Index
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form
A
- a - Variable in class smile.validation.metric.ContingencyTable
-
The row sum of contingency table.
- AbstractClassifier<T> - Class in smile.classification
-
Abstract base class of classifiers.
- AbstractClassifier(int[]) - Constructor for class smile.classification.AbstractClassifier
-
Constructor.
- AbstractClassifier(BaseVector<?, ?, ?>) - Constructor for class smile.classification.AbstractClassifier
-
Constructor.
- AbstractClassifier(IntSet) - Constructor for class smile.classification.AbstractClassifier
-
Constructor.
- accuracy - Variable in class smile.validation.ClassificationMetrics
-
The accuracy on validation data.
- Accuracy - Class in smile.validation.metric
-
The accuracy is the proportion of true results (both true positives and true negatives) in the population.
- Accuracy() - Constructor for class smile.validation.metric.Accuracy
- acf(double[], int) - Static method in interface smile.timeseries.TimeSeries
-
Autocorrelation function.
- ActivationFunction - Interface in smile.base.mlp
-
The activation function in hidden layers.
- ActivationFunction - Interface in smile.deep.activation
-
The activation function.
- AdaBoost - Class in smile.classification
-
AdaBoost (Adaptive Boosting) classifier with decision trees.
- AdaBoost(Formula, int, DecisionTree[], double[], double[], double[]) - Constructor for class smile.classification.AdaBoost
-
Constructor.
- AdaBoost(Formula, int, DecisionTree[], double[], double[], double[], IntSet) - Constructor for class smile.classification.AdaBoost
-
Constructor.
- Adam - Class in smile.deep.optimizer
-
Adaptive Moment optimizer.
- Adam() - Constructor for class smile.deep.optimizer.Adam
-
Constructor.
- Adam(TimeFunction) - Constructor for class smile.deep.optimizer.Adam
-
Constructor.
- Adam(TimeFunction, double, double) - Constructor for class smile.deep.optimizer.Adam
-
Constructor.
- Adam(TimeFunction, double, double, double) - Constructor for class smile.deep.optimizer.Adam
-
Constructor.
- add(String, double) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, double[]) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, double, double) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, double, double, double) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, int) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, int[]) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, int, int) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, int, int, int) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, String) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, String[]) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- addEdge(Neuron) - Method in class smile.vq.hebb.Neuron
-
Adds an edge.
- addEdge(Neuron, int) - Method in class smile.vq.hebb.Neuron
-
Adds an edge.
- AdjustedMutualInformation - Class in smile.validation.metric
-
Adjusted Mutual Information (AMI) for comparing clustering.
- AdjustedMutualInformation(AdjustedMutualInformation.Method) - Constructor for class smile.validation.metric.AdjustedMutualInformation
-
Constructor.
- AdjustedMutualInformation.Method - Enum Class in smile.validation.metric
-
The normalization method.
- adjustedR2() - Method in class smile.timeseries.AR
-
Returns adjusted R2 statistic.
- adjustedR2() - Method in class smile.timeseries.ARMA
-
Returns adjusted R2 statistic.
- AdjustedRandIndex - Class in smile.validation.metric
-
Adjusted Rand Index.
- AdjustedRandIndex() - Constructor for class smile.validation.metric.AdjustedRandIndex
- adjustedRSquared() - Method in class smile.regression.LinearModel
-
Returns adjusted R2 statistic.
- age - Variable in class smile.vq.hebb.Edge
-
The age of the edges.
- age() - Method in class smile.vq.hebb.Neuron
-
Increments the age of all edges emanating from the neuron.
- AIC() - Method in class smile.classification.LogisticRegression
-
Returns the AIC score.
- AIC() - Method in class smile.classification.Maxent
-
Returns the AIC score.
- AIC() - Method in class smile.classification.SparseLogisticRegression
-
Returns the AIC score.
- AIC() - Method in class smile.glm.GLM
-
Returns the AIC score.
- AIC(double, int) - Static method in interface smile.validation.ModelSelection
-
Akaike information criterion.
- antecedent - Variable in class smile.association.AssociationRule
-
Antecedent itemset.
- apply(double[]) - Method in class smile.feature.extraction.KernelPCA
- apply(double[]) - Method in class smile.feature.extraction.Projection
-
Project a data point to the feature space.
- apply(double[][]) - Method in class smile.feature.extraction.Projection
-
Project a set of data to the feature space.
- apply(double, FPTree) - Static method in class smile.association.ARM
-
Mines the association rules.
- apply(int, int, int, Fitness<BitString>) - Method in class smile.feature.selection.GAFE
-
Genetic algorithm based feature selection for classification.
- apply(String) - Method in class smile.feature.extraction.BagOfWords
-
Returns the bag-of-words features of a document.
- apply(String) - Method in class smile.feature.extraction.HashEncoder
-
Returns the bag-of-words features of a document.
- apply(FPTree) - Static method in class smile.association.FPGrowth
-
Mines the frequent item sets.
- apply(DataFrame) - Method in class smile.feature.extraction.BinaryEncoder
-
Generates the compact representation of sparse binary features for a data frame.
- apply(DataFrame) - Method in class smile.feature.extraction.Projection
- apply(DataFrame) - Method in class smile.feature.extraction.SparseEncoder
-
Generates the sparse representation of a data frame.
- apply(DataFrame) - Method in class smile.feature.imputation.SimpleImputer
- apply(Tuple) - Method in class smile.feature.extraction.BagOfWords
- apply(Tuple) - Method in class smile.feature.extraction.BinaryEncoder
-
Generates the compact representation of sparse binary features for given object.
- apply(Tuple) - Method in class smile.feature.extraction.Projection
- apply(Tuple) - Method in class smile.feature.extraction.SparseEncoder
-
Generates the sparse representation of given object.
- apply(Tuple) - Method in class smile.feature.imputation.KMedoidsImputer
- apply(Tuple) - Method in class smile.feature.imputation.KNNImputer
- apply(Tuple) - Method in class smile.feature.imputation.SimpleImputer
- apply(Tuple) - Method in class smile.feature.transform.Normalizer
- apply(T) - Method in class smile.manifold.KPCA
- apply(T[]) - Method in class smile.manifold.KPCA
-
Project a set of data to the feature space.
- applyAsDouble(T) - Method in interface smile.classification.Classifier
- applyAsDouble(T) - Method in interface smile.regression.Regression
- applyAsInt(T) - Method in interface smile.classification.Classifier
- ar() - Method in class smile.timeseries.AR
-
Returns the linear coefficients of AR (without intercept).
- ar() - Method in class smile.timeseries.ARMA
-
Returns the linear coefficients of AR(p).
- AR - Class in smile.timeseries
-
Autoregressive model.
- AR(double[], double[], double, AR.Method) - Constructor for class smile.timeseries.AR
-
Constructor.
- AR.Method - Enum Class in smile.timeseries
-
The fitting method.
- ARM - Class in smile.association
-
Association Rule Mining.
- ARMA - Class in smile.timeseries
-
Autoregressive moving-average model.
- ARMA(double[], double[], double[], double, double[], double[]) - Constructor for class smile.timeseries.ARMA
-
Constructor.
- AssociationRule - Class in smile.association
-
Association rule object.
- AssociationRule(int[], int[], double, double, double, double) - Constructor for class smile.association.AssociationRule
-
Constructor.
- attractors - Variable in class smile.clustering.DENCLUE
-
The density attractor of each observation.
- auc - Variable in class smile.validation.ClassificationMetrics
-
The AUC on validation data.
- AUC - Class in smile.validation.metric
-
The area under the curve (AUC).
- AUC() - Constructor for class smile.validation.metric.AUC
- avg - Variable in class smile.validation.ClassificationValidations
-
The average of metrics.
- avg - Variable in class smile.validation.RegressionValidations
-
The average of metrics.
B
- b - Variable in class smile.validation.metric.ContingencyTable
-
The column sum of contingency table.
- B - Variable in class smile.vq.BIRCH
-
The branching factor of non-leaf nodes.
- backpopagateDropout() - Method in class smile.base.mlp.Layer
-
Propagates the errors back through the (implicit) dropout layer.
- backpropagate(boolean) - Method in class smile.base.mlp.MultilayerPerceptron
-
Propagates the errors back through the network.
- backpropagate(double[]) - Method in class smile.base.mlp.HiddenLayer
- backpropagate(double[]) - Method in class smile.base.mlp.InputLayer
- backpropagate(double[]) - Method in class smile.base.mlp.Layer
-
Propagates the errors back to a lower layer.
- backpropagate(double[]) - Method in class smile.base.mlp.OutputLayer
- Bag - Class in smile.validation
-
A bag of random selected samples.
- Bag(int[], int[]) - Constructor for class smile.validation.Bag
-
Constructor.
- BagOfWords - Class in smile.feature.extraction
-
The bag-of-words feature of text used in natural language processing and information retrieval.
- BagOfWords(String[], Function<String, String[]>, String[], boolean) - Constructor for class smile.feature.extraction.BagOfWords
-
Constructor.
- BagOfWords(Function<String, String[]>, String[]) - Constructor for class smile.feature.extraction.BagOfWords
-
Constructor.
