], double[]) - Method in class smile.validation.metric.LogLoss
 
score(int[], double[]) - Method in interface smile.validation.metric.ProbabilisticClassificationMetric
Returns a score to measure the quality of classification.
score(int[], int[]) - Method in class smile.validation.metric.Accuracy
 
score(int[], int[]) - Method in class smile.validation.metric.AdjustedMutualInformation
 
score(int[], int[]) - Method in class smile.validation.metric.AdjustedRandIndex
 
score(int[], int[]) - Method in interface smile.validation.metric.ClassificationMetric
Returns a score to measure the quality of classification.
score(int[], int[]) - Method in interface smile.validation.metric.ClusteringMetric
Returns a score to measure the quality of clustering.
score(int[], int[]) - Method in class smile.validation.metric.Error
 
score(int[], int[]) - Method in class smile.validation.metric.Fallout
 
score(int[], int[]) - Method in class smile.validation.metric.FDR
 
score(int[], int[]) - Method in class smile.validation.metric.FScore
 
score(int[], int[]) - Method in class smile.validation.metric.MatthewsCorrelation
 
score(int[], int[]) - Method in class smile.validation.metric.MutualInformation
 
score(int[], int[]) - Method in class smile.validation.metric.NormalizedMutualInformation
 
score(int[], int[]) - Method in class smile.validation.metric.Precision
 
score(int[], int[]) - Method in class smile.validation.metric.RandIndex
 
score(int[], int[]) - Method in class smile.validation.metric.Recall
 
score(int[], int[]) - Method in class smile.validation.metric.Sensitivity
 
score(int[], int[]) - Method in class smile.validation.metric.Specificity
 
score(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
score(T) - Method in class smile.base.svm.KernelMachine
Returns the decision function value.
score(T) - Method in interface smile.classification.Classifier
The raw prediction score.
scores - Variable in class smile.manifold.MDS
The component scores.
scoreTime - Variable in class smile.validation.ClassificationMetrics
The time in milliseconds of scoring the validation data.
scoreTime - Variable in class smile.validation.RegressionMetrics
The time in milliseconds of scoring the validation data.
sd - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The standard deviation of predictive distribution at query points.
sd - Variable in class smile.regression.GaussianProcessRegression
The standard deviation of responsible variable.
sd - Variable in class smile.validation.ClassificationValidations
The standard deviation of metrics.
sd - Variable in class smile.validation.RegressionValidations
The standard deviation of metrics.
seed(int, double[][]) - Static method in class smile.vq.NeuralGas
Selects random samples as initial neurons of Neural Gas.
seed(T[], T[], int[], ToDoubleBiFunction<T, T>) - Static method in class smile.clustering.PartitionClustering
Initialize cluster membership of input objects with K-Means++ algorithm.
sensitivity - Variable in class smile.validation.ClassificationMetrics
The sensitivity on validation data.
Sensitivity - Class in smile.validation.metric
Sensitivity or true positive rate (TPR) (also called hit rate, recall) is a statistical measures of the performance of a binary classification test.
Sensitivity() - Constructor for class smile.validation.metric.Sensitivity
 
SequenceLabeler<T> - Interface in smile.sequence
A sequence labeler assigns a class label to each position of the sequence.
setClipNorm(double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the gradient clipping norm.
setClipValue(double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the gradient clipping value.
setEdgeAge(Neuron, int) - Method in class smile.vq.hebb.Neuron
Sets the age of edge.
setLearningRate(double) - Method in class smile.classification.LogisticRegression
Sets the learning rate of stochastic gradient descent.
setLearningRate(double) - Method in class smile.classification.Maxent
Sets the learning rate of stochastic gradient descent.
setLearningRate(double) - Method in class smile.classification.SparseLogisticRegression
Sets the learning rate of stochastic gradient descent.
setLearningRate(TimeFunction) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the learning rate.
setMomentum(TimeFunction) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the momentum factor.
setParameters(Properties) - Method in class smile.base.mlp.MultilayerPerceptron
Sets MLP hyper-parameters such as learning rate, weight decay, momentum, RMSProp, etc.
setRMSProp(double, double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets RMSProp parameters.
setWeightDecay(double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the weight decay factor.
SGD - Class in smile.deep.optimizer
Stochastic gradient descent (with momentum) optimizer.
SGD() - Constructor for class smile.deep.optimizer.SGD
Constructor.
SGD(TimeFunction) - Constructor for class smile.deep.optimizer.SGD
Constructor.
SGD(TimeFunction, TimeFunction) - Constructor for class smile.deep.optimizer.SGD
Constructor.
shap(Stream<T>) - Method in interface smile.feature.importance.SHAP
Returns the average of absolute SHAP values over a data set.
shap(DataFrame) - Method in class smile.base.cart.CART
Returns the average of absolute SHAP values over a data frame.
shap(DataFrame) - Method in class smile.classification.GradientTreeBoost
Returns the average of absolute SHAP values over a data frame.
shap(DataFrame) - Method in interface smile.feature.importance.TreeSHAP
Returns the average of absolute SHAP values over a data frame.
shap(Tuple) - Method in class smile.base.cart.CART
 
shap(Tuple) - Method in class smile.classification.GradientTreeBoost
 
shap(Tuple) - Method in interface smile.feature.importance.TreeSHAP
 
shap(T) - Method in interface smile.feature.importance.SHAP
Returns the SHAP values.
SHAP<T> - Interface in smile.feature.importance
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.
SIB - Class in smile.clustering
The Sequential Information Bottleneck algorithm.
SIB(double, double[][], int[]) - Constructor for class smile.clustering.SIB
Constructor.
sigmoid() - Static method in interface smile.base.mlp.ActivationFunction
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
sigmoid() - Static method in interface smile.deep.activation.ActivationFunction
Returns the logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
sigmoid(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with sigmoid activation function.
sigmoid(int, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with sigmoid activation function.
Sigmoid - Class in smile.deep.activation
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
Sigmoid() - Constructor for class smile.deep.activation.Sigmoid
Constructor.
SIGMOID - Enum constant in enum class smile.base.mlp.OutputFunction
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
SignalNoiseRatio - Class in smile.feature.selection
The signal-to-noise (S2N) metric ratio is a univariate feature ranking metric, which can be used as a feature selection criterion for binary classification problems.
SignalNoiseRatio(String, double) - Constructor for class smile.feature.selection.SignalNoiseRatio
Constructor.
SimpleImputer - Class in smile.feature.imputation
Simple algorithm replaces missing values with the constant value along each column.
SimpleImputer(Map<String, Object>) - Constructor for class smile.feature.imputation.SimpleImputer
Constructor.
SingleLinkage - Class in smile.clustering.linkage
Single linkage.
SingleLinkage(double[][]) - Constructor for class smile.clustering.linkage.SingleLinkage
Constructor.
SingleLinkage(int, float[]) - Constructor for class smile.clustering.linkage.SingleLinkage
Constructor.
size - Variable in class smile.base.cart.LeafNode
The number of samples in the node.
size - Variable in class smile.clustering.PartitionClustering
The number of observations in each cluster.
size - Variable in class smile.validation.ClassificationMetrics
The validation data size.
size - Variable in class smile.validation.RegressionMetrics
The validation data size.
size() - Method in class smile.anomaly.IsolationForest
Returns the number of trees in the model.
size() - Method in class smile.association.FPGrowth
Returns the number transactions in the database.
size() - Method in class smile.association.FPTree
Returns the number transactions in the database.
size() - Method in class smile.base.cart.CART
Returns the number of nodes in the tree.
size() - Method in class smile.base.cart.InternalNode
 
size() - Method in class smile.base.cart.LeafNode
 
size() - Method in interface smile.base.cart.Node
Returns the number of samples in the node.
size() - Method in class smile.classification.AdaBoost
Returns the number of trees in the model.
size() - Method in class smile.classification.GradientTreeBoost
Returns the number of trees in the model.
size() - Method in class smile.classification.RandomForest
Returns the number of trees in the model.
size() - Method in class smile.clustering.linkage.Linkage
Returns the proximity matrix size.
size() - Method in class smile.regression.GradientTreeBoost
Returns the number of trees in the model.
size() - Method in class smile.regression.RandomForest
Returns the number of trees in the model.
smile.anomaly - package smile.anomaly
Anomaly detection is the identification of rare items, events or observations which raise suspicions by differing significantly from the majority of the data.
smile.association - package smile.association
Frequent item set mining and association rule mining.
smile.base.cart - package smile.base.cart
Classification and regression tree base package.
smile.base.mlp - package smile.base.mlp
Multilayer perceptron neural network base package.
smile.base.rbf - package smile.base.rbf
RBF network base package.
smile.base.svm - package smile.base.svm
Support vector machine base package.
smile.classification - package smile.classification
Classification algorithms.
smile.clustering - package smile.clustering
Clustering analysis.
smile.clustering.linkage - package smile.clustering.linkage
Cluster dissimilarity measures.
smile.deep.activation - package smile.deep.activation
 