- BBDTree - Class in smile.clustering
-
Balanced Box-Decomposition Tree.
- BBDTree(double[][]) - Constructor for class smile.clustering.BBDTree
-
Constructs a tree out of the given n data points living in R^d.
- Bernoulli - Interface in smile.glm.model
-
The response variable is of Bernoulli distribution.
- BERNOULLI - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
The document Bernoulli model generates an indicator for each term of the vocabulary, either indicating presence of the term in the document or indicating absence.
- beta - Variable in class smile.glm.GLM
-
The linear weights.
- bias - Variable in class smile.base.mlp.Layer
-
The bias.
- biasGradient - Variable in class smile.base.mlp.Layer
-
The bias gradient.
- biasGradientMoment1 - Variable in class smile.base.mlp.Layer
-
The first moment of bias gradient.
- biasGradientMoment2 - Variable in class smile.base.mlp.Layer
-
The second moment of bias gradient.
- biasUpdate - Variable in class smile.base.mlp.Layer
-
The bias update.
- BIC() - Method in class smile.glm.GLM
-
Returns the BIC score.
- BIC(double, int, int) - Static method in interface smile.validation.ModelSelection
-
Bayesian information criterion.
- binary(int, KernelMachine<int[]>) - Static method in class smile.base.svm.LinearKernelMachine
-
Creates a linear kernel machine.
- BinaryEncoder - Class in smile.feature.extraction
-
Encodes categorical features using sparse one-hot scheme.
- BinaryEncoder(StructType, String...) - Constructor for class smile.feature.extraction.BinaryEncoder
-
Constructor.
- binomial(double[][], int[]) - Static method in class smile.classification.LogisticRegression
-
Fits binomial logistic regression.
- binomial(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
-
Fits binomial logistic regression.
- binomial(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
-
Fits binomial logistic regression.
- binomial(int, int[][], int[]) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- binomial(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- binomial(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- binomial(SparseDataset, int[]) - Static method in class smile.classification.SparseLogisticRegression
-
Fits binomial logistic regression.
- binomial(SparseDataset, int[], double, double, int) - Static method in class smile.classification.SparseLogisticRegression
-
Fits binomial logistic regression.
- binomial(SparseDataset, int[], Properties) - Static method in class smile.classification.SparseLogisticRegression
-
Fits binomial logistic regression.
- Binomial - Interface in smile.glm.model
-
The response variable is of Binomial distribution.
- Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.LogisticRegression.Binomial
-
Constructor.
- Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.Maxent.Binomial
-
Constructor.
- Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression.Binomial
-
Constructor.
- BIRCH - Class in smile.vq
-
Balanced Iterative Reducing and Clustering using Hierarchies.
- BIRCH(int, int, int, double) - Constructor for class smile.vq.BIRCH
-
Constructor.
- Bootstrap - Interface in smile.validation
-
The bootstrap is a general tool for assessing statistical accuracy.
- Box_Pierce - Enum constant in enum class smile.timeseries.BoxTest.Type
-
Box-Pierce test.
- BoxTest - Class in smile.timeseries
-
Portmanteau test jointly that several autocorrelations of time series are zero.
- BoxTest.Type - Enum Class in smile.timeseries
-
The type of test.
- branch(Tuple) - Method in class smile.base.cart.InternalNode
-
Returns true if the instance goes to the true branch.
- branch(Tuple) - Method in class smile.base.cart.NominalNode
- branch(Tuple) - Method in class smile.base.cart.OrdinalNode
- breaks - Variable in class smile.feature.selection.InformationValue
-
Breakpoints of intervals for numerical variables.
- bubble(int) - Static method in interface smile.vq.Neighborhood
-
Returns the bubble neighborhood function.
- build(int) - Method in class smile.base.mlp.HiddenLayerBuilder
- build(int) - Method in class smile.base.mlp.LayerBuilder
-
Builds a layer.
- build(int) - Method in class smile.base.mlp.OutputLayerBuilder
- builder(String, int, double, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer.
C
- CART - Class in smile.base.cart
-
Classification and regression tree.
- CART(DataFrame, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.base.cart.CART
-
Constructor.
- CART(Formula, StructType, StructField, Node, double[]) - Constructor for class smile.base.cart.CART
-
Constructor.
- center() - Method in class smile.feature.extraction.PCA
-
Returns the center of data.
- center() - Method in class smile.feature.extraction.ProbabilisticPCA
-
Returns the center of data.
- CentroidClustering<T,
U> - Class in smile.clustering -
In centroid-based clustering, clusters are represented by a central vector, which may not necessarily be a member of the data set.
- CentroidClustering(double, T[], int[]) - Constructor for class smile.clustering.CentroidClustering
-
Constructor.
- centroids - Variable in class smile.clustering.CentroidClustering
-
The centroids of each cluster.
- centroids() - Method in class smile.vq.BIRCH
-
Returns the cluster centroids of leaf nodes.
- CLARANS<T> - Class in smile.clustering
-
Clustering Large Applications based upon RANdomized Search.
- CLARANS(double, T[], int[], Distance<T>) - Constructor for class smile.clustering.CLARANS
-
Constructor.
- classes - Variable in class smile.classification.AbstractClassifier
-
The class labels.
- classes - Variable in class smile.classification.ClassLabels
-
The class labels.
- classes() - Method in class smile.classification.AbstractClassifier
- classes() - Method in interface smile.classification.Classifier
-
Returns the class labels.
- classes() - Method in class smile.classification.DecisionTree
- classes() - Method in class smile.classification.MLP
- classes() - Method in class smile.classification.SVM
- classification(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Repeated cross validation of classification.
- classification(int, int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
-
Repeated cross validation of classification.
- classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.Bootstrap
-
Runs classification bootstrap validation.
- classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Cross validation of classification.
- classification(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.Bootstrap
-
Runs classification bootstrap validation.
- classification(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
-
Cross validation of classification.
- classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in interface smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- classification(T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- CLASSIFICATION_ERROR - Enum constant in enum class smile.base.cart.SplitRule
-
Classification error.
- ClassificationMetric - Interface in smile.validation.metric
-
An abstract interface to measure the classification performance.
- ClassificationMetrics - Class in smile.validation
-
The classification validation metrics.
- ClassificationMetrics(double, double, int, int, double) - Constructor for class smile.validation.ClassificationMetrics
-
Constructor.
- ClassificationMetrics(double, double, int, int, double, double) - Constructor for class smile.validation.ClassificationMetrics
-
Constructor of multiclass soft classifier validation.
- ClassificationMetrics(double, double, int, int, double, double, double, double, double, double) - Constructor for class smile.validation.ClassificationMetrics
-
Constructor of binary classifier validation.
- ClassificationMetrics(double, double, int, int, double, double, double, double, double, double, double, double) - Constructor for class smile.validation.ClassificationMetrics
-
Constructor of binary soft classifier validation.
- ClassificationMetrics(double, double, int, int, double, double, double, double, double, double, double, double, double) - Constructor for class smile.validation.ClassificationMetrics
-
Constructor.
- ClassificationValidation<M> - Class in smile.validation
-
Classification model validation results.
- ClassificationValidation(M, double, double, int[], int[]) - Constructor for class smile.validation.ClassificationValidation
-
Constructor.
- ClassificationValidation(M, double, double, int[], int[], double[][]) - Constructor for class smile.validation.ClassificationValidation
-
Constructor of soft classifier validation.
- ClassificationValidations<M> - Class in smile.validation
-
Classification model validation results.
- ClassificationValidations(List<ClassificationValidation<M>>) - Constructor for class smile.validation.ClassificationValidations
-
Constructor.
- Classifier<T> - Interface in smile.classification
-
A classifier assigns an input object into one of a given number of categories.
- Classifier.Trainer<T,
M extends Classifier<T>> - Interface in smile.classification -
The classifier trainer.
- ClassLabels - Class in smile.classification
-
Map arbitrary class labels to [0, k), where k is the number of classes.
- ClassLabels(int, int[], IntSet) - Constructor for class smile.classification.ClassLabels
-
Constructor.
- clear() - Method in class smile.base.cart.CART
-
Clear the workspace of building tree.
- clear(double) - Method in class smile.vq.NeuralMap
-
Removes staled neurons and the edges beyond lifetime.
- clipNorm - Variable in class smile.base.mlp.MultilayerPerceptron
-
The gradient clipping norm.
- clipValue - Variable in class smile.base.mlp.MultilayerPerceptron
-
The gradient clipping value.
- clustering(double[][], double[][], int[], int[]) - Method in class smile.clustering.BBDTree
-
Given k cluster centroids, this method assigns data to nearest centroids.
- ClusteringMetric - Interface in smile.validation.metric
-
An abstract interface to measure the clustering performance.
- CNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
Complement Naive Bayes.
- coefficients() - Method in class smile.classification.LogisticRegression.Binomial
-
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
- coefficients() - Method in class smile.classification.LogisticRegression.Multinomial
-
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
- coefficients() - Method in class smile.classification.Maxent.Binomial
-
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
- coefficients() - Method in class smile.classification.Maxent.Multinomial
-
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
- coefficients() - Method in class smile.classification.SparseLogisticRegression.Binomial
-
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
- coefficients() - Method in class smile.classification.SparseLogisticRegression.Multinomial
-
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
- coefficients() - Method in class smile.glm.GLM
-
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
- coefficients() - Method in class smile.regression.LinearModel
-
Returns the linear coefficients without intercept.