smile.deep.optimizer - package smile.deep.optimizer
 
smile.feature.extraction - package smile.feature.extraction
Feature extraction.
smile.feature.importance - package smile.feature.importance
Feature importance.
smile.feature.imputation - package smile.feature.imputation
Missing value imputation.
smile.feature.selection - package smile.feature.selection
Feature selection.
smile.feature.transform - package smile.feature.transform
 
smile.glm - package smile.glm
Generalized linear models.
smile.glm.model - package smile.glm.model
The error distribution models.
smile.hpo - package smile.hpo
Hyperparameter optimization.
smile.manifold - package smile.manifold
Manifold learning finds a low-dimensional basis for describing high-dimensional data.
smile.regression - package smile.regression
Regression analysis.
smile.sequence - package smile.sequence
Learning algorithms for sequence data.
smile.timeseries - package smile.timeseries
Time series analysis.
smile.validation - package smile.validation
Model validation and selection.
smile.validation.metric - package smile.validation.metric
Model validation metrics.
smile.vq - package smile.vq
Vector quantization is a lossy compression technique used in speech and image coding.
smile.vq.hebb - package smile.vq.hebb
Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell.
soft() - Method in class smile.classification.AdaBoost
 
soft() - Method in interface smile.classification.Classifier
Returns true if this is a soft classifier that can estimate the posteriori probabilities of classification.
soft() - Method in class smile.classification.DecisionTree
 
soft() - Method in class smile.classification.DiscreteNaiveBayes
 
soft() - Method in class smile.classification.GradientTreeBoost
 
soft() - Method in class smile.classification.KNN
 
soft() - Method in class smile.classification.LDA
 
soft() - Method in class smile.classification.LogisticRegression
 
soft() - Method in class smile.classification.Maxent
 
soft() - Method in class smile.classification.MLP
 
soft() - Method in class smile.classification.NaiveBayes
 
soft() - Method in class smile.classification.OneVersusOne
 
soft() - Method in class smile.classification.OneVersusRest
 
soft() - Method in class smile.classification.QDA
 
soft() - Method in class smile.classification.RandomForest
 
soft() - Method in class smile.classification.SparseLogisticRegression
 
softmax() - Static method in interface smile.deep.activation.ActivationFunction
Returns the softmax activation function for multi-class output layer.
Softmax - Class in smile.deep.activation
Softmax for multi-class cross entropy objection function.
Softmax() - Constructor for class smile.deep.activation.Softmax
Constructor.
SOFTMAX - Enum constant in enum class smile.base.mlp.OutputFunction
Softmax for multi-class cross entropy objection function.
SOM - Class in smile.vq
Self-Organizing Map.
SOM(double[][][], TimeFunction, Neighborhood) - Constructor for class smile.vq.SOM
Constructor.
sparse(int, int, String...) - Static method in class smile.feature.extraction.RandomProjection
Generates a sparse random projection.
sparse(int, KernelMachine<SparseArray>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
SparseEncoder - Class in smile.feature.extraction
Encodes numeric and categorical features into sparse array with on-hot encoding of categorical variables.
SparseEncoder(StructType, String...) - Constructor for class smile.feature.extraction.SparseEncoder
Constructor.
SparseLogisticRegression - Class in smile.classification
Logistic regression on sparse data.
SparseLogisticRegression(int, double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression
Constructor.
SparseLogisticRegression.Binomial - Class in smile.classification
Binomial logistic regression.
SparseLogisticRegression.Multinomial - Class in smile.classification
Multinomial logistic regression.
specificity - Variable in class smile.validation.ClassificationMetrics
The specificity on validation data.
Specificity - Class in smile.validation.metric
Specificity (SPC) or True Negative Rate is a statistical measures of the performance of a binary classification test.
Specificity() - Constructor for class smile.validation.metric.Specificity
 
SpectralClustering - Class in smile.clustering
Spectral Clustering.
SpectralClustering(double, int, int[]) - Constructor for class smile.clustering.SpectralClustering
Constructor.
split(Split, PriorityQueue<Split>) - Method in class smile.base.cart.CART
Split a node into two children nodes.
Split - Class in smile.base.cart
The data about of a potential split for a leaf node.
Split(LeafNode, int, double, int, int, int, int) - Constructor for class smile.base.cart.Split
Constructor.
SplitRule - Enum Class in smile.base.cart
The criterion to choose variable to split instances.
sqrt(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (sqrt(H(y1) * H(y2)) - E(MI)).
sqrt(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / sqrt(H(y1) * H(y2)).
SQRT - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
I(y1, y2) / sqrt(H(y1) * H(y2))
SQRT - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
I(y1, y2) / sqrt(H(y1) * H(y2))
SQRT - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with sqrt normalization.
SQRT - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with sqrt normalization.
ssr - Variable in class smile.feature.selection.SumSquaresRatio
Sum squares ratio.
Standardizer - Class in smile.feature.transform
Standardizes numeric feature to 0 mean and unit variance.
Standardizer() - Constructor for class smile.feature.transform.Standardizer
 
stratify(int[], int) - Static method in interface smile.validation.CrossValidation
Cross validation with stratified folds.
stratify(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Repeated stratified cross validation of classification.
stratify(int, int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
Repeated stratified cross validation of classification.
stratify(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Stratified cross validation of classification.
stratify(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
Stratified cross validation of classification.
stress - Variable in class smile.manifold.IsotonicMDS
The final stress achieved.
stress - Variable in class smile.manifold.SammonMapping
The final stress achieved.
sum(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (0.5 * (H(y1) + H(y2)) - E(MI)).
sum(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of 2 * I(y1, y2) / (H(y1) + H(y2)).
SUM - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
2 * I(y1, y2) / (H(y1) + H(y2))
SUM - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
2 * I(y1, y2) / (H(y1) + H(y2))
SUM - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with sum normalization.
SUM - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with sum normalization.
SumSquaresRatio - Class in smile.feature.selection
The ratio of between-groups to within-groups sum of squares is a univariate feature ranking metric, which can be used as a feature selection criterion for multi-class classification problems.
SumSquaresRatio(String, double) - Constructor for class smile.feature.selection.SumSquaresRatio
Constructor.
support - Variable in class smile.association.AssociationRule
The support value.
support - Variable in class smile.association.ItemSet
The associated support of item set.
SupportVector<T> - Class in smile.base.svm
Support vector.
SupportVector(int, T, int, double, double, double, double, double) - Constructor for class smile.base.svm.SupportVector
Constructor.
SVDImputer - Interface in smile.feature.imputation
Missing value imputation with singular value decomposition.
SVM<T> - Class in smile.anomaly
One-class support vector machines for novelty detection.
SVM<T> - Class in smile.classification
Support vector machines for classification.
SVM - Class in smile.regression
Epsilon support vector regression.
SVM() - Constructor for class smile.regression.SVM
 
SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.anomaly.SVM
Constructor.
SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.classification.SVM
Constructor.
SVR<T> - Class in smile.base.svm
Epsilon support vector regression.
SVR(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.SVR
Constructor.

T

t - Variable in class smile.base.mlp.MultilayerPerceptron
The training iterations.
t - Variable in class smile.feature.extraction.GHA
The training iterations.
T - Variable in class smile.vq.BIRCH
THe maximum radius of a sub-cluster.
table - Variable in class smile.validation.metric.ContingencyTable
The contingency table.
tanh() - Static method in interface smile.base.mlp.ActivationFunction
Hyperbolic tangent activation function.
tanh() - Static method in interface smile.deep.activation.ActivationFunction
Returns the hyperbolic tangent activation function.
tanh(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with hyperbolic tangent activation function.
tanh(int, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with hyperbolic tangent activation function.
Tanh - Class in smile.deep.activation
Hyperbolic tangent activation function.
Tanh() - Constructor for class smile.deep.activation.Tanh
Constructor.
target - Variable in class smile.base.mlp.MultilayerPerceptron
The buffer to store desired target value of training instance.
test(DataFrame) - Method in class smile.classification.AdaBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.classification.GradientTreeBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.classification.RandomForest
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.regression.GradientTreeBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.regression.RandomForest
Test the model on a validation dataset.
TimeSeries - Interface in smile.timeseries
Time series utility functions.
toNode(Node, Node) - Method in class smile.base.cart.NominalSplit
 
toNode(Node, Node) - Method in class smile.base.cart.OrdinalSplit
 
toNode(Node, Node) - Method in class smile.base.cart.Split
Returns an internal node with the feature, value, and score of this split.
toString() - Method in class smile.association.AssociationRule
 