- columns - Variable in class smile.feature.extraction.Projection
-
The fields of input space.
- comparator - Static variable in class smile.base.cart.Split
-
The comparator on the split score.
- compareTo(CentroidClustering<T, U>) - Method in class smile.clustering.CentroidClustering
- compareTo(MEC<T>) - Method in class smile.clustering.MEC
- compareTo(InformationValue) - Method in class smile.feature.selection.InformationValue
- compareTo(SignalNoiseRatio) - Method in class smile.feature.selection.SignalNoiseRatio
- compareTo(SumSquaresRatio) - Method in class smile.feature.selection.SumSquaresRatio
- compareTo(Neuron) - Method in class smile.vq.hebb.Neuron
- CompleteLinkage - Class in smile.clustering.linkage
-
Complete linkage.
- CompleteLinkage(double[][]) - Constructor for class smile.clustering.linkage.CompleteLinkage
-
Constructor.
- CompleteLinkage(int, float[]) - Constructor for class smile.clustering.linkage.CompleteLinkage
-
Constructor.
- computeGradient(double[]) - Method in class smile.base.mlp.InputLayer
- computeGradient(double[]) - Method in class smile.base.mlp.Layer
-
Computes the parameter gradient for a sample of (mini-)batch.
- computeGradientUpdate(double[], double, double, double) - Method in class smile.base.mlp.InputLayer
- computeGradientUpdate(double[], double, double, double) - Method in class smile.base.mlp.Layer
-
Computes the parameter gradient and update the weights.
- computeOutputGradient(double[], double) - Method in class smile.base.mlp.OutputLayer
-
Compute the network output gradient.
- confidence - Variable in class smile.association.AssociationRule
-
The confidence value.
- confusion - Variable in class smile.validation.ClassificationValidation
-
The confusion matrix.
- ConfusionMatrix - Class in smile.validation.metric
-
The confusion matrix of truth and predictions.
- ConfusionMatrix(int[][]) - Constructor for class smile.validation.metric.ConfusionMatrix
-
Constructor.
- consequent - Variable in class smile.association.AssociationRule
-
Consequent itemset.
- ContingencyTable - Class in smile.validation.metric
-
The contingency table.
- ContingencyTable(int[], int[]) - Constructor for class smile.validation.metric.ContingencyTable
-
Constructor.
- coordinates - Variable in class smile.manifold.IsoMap
-
The coordinate matrix in embedding space.
- coordinates - Variable in class smile.manifold.IsotonicMDS
-
The coordinates.
- coordinates - Variable in class smile.manifold.LaplacianEigenmap
-
The coordinate matrix in embedding space.
- coordinates - Variable in class smile.manifold.LLE
-
The coordinate matrix in embedding space.
- coordinates - Variable in class smile.manifold.MDS
-
The principal coordinates.
- coordinates - Variable in class smile.manifold.SammonMapping
-
The coordinates.
- coordinates - Variable in class smile.manifold.TSNE
-
The coordinate matrix in embedding space.
- coordinates - Variable in class smile.manifold.UMAP
-
The coordinate matrix in embedding space.
- coordinates() - Method in class smile.manifold.KPCA
-
Returns the nonlinear principal component scores, i.e., the representation of learning data in the nonlinear principal component space.
- cor(double[][], String...) - Static method in class smile.feature.extraction.PCA
-
Fits principal component analysis with correlation matrix.
- cor(DataFrame, String...) - Static method in class smile.feature.extraction.PCA
-
Fits principal component analysis with correlation matrix.
- cost() - Method in class smile.base.mlp.OutputLayer
-
Returns the cost function of neural network.
- cost() - Method in class smile.manifold.TSNE
-
Returns the cost function value.
- Cost - Enum Class in smile.base.mlp
-
Neural network cost function.
- count() - Method in class smile.base.cart.DecisionNode
-
Returns the number of node samples in each class.
- counter - Variable in class smile.vq.hebb.Neuron
-
The local counter variable (e.g.
- cov - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
-
The covariance matrix of joint predictive distribution at query points.
- cov(double[], int) - Static method in interface smile.timeseries.TimeSeries
-
Autocovariance function.
- CRF - Class in smile.sequence
-
First-order linear conditional random field.
- CRF(StructType, RegressionTree[][], double) - Constructor for class smile.sequence.CRF
-
Constructor.
- CRFLabeler<T> - Class in smile.sequence
-
First-order CRF sequence labeler.
- CRFLabeler(CRF, Function<T, Tuple>) - Constructor for class smile.sequence.CRFLabeler
-
Constructor.
- crossentropy - Variable in class smile.validation.ClassificationMetrics
-
The cross entropy on validation data.
- CrossEntropy - Interface in smile.validation.metric
-
Cross entropy generalizes the log loss metric to multiclass problems.
- CrossValidation - Interface in smile.validation
-
Cross-validation is a technique for assessing how the results of a statistical analysis will generalize to an independent data set.
- cumulativeVarianceProportion() - Method in class smile.feature.extraction.PCA
-
Returns the cumulative proportion of variance contained in principal components, ordered from largest to smallest.
D
- d - Variable in class smile.vq.BIRCH
-
The dimensionality of data.
- d(int, int) - Method in class smile.clustering.linkage.Linkage
-
Returns the distance/dissimilarity between two clusters/objects, which are indexed by integers.
- DataFrameClassifier - Interface in smile.classification
-
Classification trait on DataFrame.
- DataFrameClassifier.Trainer<M extends DataFrameClassifier> - Interface in smile.classification
-
The classifier trainer.
- DataFrameRegression - Interface in smile.regression
-
Regression trait on DataFrame.
- DataFrameRegression.Trainer<M extends DataFrameRegression> - Interface in smile.regression
-
The regression trainer.
- DBSCAN<T> - Class in smile.clustering
-
Density-Based Spatial Clustering of Applications with Noise.
- DBSCAN(int, double, RNNSearch<T, T>, int, int[], boolean[]) - Constructor for class smile.clustering.DBSCAN
-
Constructor.
- DecisionNode - Class in smile.base.cart
-
A leaf node in decision tree.
- DecisionNode(int[]) - Constructor for class smile.base.cart.DecisionNode
-
Constructor.
- DecisionTree - Class in smile.classification
-
Decision tree.
- DecisionTree(DataFrame, int[], StructField, int, SplitRule, int, int, int, int, int[], int[][]) - Constructor for class smile.classification.DecisionTree
-
Constructor.
- DENCLUE - Class in smile.clustering
-
DENsity CLUstering.
- DENCLUE(int, double[][], double[], double[][], double, int[], double) - Constructor for class smile.clustering.DENCLUE
-
Constructor.
- depth() - Method in class smile.base.cart.InternalNode
- depth() - Method in class smile.base.cart.LeafNode
- depth() - Method in interface smile.base.cart.Node
-
Returns the maximum depth of the tree -- the number of nodes along the longest path from this node down to the farthest leaf node.
- DeterministicAnnealing - Class in smile.clustering
-
Deterministic annealing clustering.
- DeterministicAnnealing(double, double[][], int[]) - Constructor for class smile.clustering.DeterministicAnnealing
-
Constructor.
- deviance - Variable in class smile.glm.GLM
-
The deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Proposed Model)).
- deviance() - Method in class smile.base.cart.DecisionNode
- deviance() - Method in class smile.base.cart.InternalNode
- deviance() - Method in interface smile.base.cart.Node
-
Returns the deviance of node.
- deviance() - Method in class smile.base.cart.RegressionNode
- deviance() - Method in class smile.glm.GLM
-
Returns the deviance of model.
- deviance(double[], double[], double[]) - Method in interface smile.glm.model.Model
-
The deviance function.
- deviance(int[], double[]) - Static method in class smile.base.cart.DecisionNode
-
Returns the deviance of node.
- devianceResiduals - Variable in class smile.glm.GLM
-
The deviance residuals.
- devianceResiduals() - Method in class smile.glm.GLM
-
Returns the deviance residuals.
- df - Variable in class smile.glm.GLM
-
The degrees of freedom of the residual deviance.
- df - Variable in class smile.timeseries.BoxTest
-
The degree of freedom.
- df() - Method in class smile.regression.LinearModel
-
Returns the degree-of-freedom of residual standard error.
- df() - Method in class smile.timeseries.AR
-
Returns the degree-of-freedom of residual standard error.
- df() - Method in class smile.timeseries.ARMA
-
Returns the degree-of-freedom of residual standard error.
- diff(double[], int) - Static method in interface smile.timeseries.TimeSeries
-
Returns the first-differencing of time series.
- diff(double[], int, int) - Static method in interface smile.timeseries.TimeSeries
-
Returns the differencing of time series.
- dimension() - Method in class smile.classification.Maxent
-
Returns the dimension of input space.
- DiscreteNaiveBayes - Class in smile.classification
-
Naive Bayes classifier for document classification in NLP.
- DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int) - Constructor for class smile.classification.DiscreteNaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int) - Constructor for class smile.classification.DiscreteNaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- DiscreteNaiveBayes.Model - Enum Class in smile.classification
-
The generation models of naive Bayes classifier.
- distance - Variable in class smile.vq.hebb.Neuron
-
The distance between the neuron and an input signal.
- distance(double[]) - Method in class smile.vq.hebb.Neuron
-
Computes the distance between the neuron and a signal.
- distance(double[], double[]) - Method in class smile.clustering.DeterministicAnnealing
- distance(double[], double[]) - Method in class smile.clustering.GMeans
- distance(double[], double[]) - Method in class smile.clustering.KMeans
- distance(double[], double[]) - Method in class smile.clustering.XMeans
- distance(double[], SparseArray) - Method in class smile.clustering.SIB
- distance(int[], int[]) - Method in class smile.clustering.KModes
- distance(T, T) - Method in class smile.clustering.CLARANS
- distance(T, U) - Method in class smile.clustering.CentroidClustering
-
The distance function.
- distortion - Variable in class smile.clustering.CentroidClustering
-
The total distortion.
- distortion - Variable in class smile.clustering.SpectralClustering
-
The distortion in feature space.
- dlink(double) - Method in interface smile.glm.model.Model
-
The derivative of link function.
- dot() - Method in class smile.base.cart.CART
-
Returns the graphic representation in Graphviz dot format.
- dot(StructType, StructField, int) - Method in class smile.base.cart.DecisionNode
- dot(StructType, StructField, int) - Method in interface smile.base.cart.Node
-
Returns the dot representation of node.
- dot(StructType, StructField, int) - Method in class smile.base.cart.NominalNode
- dot(StructType, StructField, int) - Method in class smile.base.cart.OrdinalNode
- dot(StructType, StructField, int) - Method in class smile.base.cart.RegressionNode
- dropout - Variable in class smile.base.mlp.Layer
-
The dropout rate.
- dropout - Variable in class smile.base.mlp.LayerBuilder
-
The dropout rate.
E
- Edge - Class in smile.vq.hebb
-
The connection between neurons.
- Edge(Neuron) - Constructor for class smile.vq.hebb.Edge
-
Constructor.
- Edge(Neuron, int) - Constructor for class smile.vq.hebb.Edge
-
Constructor.
- edges - Variable in class smile.vq.hebb.Neuron
-
The direct connected neighbors.
- ElasticNet - Class in smile.regression
-
Elastic Net regularization.
- ElasticNet() - Constructor for class smile.regression.ElasticNet
- ensemble(Classifier<T>...) - Static method in interface smile.classification.Classifier
-
Return an ensemble of multiple base models to obtain better predictive performance.
- ensemble(DataFrameClassifier...) - Static method in interface smile.classification.DataFrameClassifier
-
Return an ensemble of multiple base models to obtain better predictive performance.
- ensemble(DataFrameRegression...) - Static method in interface smile.regression.DataFrameRegression
-
Return an ensemble of multiple base models to obtain better predictive performance.
- ensemble(Regression<T>...) - Static method in interface smile.regression.Regression
-
Return an ensemble of multiple base models to obtain better predictive performance.
- entropy - Variable in class smile.clustering.MEC
-
The conditional entropy as the objective function.
- ENTROPY - Enum constant in enum class smile.base.cart.SplitRule
-
Used by the ID3, C4.5 and C5.0 tree generation algorithms.
- epsilon - Variable in class smile.base.mlp.MultilayerPerceptron
-
A small constant for numerical stability in RMSProp.
- equals(Object) - Method in class smile.association.AssociationRule
- equals(Object) - Method in class smile.association.ItemSet
- equals(Object) - Method in class smile.base.cart.DecisionNode
- equals(Object) - Method in class smile.base.cart.RegressionNode
- error - Variable in class smile.validation.ClassificationMetrics
-
The number of errors.
- error() - Method in class smile.regression.LinearModel
-
Returns the residual standard error.
- Error - Class in smile.validation.metric
-
The number of errors in the population.
- Error() - Constructor for class smile.validation.metric.Error
F
- f(double[]) - Method in interface smile.base.mlp.ActivationFunction
-
The output function.
- f(double[]) - Method in enum class smile.base.mlp.OutputFunction
-
The output function.
- f(double[]) - Method in class smile.base.svm.LinearKernelMachine
-
Returns the value of decision function.
- f(double[]) - Method in interface smile.deep.activation.ActivationFunction
-
The output function.
- f(double[]) - Method in class smile.deep.activation.LeakyReLU
- f(double[]) - Method in class smile.deep.activation.ReLU
- f(double[]) - Method in class smile.deep.activation.Sigmoid
- f(double[]) - Method in class smile.deep.activation.Softmax
- f(double[]) - Method in class smile.deep.activation.Tanh
- f(int[]) - Method in class smile.base.svm.LinearKernelMachine
-
Returns the value of decision function.
- f(SparseArray) - Method in class smile.base.svm.LinearKernelMachine
-
Returns the value of decision function.
- f(T) - Method in class smile.base.rbf.RBF
-
The activation function.
- f1 - Variable in class smile.validation.ClassificationMetrics
-
The F-1 score on validation data.
- F1 - Static variable in class smile.validation.metric.FScore
-
The F_1 score, the harmonic mean of precision and recall.
- F2 - Static variable in class smile.validation.metric.FScore
-
The F_2 score, which weighs recall higher than precision.
- Fallout - Class in smile.validation.metric
-
Fall-out, false alarm rate, or false positive rate (FPR)
- Fallout() - Constructor for class smile.validation.metric.Fallout
- falseChild() - Method in class smile.base.cart.InternalNode
-
Returns the false branch child.
- FDR - Class in smile.validation.metric
-
The false discovery rate (FDR) is ratio of false positives to combined true and false positives, which is actually 1 - precision.
- FDR() - Constructor for class smile.validation.metric.FDR
- feature - Variable in class smile.feature.selection.InformationValue
-
The feature name.
- feature - Variable in class smile.feature.selection.SignalNoiseRatio
-
The feature name.
- feature - Variable in class smile.feature.selection.SumSquaresRatio
-
The feature name.
- feature() - Method in class smile.base.cart.InternalNode
-
Returns the split feature.
- features - Variable in class smile.sequence.CRFLabeler
-
The feature function.
- features() - Method in class smile.feature.extraction.BagOfWords
-
Returns the feature words.
- FHalf - Static variable in class smile.validation.metric.FScore
-
The F_0.5 score, which weighs recall lower than precision.
- findBestSplit(LeafNode, int, double, int, int) - Method in class smile.base.cart.CART
-
Finds the best split for given column.
- findBestSplit(LeafNode, int, double, int, int) - Method in class smile.classification.DecisionTree
- findBestSplit(LeafNode, int, double, int, int) - Method in class smile.regression.RegressionTree
- findBestSplit(LeafNode, int, int, boolean[]) - Method in class smile.base.cart.CART
-
Finds the best attribute to split on a set of samples.
- fit(double[][]) - Static method in class smile.anomaly.IsolationForest
-
Fits an isolation forest.
- fit(double[][], double[], double, double, double) - Static method in class smile.regression.SVM
-
Fits a linear epsilon-SVR.
- fit(double[][], double[], Properties) - Static method in class smile.regression.GaussianProcessRegression
-
Fits a regular Gaussian process model.
- fit(double[][], double[], Properties) - Static method in class smile.regression.MLP
-
Fits a MLP model.
- fit(double[][], double[], Properties) - Static method in class smile.regression.RBFNetwork
-
Fits a RBF network.
- fit(double[][], double[], Properties) - Static method in class smile.regression.SVM
-
Fits an epsilon-SVR.
- fit(double[][], double, int) - Static method in class smile.clustering.DENCLUE
-
Clustering data.
- fit(double[][], double, int, double, int) - Static method in class smile.clustering.DENCLUE
-
Clustering data.
- fit(double[][], int) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(double[][], int) - Static method in class smile.clustering.DeterministicAnnealing
-
Clustering data into k clusters.
- fit(double[][], int) - Static method in class smile.clustering.GMeans
-
Clustering data with the number of clusters determined by G-Means algorithm automatically.
- fit(double[][], int) - Static method in class smile.clustering.KMeans
-
Partitions data into k clusters up to 100 iterations.
- fit(double[][], int) - Static method in class smile.clustering.XMeans
-
Clustering data with the number of clusters determined by X-Means algorithm automatically.
- fit(double[][], int[]) - Static method in class smile.classification.FLD
-
Fits Fisher's linear discriminant.
- fit(double[][], int[]) - Static method in class smile.classification.KNN
-
Fits the 1-NN classifier.
- fit(double[][], int[]) - Static method in class smile.classification.LDA
-
Fits linear discriminant analysis.
- fit(double[][], int[]) - Static method in class smile.classification.LogisticRegression
-
Fits logistic regression.
- fit(double[][], int[]) - Static method in class smile.classification.QDA
-
Fits quadratic discriminant analysis.
- fit(double[][], int[], double) - Static method in class smile.classification.RDA
-
Fits regularized discriminant analysis.
- fit(double[][], int[], double[], double) - Static method in class smile.classification.LDA
-
Fits linear discriminant analysis.