toString() - Method in class smile.association.ItemSet
 
toString() - Method in class smile.base.cart.CART
Returns a text representation of the tree in R's rpart format.
toString() - Method in class smile.base.cart.Split
 
toString() - Method in class smile.base.mlp.HiddenLayer
 
toString() - Method in class smile.base.mlp.HiddenLayerBuilder
 
toString() - Method in class smile.base.mlp.InputLayer
 
toString() - Method in class smile.base.mlp.MultilayerPerceptron
 
toString() - Method in class smile.base.mlp.OutputLayer
 
toString() - Method in class smile.base.mlp.OutputLayerBuilder
 
toString() - Method in class smile.base.svm.KernelMachine
 
toString() - Method in class smile.classification.IsotonicRegressionScaling
 
toString() - Method in class smile.clustering.CentroidClustering
 
toString() - Method in class smile.clustering.linkage.CompleteLinkage
 
toString() - Method in class smile.clustering.linkage.SingleLinkage
 
toString() - Method in class smile.clustering.linkage.UPGMALinkage
 
toString() - Method in class smile.clustering.linkage.UPGMCLinkage
 
toString() - Method in class smile.clustering.linkage.WardLinkage
 
toString() - Method in class smile.clustering.linkage.WPGMALinkage
 
toString() - Method in class smile.clustering.linkage.WPGMCLinkage
 
toString() - Method in class smile.clustering.MEC
 
toString() - Method in class smile.clustering.PartitionClustering
 
toString() - Method in class smile.deep.optimizer.Adam
 
toString() - Method in class smile.deep.optimizer.RMSProp
 
toString() - Method in class smile.deep.optimizer.SGD
 
toString() - Method in class smile.feature.imputation.SimpleImputer
 
toString() - Method in class smile.feature.selection.InformationValue
 
toString() - Method in class smile.feature.selection.SignalNoiseRatio
 
toString() - Method in class smile.feature.selection.SumSquaresRatio
 
toString() - Method in class smile.feature.transform.Normalizer
 
toString() - Method in class smile.glm.GLM
 
toString() - Method in class smile.regression.GaussianProcessRegression.JointPrediction
 
toString() - Method in class smile.regression.GaussianProcessRegression
 
toString() - Method in class smile.regression.LinearModel
 
toString() - Method in class smile.sequence.CRFLabeler
 
toString() - Method in class smile.sequence.HMM
 
toString() - Method in class smile.sequence.HMMLabeler
 
toString() - Method in class smile.timeseries.AR
 
toString() - Method in class smile.timeseries.ARMA
 
toString() - Method in class smile.timeseries.BoxTest
 
toString() - Method in class smile.validation.ClassificationMetrics
 
toString() - Method in class smile.validation.ClassificationValidation
 
toString() - Method in class smile.validation.ClassificationValidations
 
toString() - Method in class smile.validation.metric.Accuracy
 
toString() - Method in class smile.validation.metric.AdjustedMutualInformation
 
toString() - Method in class smile.validation.metric.AdjustedRandIndex
 
toString() - Method in class smile.validation.metric.AUC
 
toString() - Method in class smile.validation.metric.ConfusionMatrix
 
toString() - Method in class smile.validation.metric.Error
 
toString() - Method in class smile.validation.metric.Fallout
 
toString() - Method in class smile.validation.metric.FDR
 
toString() - Method in class smile.validation.metric.FScore
 
toString() - Method in class smile.validation.metric.LogLoss
 
toString() - Method in class smile.validation.metric.MAD
 
toString() - Method in class smile.validation.metric.MatthewsCorrelation
 
toString() - Method in class smile.validation.metric.MSE
 
toString() - Method in class smile.validation.metric.MutualInformation
 
toString() - Method in class smile.validation.metric.NormalizedMutualInformation
 
toString() - Method in class smile.validation.metric.Precision
 
toString() - Method in class smile.validation.metric.R2
 
toString() - Method in class smile.validation.metric.RandIndex
 
toString() - Method in class smile.validation.metric.Recall
 
toString() - Method in class smile.validation.metric.RMSE
 
toString() - Method in class smile.validation.metric.RSS
 
toString() - Method in class smile.validation.metric.Sensitivity
 
toString() - Method in class smile.validation.metric.Specificity
 
toString() - Method in class smile.validation.RegressionMetrics
 
toString() - Method in class smile.validation.RegressionValidation
 
toString() - Method in class smile.validation.RegressionValidations
 
toString(StructType, boolean) - Method in class smile.base.cart.InternalNode
Returns the string representation of branch.
toString(StructType, boolean) - Method in class smile.base.cart.NominalNode
 
toString(StructType, boolean) - Method in class smile.base.cart.OrdinalNode
 
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.DecisionNode
 
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.InternalNode
 
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in interface smile.base.cart.Node
Adds the string representation (R's rpart format) to a collection.
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.RegressionNode
 
toString(InformationValue[]) - Static method in class smile.feature.selection.InformationValue
Returns a string representation of the array of information values.
toTransform(InformationValue[]) - Static method in class smile.feature.selection.InformationValue
Returns the data transformation that covert feature value to its weight of evidence.
transform(double[]) - Method in class smile.base.mlp.HiddenLayer
 
transform(double[]) - Method in class smile.base.mlp.InputLayer
 
transform(double[]) - Method in class smile.base.mlp.Layer
The activation or output function.
transform(double[]) - Method in class smile.base.mlp.OutputLayer
 
tree - Variable in class smile.classification.RandomForest.Model
The decision tree.
tree - Variable in class smile.regression.RandomForest.Model
The decision tree.
tree() - Method in class smile.clustering.HierarchicalClustering
Returns an n-1 by 2 matrix of which row i describes the merging of clusters at step i of the clustering.
trees() - Method in class smile.anomaly.IsolationForest
Returns the isolation trees in the model.
trees() - Method in class smile.classification.AdaBoost
Returns the decision trees.
trees() - Method in class smile.classification.GradientTreeBoost
Returns the regression trees.
trees() - Method in class smile.classification.RandomForest
 
trees() - Method in interface smile.feature.importance.TreeSHAP
Returns the decision trees.
trees() - Method in class smile.regression.GradientTreeBoost
 
trees() - Method in class smile.regression.RandomForest
 
TreeSHAP - Interface in smile.feature.importance
SHAP of ensemble tree methods.
trim(int) - Method in class smile.classification.AdaBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.classification.GradientTreeBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.classification.RandomForest
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.regression.GradientTreeBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.regression.RandomForest
Trims the tree model set to a smaller size in case of over-fitting.
trueChild() - Method in class smile.base.cart.InternalNode
Returns the true branch child.
truth - Variable in class smile.validation.ClassificationValidation
The true class labels of validation data.
truth - Variable in class smile.validation.RegressionValidation
The true response variable of validation data.
TSNE - Class in smile.manifold
The t-distributed stochastic neighbor embedding.
TSNE(double[][], int) - Constructor for class smile.manifold.TSNE
Constructor.
TSNE(double[][], int, double, double, int) - Constructor for class smile.manifold.TSNE
Constructor.
ttest() - Method in class smile.regression.LinearModel
Returns the t-test of the coefficients (including intercept).
ttest() - Method in class smile.timeseries.AR
Returns the t-test of the coefficients (including intercept).
ttest() - Method in class smile.timeseries.ARMA
Returns the t-test of the coefficients (including intercept).
TWCNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
Transformed Weight-normalized Complement Naive Bayes.
type - Variable in class smile.timeseries.BoxTest
The type of test.

U

UMAP - Class in smile.manifold
Uniform Manifold Approximation and Projection.
UMAP(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.UMAP
Constructor.
umatrix() - Method in class smile.vq.SOM
Calculates the unified distance matrix (u-matrix) for visualization.
update(double[]) - Method in class smile.feature.extraction.GHA
Update the model with a new sample.
update(double[]) - Method in class smile.vq.BIRCH
 
update(double[]) - Method in class smile.vq.GrowingNeuralGas
 
update(double[]) - Method in class smile.vq.NeuralGas
 
update(double[]) - Method in class smile.vq.NeuralMap
 
update(double[]) - Method in class smile.vq.SOM
 
update(double[]) - Method in interface smile.vq.VectorQuantizer
Update the codebook with a new observation.
update(double[][]) - Method in class smile.feature.extraction.GHA
Update the model with a set of samples.
update(double[][], double[]) - Method in class smile.regression.MLP
Updates the model with a mini-batch.
update(double[][], int[]) - Method in class smile.classification.MLP
Updates the model with a mini-batch.
update(double[], double) - Method in class smile.regression.LinearModel
Growing window recursive least squares with lambda = 1.
update(double[], double) - Method in class smile.regression.MLP
Updates the model with a single sample.
update(double[], double) - Method in class smile.vq.hebb.Neuron
Updates the reference vector by w += eps * (x - w).
update(double[], double, double) - Method in class smile.regression.LinearModel
Recursive least squares.
update(double[], int) - Method in class smile.classification.LogisticRegression.Binomial
 