- fit(double[][], int[], double[], double) - Static method in class smile.classification.QDA
-
Fits quadratic discriminant analysis.
- fit(double[][], int[], double, double) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM.
- fit(double[][], int[], double, double[], double) - Static method in class smile.classification.RDA
-
Fits regularized discriminant analysis.
- fit(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
-
Fits logistic regression.
- fit(double[][], int[], double, double, int) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM.
- fit(double[][], int[], int) - Static method in class smile.classification.KNN
-
Fits the K-NN classifier.
- fit(double[][], int[], int, double) - Static method in class smile.classification.FLD
-
Fits Fisher's linear discriminant.
- fit(double[][], int[], Properties) - Static method in class smile.classification.FLD
-
Fits Fisher's linear discriminant.
- fit(double[][], int[], Properties) - Static method in class smile.classification.LDA
-
Fits linear discriminant analysis.
- fit(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
-
Fits logistic regression.
- fit(double[][], int[], Properties) - Static method in class smile.classification.MLP
-
Fits a MLP model.
- fit(double[][], int[], Properties) - Static method in class smile.classification.QDA
-
Fits quadratic discriminant analysis.
- fit(double[][], int[], Properties) - Static method in class smile.classification.RBFNetwork
-
Fits a RBF network.
- fit(double[][], int[], Properties) - Static method in class smile.classification.RDA
-
Fits regularized discriminant analysis.
- fit(double[][], int[], Properties) - Static method in class smile.classification.SVM
-
Fits a binary or multiclass SVM.
- fit(double[][], int, double) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(double[][], int, double) - Static method in class smile.clustering.DBSCAN
-
Clustering the data with KD-tree.
- fit(double[][], int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering the data.
- fit(double[][], int, double, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering the data.
- fit(double[][], int, double, int, double, double) - Static method in class smile.clustering.DeterministicAnnealing
-
Clustering data into k clusters.
- fit(double[][], int, int) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(double[][], int, int, double) - Static method in class smile.clustering.GMeans
-
Clustering data with the number of clusters determined by G-Means algorithm automatically.
- fit(double[][], int, int, double) - Static method in class smile.clustering.KMeans
-
Partitions data into k clusters up to 100 iterations.
- fit(double[][], int, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering with Nystrom approximation.
- fit(double[][], int, int, double) - Static method in class smile.clustering.XMeans
-
Clustering data with the number of clusters determined by X-Means algorithm automatically.
- fit(double[][], int, int, double, int) - Static method in class smile.anomaly.IsolationForest
-
Fits a random forest for classification.
- fit(double[][], int, int, double, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering with Nystrom approximation.
- fit(double[][], int, String...) - Static method in class smile.feature.extraction.ProbabilisticPCA
-
Fits probabilistic principal component analysis.
- fit(double[][], String...) - Static method in class smile.feature.extraction.PCA
-
Fits principal component analysis with covariance matrix.
- fit(double[][], Properties) - Static method in class smile.anomaly.IsolationForest
-
Fits a random forest for classification.
- fit(double[], int) - Static method in class smile.timeseries.AR
-
Fits an autoregressive model with Yule-Walker procedure.
- fit(double[], int[]) - Static method in class smile.classification.IsotonicRegressionScaling
-
Trains the Isotonic Regression scaling.
- fit(double[], int[]) - Static method in class smile.classification.PlattScaling
-
Trains the Platt scaling.
- fit(double[], int[], int) - Static method in class smile.classification.PlattScaling
-
Trains the Platt scaling.
- fit(double[], int, int) - Static method in class smile.timeseries.ARMA
-
Fits an ARMA model with Hannan-Rissanen algorithm.
- fit(int[]) - Static method in class smile.classification.ClassLabels
-
Fits the class label mapping.
- fit(int[][], double[], int, double, double, double) - Static method in class smile.regression.SVM
-
Fits a linear epsilon-SVR of binary sparse data.
- fit(int[][], int) - Static method in class smile.clustering.KModes
-
Fits k-modes clustering.
- fit(int[][], int[][]) - Static method in class smile.sequence.HMM
-
Fits an HMM by maximum likelihood estimation.
- fit(int[][], int[], int, double, double) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM of binary sparse data.
- fit(int[][], int[], int, double, double, int) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM of binary sparse data.
- fit(int[][], int, int) - Static method in class smile.clustering.KModes
-
Fits k-modes clustering.
- fit(int, int[][], int[]) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- fit(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- fit(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- fit(Classifier<T>, T[], int[]) - Static method in class smile.classification.PlattScaling
-
Fits Platt Scaling to estimate posteriori probabilities.
- fit(BBDTree, double[][], int, int, double) - Static method in class smile.clustering.KMeans
-
Partitions data into k clusters.
- fit(Linkage) - Static method in class smile.clustering.HierarchicalClustering
-
Fits the Agglomerative Hierarchical Clustering with given linkage method, which includes proximity matrix.
- fit(DataFrame) - Static method in class smile.feature.transform.WinsorScaler
-
Fits the data transformation with 5% lower limit and 95% upper limit.
- fit(DataFrame, double, double, String...) - Static method in class smile.feature.imputation.SimpleImputer
-
Fits the missing value imputation values.
- fit(DataFrame, double, double, String...) - Static method in class smile.feature.transform.WinsorScaler
-
Fits the data transformation.
- fit(DataFrame, int, String...) - Static method in class smile.feature.extraction.ProbabilisticPCA
-
Fits probabilistic principal component analysis.
- fit(DataFrame, String) - Static method in class smile.feature.selection.InformationValue
-
Calculates the information value.
- fit(DataFrame, String) - Static method in class smile.feature.selection.SignalNoiseRatio
-
Calculates the signal noise ratio of numeric variables.
- fit(DataFrame, String) - Static method in class smile.feature.selection.SumSquaresRatio
-
Calculates the sum squares ratio of numeric variables.
- fit(DataFrame, String...) - Static method in class smile.feature.extraction.PCA
-
Fits principal component analysis with covariance matrix.
- fit(DataFrame, String...) - Static method in class smile.feature.imputation.SimpleImputer
-
Fits the missing value imputation values.
- fit(DataFrame, String...) - Static method in class smile.feature.transform.MaxAbsScaler
-
Fits the data transformation.
- fit(DataFrame, String...) - Static method in class smile.feature.transform.RobustStandardizer
-
Fits the data transformation.
- fit(DataFrame, String...) - Static method in class smile.feature.transform.Scaler
-
Fits the data transformation.
- fit(DataFrame, String...) - Static method in class smile.feature.transform.Standardizer
-
Fits the data transformation.
- fit(DataFrame, String, int) - Static method in class smile.feature.selection.InformationValue
-
Calculates the information value.
- fit(DataFrame, Function<String, String[]>, int, String...) - Static method in class smile.feature.extraction.BagOfWords
-
Learns a vocabulary dictionary of top-k frequent tokens in the raw documents.
- fit(DataFrame, Distance<Tuple>, int) - Static method in class smile.feature.imputation.KMedoidsImputer
-
Fits the missing value imputation values.
- fit(DataFrame, MercerKernel<double[]>, int, double, String...) - Static method in class smile.feature.extraction.KernelPCA
-
Fits kernel principal component analysis.
- fit(DataFrame, MercerKernel<double[]>, int, String...) - Static method in class smile.feature.extraction.KernelPCA
-
Fits kernel principal component analysis.
- fit(Formula, DataFrame) - Static method in class smile.classification.AdaBoost
-
Fits a AdaBoost model.
- fit(Formula, DataFrame) - Method in interface smile.classification.DataFrameClassifier.Trainer
-
Fits a classification model with the default hyper-parameters.
- fit(Formula, DataFrame) - Static method in class smile.classification.DecisionTree
-
Fits a classification tree.
- fit(Formula, DataFrame) - Static method in class smile.classification.GradientTreeBoost
-
Fits a gradient tree boosting for classification.
- fit(Formula, DataFrame) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame) - Method in interface smile.regression.DataFrameRegression.Trainer
-
Fits a regression model with the default hyper-parameters.
- fit(Formula, DataFrame) - Static method in class smile.regression.GradientTreeBoost
-
Fits a gradient tree boosting for regression.
- fit(Formula, DataFrame) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame) - Static method in class smile.regression.OLS
-
Fits an ordinary least squares model.
- fit(Formula, DataFrame) - Static method in class smile.regression.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame) - Static method in class smile.regression.RegressionTree
-
Fits a regression tree.
- fit(Formula, DataFrame) - Static method in class smile.regression.RidgeRegression
-
Fits a ridge regression model.
- fit(Formula, DataFrame, double) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame, double) - Static method in class smile.regression.RidgeRegression
-
Fits a ridge regression model.
- fit(Formula, DataFrame, double[], double[], double[]) - Static method in class smile.regression.RidgeRegression
-
Fits a generalized ridge regression model that minimizes a weighted least squares criterion augmented with a generalized ridge penalty:
- fit(Formula, DataFrame, double, double) - Static method in class smile.regression.ElasticNet
-
Fits an Elastic Net model.
- fit(Formula, DataFrame, double, double, double, int) - Static method in class smile.regression.ElasticNet
-
Fits an Elastic Net model.