update(double[], int) - Method in class smile.classification.LogisticRegression.Multinomial
 
update(double[], int) - Method in class smile.classification.MLP
Updates the model with a single sample.
update(int) - Method in class smile.base.mlp.MultilayerPerceptron
Updates the weights for mini-batch training.
update(int) - Method in class smile.manifold.TSNE
Performs additional iterations.
update(int[][], int) - Method in class smile.sequence.HMM
Updates the HMM by the Baum-Welch algorithm.
update(int[][], int[]) - Method in class smile.classification.DiscreteNaiveBayes
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
update(int[], int) - Method in class smile.classification.DiscreteNaiveBayes
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
update(int[], int) - Method in class smile.classification.Maxent.Binomial
 
update(int[], int) - Method in class smile.classification.Maxent.Multinomial
 
update(int, double, double, double, double, double) - Method in class smile.base.mlp.InputLayer
 
update(int, double, double, double, double, double) - Method in class smile.base.mlp.Layer
Adjust network weights by back-propagation algorithm.
update(Layer, int, int) - Method in class smile.deep.optimizer.Adam
 
update(Layer, int, int) - Method in interface smile.deep.optimizer.Optimizer
Updates a layer.
update(Layer, int, int) - Method in class smile.deep.optimizer.RMSProp
 
update(Layer, int, int) - Method in class smile.deep.optimizer.SGD
 
update(DataFrame) - Method in class smile.feature.extraction.GHA
Update the model with a new data frame.
update(DataFrame) - Method in class smile.regression.LinearModel
Online update the regression model with a new data frame.
update(Dataset<Instance<T>>) - Method in interface smile.classification.Classifier
Updates the model with a mini-batch of new samples.
update(Dataset<Instance<T>>) - Method in interface smile.regression.Regression
Updates the model with a mini-batch of new samples.
update(Tuple) - Method in class smile.feature.extraction.GHA
Update the model with a new sample.
update(Tuple) - Method in class smile.regression.LinearModel
Online update the regression model with a new training instance.
update(SparseArray[], int[]) - Method in class smile.classification.DiscreteNaiveBayes
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
update(SparseArray, int) - Method in class smile.classification.DiscreteNaiveBayes
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
update(SparseArray, int) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
update(SparseArray, int) - Method in class smile.classification.SparseLogisticRegression.Multinomial
 
update(T[][], int) - Method in class smile.sequence.HMMLabeler
Updates the HMM by the Baum-Welch algorithm.
update(T[][], int, ToIntFunction<T>) - Method in class smile.sequence.HMM
Updates the HMM by the Baum-Welch algorithm.
update(T[], double[]) - Method in interface smile.regression.Regression
Updates the model with a mini-batch of new samples.
update(T[], int[]) - Method in interface smile.classification.Classifier
Updates the model with a mini-batch of new samples.
update(T, double) - Method in interface smile.regression.Regression
Online update the classifier with a new training instance.
update(T, int) - Method in interface smile.classification.Classifier
Online update the classifier with a new training instance.
UPGMALinkage - Class in smile.clustering.linkage
Unweighted Pair Group Method with Arithmetic mean (also known as average linkage).
UPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMALinkage
Constructor.
UPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMALinkage
Constructor.
UPGMCLinkage - Class in smile.clustering.linkage
Unweighted Pair Group Method using Centroids (also known as centroid linkage).
UPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
Constructor.
UPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
Constructor.

V

valueOf(String) - Static method in enum class smile.base.cart.Loss.Type
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in interface smile.base.cart.Loss
Parses the loss.
valueOf(String) - Static method in enum class smile.base.cart.SplitRule
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.base.mlp.Cost
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.base.mlp.OutputFunction
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.classification.DiscreteNaiveBayes.Model
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.feature.transform.Normalizer.Norm
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.timeseries.AR.Method
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.timeseries.BoxTest.Type
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.validation.metric.AdjustedMutualInformation.Method
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.validation.metric.NormalizedMutualInformation.Method
Returns the enum constant of this class with the specified name.
values() - Static method in enum class smile.base.cart.Loss.Type
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.base.cart.SplitRule
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.base.mlp.Cost
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.base.mlp.OutputFunction
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.classification.DiscreteNaiveBayes.Model
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.feature.transform.Normalizer.Norm
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.timeseries.AR.Method
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.timeseries.BoxTest.Type
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.validation.metric.AdjustedMutualInformation.Method
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.validation.metric.NormalizedMutualInformation.Method
Returns an array containing the constants of this enum class, in the order they are declared.
variance() - Method in class smile.feature.extraction.PCA
Returns the principal component variances, ordered from largest to smallest, which are the eigenvalues of the covariance or correlation matrix of learning data.
variance() - Method in class smile.feature.extraction.ProbabilisticPCA
Returns the variance of noise.
variance() - Method in class smile.timeseries.AR
Returns the residual variance.
variance() - Method in class smile.timeseries.ARMA
Returns the residual variance.
variance(double) - Method in interface smile.glm.model.Model
The variance function.
varianceProportion() - Method in class smile.feature.extraction.PCA
Returns the proportion of variance contained in each principal component, ordered from largest to smallest.
variances() - Method in class smile.manifold.KPCA
Returns the eigenvalues of kernel principal components, ordered from largest to smallest.
VectorQuantizer - Interface in smile.vq
Vector quantizer with competitive learning.
vectors() - Method in class smile.base.svm.KernelMachine
Returns the support vectors of kernel machines.
viterbi(Tuple[]) - Method in class smile.sequence.CRF
Labels sequence with Viterbi algorithm.
viterbi(T[]) - Method in class smile.sequence.CRFLabeler
Labels sequence with Viterbi algorithm.
vote(Tuple, double[]) - Method in class smile.classification.RandomForest
Predict and estimate the probability by voting.

W

w - Variable in class smile.regression.GaussianProcessRegression
The linear weights.
w - Variable in class smile.vq.hebb.Neuron
The reference vector.
WardLinkage - Class in smile.clustering.linkage
Ward's linkage.
WardLinkage(double[][]) - Constructor for class smile.clustering.linkage.WardLinkage
Constructor.
WardLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WardLinkage
Constructor.
WCNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
Weight-normalized Complement Naive Bayes.
weight - Variable in class smile.base.mlp.Layer
The affine transformation matrix.
weight - Variable in class smile.classification.RandomForest.Model
The weight of tree, which can be used when aggregating tree votes.
weightGradient - Variable in class smile.base.mlp.Layer
The weight gradient.
weightGradientMoment1 - Variable in class smile.base.mlp.Layer
The first moment of weight gradient.
weightGradientMoment2 - Variable in class smile.base.mlp.Layer
The second moment of weight gradient.
weights() - Method in class smile.base.svm.KernelMachine
Returns the weights of instances.
weightUpdate - Variable in class smile.base.mlp.Layer
The weight update.
width - Variable in class smile.manifold.LaplacianEigenmap
The width of heat kernel.
WinsorScaler - Class in smile.feature.transform
Scales all numeric variables into the range [0, 1].
WinsorScaler() - Constructor for class smile.feature.transform.WinsorScaler
 
woe - Variable in class smile.feature.selection.InformationValue
Weight of evidence.
WPGMALinkage - Class in smile.clustering.linkage
Weighted Pair Group Method with Arithmetic mean.
WPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMALinkage
Constructor.
WPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMALinkage
Constructor.
WPGMCLinkage - Class in smile.clustering.linkage
Weighted Pair Group Method using Centroids (also known as median linkage).
WPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
Constructor.
WPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
Constructor.

X

x - Variable in class smile.base.cart.CART
The training data.
x - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The query points where the GP is evaluated.
x() - Method in class smile.timeseries.AR
Returns the time series.
x() - Method in class smile.timeseries.ARMA
Returns the time series.
XMeans - Class in smile.clustering
X-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters based on BIC scores.
XMeans(double, double[][], int[]) - Constructor for class smile.clustering.XMeans
Constructor.

Y

y - Variable in class smile.classification.ClassLabels
The sample class id in [0, k).
y - Variable in class smile.clustering.PartitionClustering
The cluster labels of data.
YuleWalker - Enum constant in enum class smile.timeseries.AR.Method
Yule-Walker method.

Z

ztest - Variable in class smile.glm.GLM
The coefficients, their standard errors, z-scores, and p-values.
ztest() - Method in class smile.glm.GLM
Returns the z-test of the coefficients (including intercept).
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form