- fit(Formula, DataFrame, double, double, int) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame, int, int, int) - Static method in class smile.regression.RegressionTree
-
Fits a regression tree.
- fit(Formula, DataFrame, int, int, int, int) - Static method in class smile.classification.AdaBoost
-
Fits a AdaBoost model.
- fit(Formula, DataFrame, int, int, int, int, double, double) - Static method in class smile.classification.GradientTreeBoost
-
Fits a gradient tree boosting for classification.
- fit(Formula, DataFrame, int, int, int, int, int, double) - Static method in class smile.regression.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame, int, int, int, int, int, double, LongStream) - Static method in class smile.regression.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[]) - Static method in class smile.classification.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[], LongStream) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame, String, boolean, boolean) - Static method in class smile.regression.OLS
-
Fits an ordinary least squares model.
- fit(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.classification.OneVersusOne
-
Fits a multi-class model with binary data frame classifiers.
- fit(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.classification.OneVersusRest
-
Fits a multi-class model with binary data frame classifiers.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.AdaBoost
-
Fits a AdaBoost model.
- fit(Formula, DataFrame, Properties) - Method in interface smile.classification.DataFrameClassifier.Trainer
-
Fits a classification model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.DecisionTree
-
Fits a classification tree.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.GradientTreeBoost
-
Fits a gradient tree boosting for classification.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame, Properties) - Method in interface smile.regression.DataFrameRegression.Trainer
-
Fits a regression model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.ElasticNet
-
Fits an Elastic Net model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.GradientTreeBoost
-
Fits a gradient tree boosting for regression.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.OLS
-
Fits an ordinary least squares model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RegressionTree
-
Fits a regression tree.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RidgeRegression
-
Fits a ridge regression model.
- fit(Formula, DataFrame, Loss, int, int, int, int, double, double) - Static method in class smile.regression.GradientTreeBoost
-
Fits a gradient tree boosting for regression.
- fit(Formula, DataFrame, SplitRule, int, int, int) - Static method in class smile.classification.DecisionTree
-
Fits a classification tree.
- fit(Formula, DataFrame, Model) - Static method in class smile.glm.GLM
-
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
- fit(Formula, DataFrame, Model, double, int) - Static method in class smile.glm.GLM
-
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
- fit(Formula, DataFrame, Model, Properties) - Static method in class smile.glm.GLM
-
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
- fit(SparseDataset, int[]) - Static method in class smile.classification.SparseLogisticRegression
-
Fits logistic regression.
- fit(SparseDataset, int[], double, double, int) - Static method in class smile.classification.SparseLogisticRegression
-
Fits logistic regression.
- fit(SparseDataset, int[], Properties) - Static method in class smile.classification.SparseLogisticRegression
-
Fits logistic regression.
- fit(Tuple[][], int[][]) - Static method in class smile.sequence.CRF
-
Fits a CRF model.
- fit(Tuple[][], int[][], int, int, int, int, double) - Static method in class smile.sequence.CRF
-
Fits a CRF model.
- fit(Tuple[][], int[][], Properties) - Static method in class smile.sequence.CRF
-
Fits a CRF model.
- fit(BaseVector<?, ?, ?>) - Static method in class smile.classification.ClassLabels
-
Fits the class label mapping.
- fit(Matrix, int) - Static method in class smile.clustering.SpectralClustering
-
Spectral graph clustering.
- fit(Matrix, int, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral graph clustering.
- fit(SparseArray[], double[], int, double, double, double) - Static method in class smile.regression.SVM
-
Fits a linear epsilon-SVR of sparse data.
- fit(SparseArray[], int) - Static method in class smile.clustering.SIB
-
Clustering data into k clusters up to 100 iterations.
- fit(SparseArray[], int[], int, double, double) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM.
- fit(SparseArray[], int[], int, double, double, int) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM.
- fit(SparseArray[], int, int) - Static method in class smile.clustering.SIB
-
Clustering data into k clusters.
- fit(T[]) - Method in class smile.base.svm.OCSVM
-
Fits an one-class support vector machine.
- fit(T[][], int[][], Function<T, Tuple>) - Static method in class smile.sequence.CRFLabeler
-
Fits a CRF model.
- fit(T[][], int[][], Function<T, Tuple>, int, int, int, int, double) - Static method in class smile.sequence.CRFLabeler
-
Fits a CRF.
- fit(T[][], int[][], Function<T, Tuple>, Properties) - Static method in class smile.sequence.CRFLabeler
-
Fits a CRF model.
- fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMM
-
Fits an HMM by maximum likelihood estimation.
- fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMMLabeler
-
Fits an HMM by maximum likelihood estimation.
- fit(T[], double[]) - Method in class smile.base.svm.SVR
-
Fits an epsilon support vector regression model.
- fit(T[], double[]) - Method in interface smile.regression.Regression.Trainer
-
Fits a regression model with the default hyper-parameters.
- fit(T[], double[], Properties) - Method in interface smile.regression.Regression.Trainer
-
Fits a regression model.
- fit(T[], double[], RBF<T>[]) - Static method in class smile.regression.RBFNetwork
-
Fits a RBF network.
- fit(T[], double[], RBF<T>[], boolean) - Static method in class smile.regression.RBFNetwork
-
Fits a RBF network.
- fit(T[], double[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
-
Fits a regular Gaussian process model by the method of subset of regressors.
- fit(T[], double[], MercerKernel<T>, double, boolean, double, int) - Static method in class smile.regression.GaussianProcessRegression
-
Fits a regular Gaussian process model.
- fit(T[], double[], MercerKernel<T>, double, double, double) - Static method in class smile.regression.SVM
-
Fits an epsilon-SVR.
- fit(T[], double[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
-
Fits a regular Gaussian process model.
- fit(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model by the method of subset of regressors.
- fit(T[], double[], T[], MercerKernel<T>, double, boolean) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model by the method of subset of regressors.
- fit(T[], double[], T[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model by the method of subset of regressors.
- fit(T[], int[]) - Method in interface smile.classification.Classifier.Trainer
-
Fits a classification model with the default hyper-parameters.
- fit(T[], int[], int) - Method in class smile.base.svm.LASVM
-
Trains the model.
- fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], int, Distance<T>) - Static method in class smile.classification.KNN
-
Fits the K-NN classifier.
- fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], Properties) - Method in interface smile.classification.Classifier.Trainer
-
Fits a classification model.
- fit(T[], int[], RBF<T>[]) - Static method in class smile.classification.RBFNetwork
-
Fits a RBF network.
- fit(T[], int[], RBF<T>[], boolean) - Static method in class smile.classification.RBFNetwork
-
Fits a RBF network.
- fit(T[], int[], Distance<T>) - Static method in class smile.classification.KNN
-
Fits the 1-NN classifier.
- fit(T[], int[], MercerKernel<T>, double, double) - Static method in class smile.classification.SVM
-
Fits a binary SVM.
- fit(T[], int[], MercerKernel<T>, double, double, int) - Static method in class smile.classification.SVM
-
Fits a binary SVM.
- fit(T[], Distance<T>, int) - Static method in class smile.clustering.CLARANS
-
Clustering data into k clusters.
- fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.DBSCAN
-
Clustering the data.
- fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.MEC
-
Clustering the data.
- fit(T[], Distance<T>, int, int) - Static method in class smile.clustering.CLARANS
-
Constructor.
- fit(T[], Metric<T>, int) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(T[], Metric<T>, int, double) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(T[], Metric<T>, int, int) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(T[], MercerKernel<T>) - Static method in class smile.anomaly.SVM
-
Fits an one-class SVM.
- fit(T[], MercerKernel<T>, double, double) - Static method in class smile.anomaly.SVM
-
Fits an one-class SVM.
- fit(T[], MercerKernel<T>, int) - Static method in class smile.manifold.KPCA
-
Fits kernel principal component analysis.
- fit(T[], MercerKernel<T>, int, double) - Static method in class smile.manifold.KPCA
-
Fits kernel principal component analysis.
- fit(T[], RNNSearch<T, T>, int, double) - Static method in class smile.clustering.DBSCAN
-
Clustering the data.
- fit(T[], RNNSearch<T, T>, int, double, int[], double) - Static method in class smile.clustering.MEC
-
Clustering the data.
- fitness(double[][], double[], double[][], double[], RegressionMetric, BiFunction<double[][], double[], Regression<double[]>>) - Static method in class smile.feature.selection.GAFE
-
Returns the fitness of the regression model.
- fitness(double[][], int[], double[][], int[], ClassificationMetric, BiFunction<double[][], int[], Classifier<double[]>>) - Static method in class smile.feature.selection.GAFE
-
Returns the fitness of the classification model.
- fitness(String, DataFrame, DataFrame, ClassificationMetric, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.feature.selection.GAFE
-
Returns the fitness of the classification model.
- fitness(String, DataFrame, DataFrame, RegressionMetric, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.feature.selection.GAFE
-
Returns the fitness of the regression model.
- fittedValues() - Method in class smile.glm.GLM
-
Returns the fitted mean values.
- fittedValues() - Method in class smile.regression.LinearModel
-
Returns the fitted values.
- fittedValues() - Method in class smile.timeseries.AR
-
Returns the fitted values.
- fittedValues() - Method in class smile.timeseries.ARMA
-
Returns the fitted values.
- fitTime - Variable in class smile.validation.ClassificationMetrics
-
The time in milliseconds of fitting the model.
- fitTime - Variable in class smile.validation.RegressionMetrics
-
The time in milliseconds of fitting the model.
- FLD - Class in smile.classification
-
Fisher's linear discriminant.
- FLD(double[], double[][], Matrix) - Constructor for class smile.classification.FLD
-
Constructor.
- FLD(double[], double[][], Matrix, IntSet) - Constructor for class smile.classification.FLD
-
Constructor.
- forecast() - Method in class smile.timeseries.AR
-
Returns 1-step ahead forecast.
- forecast() - Method in class smile.timeseries.ARMA
-
Returns 1-step ahead forecast.
- forecast(int) - Method in class smile.timeseries.AR
-
Returns l-step ahead forecast.
- forecast(int) - Method in class smile.timeseries.ARMA
-
Returns l-step ahead forecast.
- formula - Variable in class smile.base.cart.CART
-
The model formula.
- formula - Variable in class smile.glm.GLM
-
The symbolic description of the model to be fitted.
- formula() - Method in class smile.classification.AdaBoost
- formula() - Method in interface smile.classification.DataFrameClassifier
-
Returns the formula associated with the model.
- formula() - Method in class smile.classification.DecisionTree
-
Returns null if the tree is part of ensemble algorithm.
- formula() - Method in class smile.classification.GradientTreeBoost
- formula() - Method in class smile.classification.RandomForest
- formula() - Method in interface smile.feature.importance.TreeSHAP
-
Returns the formula associated with the model.
- formula() - Method in interface smile.regression.DataFrameRegression
-
Returns the model formula.
- formula() - Method in class smile.regression.GradientTreeBoost
- formula() - Method in class smile.regression.LinearModel
- formula() - Method in class smile.regression.RandomForest
- formula() - Method in class smile.regression.RegressionTree
-
Returns null if the tree is part of ensemble algorithm.
- FPGrowth - Class in smile.association
-
Frequent item set mining based on the FP-growth (frequent pattern growth) algorithm, which employs an extended prefix-tree (FP-tree) structure to store the database in a compressed form.
- FPTree - Class in smile.association
-
FP-tree data structure used in FP-growth (frequent pattern growth) algorithm for frequent item set mining.
- FScore - Class in smile.validation.metric
-
The F-score (or F-measure) considers both the precision and the recall of the test to compute the score.
- FScore() - Constructor for class smile.validation.metric.FScore
-
Constructor of F1 score.
- FScore(double) - Constructor for class smile.validation.metric.FScore
-
Constructor of general F-score.
- ftest() - Method in class smile.regression.LinearModel
-
Returns the F-statistic of goodness-of-fit.
G
- g(double[], double[]) - Method in interface smile.base.mlp.ActivationFunction
-
The gradient function.
- g(double[], double[]) - Method in interface smile.deep.activation.ActivationFunction
-
The gradient function.
- g(double[], double[]) - Method in class smile.deep.activation.LeakyReLU
- g(double[], double[]) - Method in class smile.deep.activation.ReLU
- g(double[], double[]) - Method in class smile.deep.activation.Sigmoid
- g(double[], double[]) - Method in class smile.deep.activation.Softmax
- g(double[], double[]) - Method in class smile.deep.activation.Tanh
- g(Cost, double[], double[]) - Method in enum class smile.base.mlp.OutputFunction
-
The gradient function.
- GAFE - Class in smile.feature.selection
-
Genetic algorithm based feature selection.
- GAFE() - Constructor for class smile.feature.selection.GAFE
-
Constructor.
- GAFE(Selection, int, Crossover, double, double) - Constructor for class smile.feature.selection.GAFE
-
Constructor.
- Gaussian(double, double) - Static method in interface smile.vq.Neighborhood
-
Returns Gaussian neighborhood function.
- GaussianProcessRegression<T> - Class in smile.regression
-
Gaussian Process for Regression.
- GaussianProcessRegression(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.GaussianProcessRegression
-
Constructor.
- GaussianProcessRegression(MercerKernel<T>, T[], double[], double, double, double) - Constructor for class smile.regression.GaussianProcessRegression
-
Constructor.
- GaussianProcessRegression(MercerKernel<T>, T[], double[], double, double, double, Matrix.Cholesky, double) - Constructor for class smile.regression.GaussianProcessRegression
-
Constructor.
- GaussianProcessRegression.JointPrediction - Class in smile.regression
-
The joint prediction of multiple data points.
- getClipNorm() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the gradient clipping norm.
- getClipValue() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the gradient clipping value.
- getExtensionLevel() - Method in class smile.anomaly.IsolationForest
-
Returns the extension level.
- getInitialStateProbabilities() - Method in class smile.sequence.HMM
-
Returns the initial state probabilities.
- getInputSize() - Method in class smile.base.mlp.Layer
-
Returns the dimension of input vector (not including bias value).
- getLearningRate() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the learning rate.
- getLearningRate() - Method in class smile.classification.LogisticRegression
-
Returns the learning rate of stochastic gradient descent.
- getLearningRate() - Method in class smile.classification.Maxent
-
Returns the learning rate of stochastic gradient descent.
- getLearningRate() - Method in class smile.classification.SparseLogisticRegression
-
Returns the learning rate of stochastic gradient descent.
- getMomentum() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the momentum factor.
- getOutputSize() - Method in class smile.base.mlp.Layer
-
Returns the dimension of output vector.
- getProjection() - Method in class smile.classification.FLD
-
Returns the projection matrix W.
- getProjection(double) - Method in class smile.feature.extraction.PCA
-
Returns the projection with top principal components that contain (more than) the given percentage of variance.
- getProjection(int) - Method in class smile.feature.extraction.PCA
-
Returns the projection with given number of principal components.
- getStateTransitionProbabilities() - Method in class smile.sequence.HMM
-
Returns the state transition probabilities.
- getSymbolEmissionProbabilities() - Method in class smile.sequence.HMM
-
Returns the symbol emission probabilities.
- getWeightDecay() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the weight decay factor.
- GHA - Class in smile.feature.extraction
-
Generalized Hebbian Algorithm.
- GHA(double[][], TimeFunction, String...) - Constructor for class smile.feature.extraction.GHA
-
Constructor.
- GHA(int, int, TimeFunction, String...) - Constructor for class smile.feature.extraction.GHA
-
Constructor.
- GINI - Enum constant in enum class smile.base.cart.SplitRule
-
Used by the CART algorithm, Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it were randomly labeled according to the distribution of labels in the subset.
- GLM - Class in smile.glm
-
Generalized linear models.
- GLM(Formula, String[], Model, double[], double, double, double, double[], double[], double[][]) - Constructor for class smile.glm.GLM
-
Constructor.
- GMeans - Class in smile.clustering
-
G-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters by normality test.
- GMeans(double, double[][], int[]) - Constructor for class smile.clustering.GMeans
-
Constructor.
- gradient() - Method in class smile.base.mlp.Layer
-
Returns the output gradient vector.
- GradientTreeBoost - Class in smile.classification
-
Gradient boosting for classification.
- GradientTreeBoost - Class in smile.regression
-
Gradient boosting for regression.
- GradientTreeBoost(Formula, RegressionTree[][], double, double[]) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of multi-class.
- GradientTreeBoost(Formula, RegressionTree[][], double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of multi-class.
- GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of binary class.
- GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.regression.GradientTreeBoost
-
Constructor.
- GradientTreeBoost(Formula, RegressionTree[], double, double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of binary class.
- graph - Variable in class smile.manifold.IsoMap
-
The nearest neighbor graph.
- graph - Variable in class smile.manifold.LaplacianEigenmap
-
Nearest neighbor graph.
- graph - Variable in class smile.manifold.LLE
-
Nearest neighbor graph.
- graph - Variable in class smile.manifold.UMAP
-
The nearest neighbor graph.
- grid() - Method in class smile.hpo.Hyperparameters
-
Generates a stream of hyperparameters for grid search.
- GrowingNeuralGas - Class in smile.vq
-
Growing Neural Gas.
- GrowingNeuralGas(int) - Constructor for class smile.vq.GrowingNeuralGas
-
Constructor.
- GrowingNeuralGas(int, double, double, int, int, double, double) - Constructor for class smile.vq.GrowingNeuralGas
-
Constructor.
H
- hashCode() - Method in class smile.association.AssociationRule
- hashCode() - Method in class smile.association.ItemSet
- HashEncoder - Class in smile.feature.extraction
-
Feature hashing, also known as the hashing trick, is a fast and space-efficient way of vectorizing features, i.e.
- HashEncoder(Function<String, String[]>, int) - Constructor for class smile.feature.extraction.HashEncoder
-
Constructor.
- HashEncoder(Function<String, String[]>, int, boolean) - Constructor for class smile.feature.extraction.HashEncoder
-
Constructor.
- hasMissing(Tuple) - Static method in class smile.feature.imputation.SimpleImputer
-
Return true if the tuple x has missing values.
- height() - Method in class smile.clustering.HierarchicalClustering
-
Returns a set of n-1 non-decreasing real values, which are the clustering height, i.e., the value of the criterion associated with the clustering method for the particular agglomeration.
- HiddenLayer - Class in smile.base.mlp
-
A hidden layer in the neural network.
- HiddenLayer(int, int, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayer
-
Constructor.
- HiddenLayerBuilder - Class in smile.base.mlp
-
The builder of hidden layers.
- HiddenLayerBuilder(int, double, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayerBuilder
-
Constructor.
- HierarchicalClustering - Class in smile.clustering
-
Agglomerative Hierarchical Clustering.
- HierarchicalClustering(int[][], double[]) - Constructor for class smile.clustering.HierarchicalClustering
-
Constructor.
- HMM - Class in smile.sequence
-
First-order Hidden Markov Model.
- HMM(double[], Matrix, Matrix) - Constructor for class smile.sequence.HMM
-
Constructor.
- HMMLabeler<T> - Class in smile.sequence
-
First-order Hidden Markov Model sequence labeler.
- HMMLabeler(HMM, ToIntFunction<T>) - Constructor for class smile.sequence.HMMLabeler
-
Constructor.
- huber(double) - Static method in interface smile.base.cart.Loss
-
Huber loss function for M-regression, which attempts resistance to long-tailed error distributions and outliers while maintaining high efficiency for normally distributed errors.
- Huber - Enum constant in enum class smile.base.cart.Loss.Type
-
Huber loss function for M-regression, which attempts resistance to long-tailed error distributions and outliers while maintaining high efficiency for normally distributed errors.
- Hyperparameters - Class in smile.hpo
-
Hyperparameter configuration.
- Hyperparameters() - Constructor for class smile.hpo.Hyperparameters
-
Constructor.
I
- importance - Variable in class smile.base.cart.CART
-
Variable importance.
- importance() - Method in class smile.base.cart.CART
-
Returns the variable importance.
- importance() - Method in class smile.classification.AdaBoost
-
Returns the variable importance.
- importance() - Method in class smile.classification.GradientTreeBoost
-
Returns the variable importance.
- importance() - Method in class smile.classification.RandomForest
-
Returns the variable importance.
- importance() - Method in class smile.regression.GradientTreeBoost
-
Returns the variable importance.
- importance() - Method in class smile.regression.RandomForest
-
Returns the variable importance.
- impurity() - Method in class smile.base.cart.RegressionNode
-
Returns the residual sum of squares.
- impurity(LeafNode) - Method in class smile.base.cart.CART
-
Returns the impurity of node.
- impurity(LeafNode) - Method in class smile.classification.DecisionTree
- impurity(LeafNode) - Method in class smile.regression.RegressionTree
- impurity(SplitRule) - Method in class smile.base.cart.DecisionNode
-
Returns the impurity of node.
- impurity(SplitRule, int, int[]) - Static method in class smile.base.cart.DecisionNode
-
Returns the impurity of samples.
- impute(double[][]) - Static method in class smile.feature.imputation.SimpleImputer
-
Impute the missing values with column averages.
- impute(double[][], int, int) - Static method in interface smile.feature.imputation.SVDImputer
-
Impute missing values in the dataset.
- index - Variable in class smile.base.cart.CART
-
An index of samples to their original locations in training dataset.
- index - Variable in class smile.manifold.IsoMap
-
The original sample index.
- index - Variable in class smile.manifold.LaplacianEigenmap
-
The original sample index.
- index - Variable in class smile.manifold.LLE
-
The original sample index.
- index - Variable in class smile.manifold.UMAP
-
The original sample index.
- indexOf(int[]) - Method in class smile.classification.ClassLabels
-
Maps the class labels to index.
- InformationValue - Class in smile.feature.selection
-
Information Value (IV) measures the predictive strength of a feature for a binary dependent variable.
- InformationValue(String, double, double[], double[]) - Constructor for class smile.feature.selection.InformationValue
-
Constructor.
- input(int) - Static method in class smile.base.mlp.Layer
-
Returns an input layer.
- input(int, double) - Static method in class smile.base.mlp.Layer
-
Returns an input layer.
- InputLayer - Class in smile.base.mlp
-
An input layer in the neural network.
- InputLayer(int) - Constructor for class smile.base.mlp.InputLayer
-
Constructor.
- InputLayer(int, double) - Constructor for class smile.base.mlp.InputLayer
-
Constructor.
- instance - Static variable in class smile.validation.metric.Accuracy
-
Default instance.
- instance - Static variable in class smile.validation.metric.AdjustedRandIndex
-
Default instance.
- instance - Static variable in class smile.validation.metric.AUC
-
Default instance.
- instance - Static variable in class smile.validation.metric.Error
-
Default instance.
- instance - Static variable in class smile.validation.metric.Fallout
-
Default instance.
- instance - Static variable in class smile.validation.metric.FDR
-
Default instance.
- instance - Static variable in class smile.validation.metric.LogLoss
-
Default instance.
- instance - Static variable in class smile.validation.metric.MAD
-
Default instance.
- instance - Static variable in class smile.validation.metric.MatthewsCorrelation
-
Default instance.
- instance - Static variable in class smile.validation.metric.MSE
-
Default instance.
- instance - Static variable in class smile.validation.metric.MutualInformation
-
Default instance.
- instance - Static variable in class smile.validation.metric.Precision
-
Default instance.
- instance - Static variable in class smile.validation.metric.R2
-
Default instance.
- instance - Static variable in class smile.validation.metric.RandIndex
-
Default instance.
- instance - Static variable in class smile.validation.metric.Recall
-
Default instance.
- instance - Static variable in class smile.validation.metric.RMSE
-
Default instance.
- instance - Static variable in class smile.validation.metric.RSS
-
Default instance.
- instance - Static variable in class smile.validation.metric.Sensitivity
-
Default instance.
- instance - Static variable in class smile.validation.metric.Specificity
-
Default instance.
- intercept() - Method in class smile.base.svm.KernelMachine
-
Returns the intercept.
- intercept() - Method in class smile.regression.LinearModel
-
Returns the intercept.
- intercept() - Method in class smile.timeseries.AR
-
Returns the intercept.
- intercept() - Method in class smile.timeseries.ARMA
-
Returns the intercept.
- intercept(double[]) - Method in interface smile.base.cart.Loss
-
Returns the intercept of model.
- InternalNode - Class in smile.base.cart
-
An internal node in CART.
- InternalNode(int, double, double, Node, Node) - Constructor for class smile.base.cart.InternalNode
-
Constructor.
- invlink(double) - Method in interface smile.glm.model.Model
-
The inverse of link function (aka the mean function).
- isNormalized() - Method in class smile.classification.RBFNetwork
-
Returns true if the model is normalized.
- isNormalized() - Method in class smile.regression.RBFNetwork
-
Returns true if the model is normalized.
- IsolationForest - Class in smile.anomaly
-
Isolation forest is an unsupervised learning algorithm for anomaly detection that works on the principle of isolating anomalies.
- IsolationForest(int, int, IsolationTree...) - Constructor for class smile.anomaly.IsolationForest
-
Constructor.
- IsolationTree - Class in smile.anomaly
-
Isolation tree.
- IsolationTree(List<double[]>, int, int) - Constructor for class smile.anomaly.IsolationTree
-
Constructor.
- IsoMap - Class in smile.manifold
-
Isometric feature mapping.
- IsoMap(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.IsoMap
-
Constructor.
- IsotonicMDS - Class in smile.manifold
-
Kruskal's non-metric MDS.
- IsotonicMDS(double, double[][]) - Constructor for class smile.manifold.IsotonicMDS
-
Constructor.
- IsotonicRegressionScaling - Class in smile.classification
-
A method to calibrate decision function value to probability.
- IsotonicRegressionScaling(double[], double[]) - Constructor for class smile.classification.IsotonicRegressionScaling
-
Constructor.
- items - Variable in class smile.association.ItemSet
-
The set of items.
- ItemSet - Class in smile.association
-
A set of items.
- ItemSet(int[], int) - Constructor for class smile.association.ItemSet
-
Constructor.
- iterator() - Method in class smile.association.ARM
- iterator() - Method in class smile.association.FPGrowth
- iv - Variable in class smile.feature.selection.InformationValue
-
Information value.
J
- joint(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / H(y1, y2).
- JOINT - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
I(y1, y2) / H(y1, y2)
- JOINT - Static variable in class smile.validation.metric.NormalizedMutualInformation
-
Default instance with max normalization.
- JointPrediction(T[], double[], double[], Matrix) - Constructor for class smile.regression.GaussianProcessRegression.JointPrediction
-
Constructor.
K
- k - Variable in class smile.classification.ClassLabels
-
The number of classes.
- k - Variable in class smile.clustering.PartitionClustering
-
The number of clusters.
- kernel - Variable in class smile.regression.GaussianProcessRegression
-
The covariance/kernel function.
- kernel() - Method in class smile.base.svm.KernelMachine
-
Returns the kernel function.
- KernelMachine<T> - Class in smile.base.svm
-
Kernel machines.
- KernelMachine<T> - Class in smile.regression
-
The learning methods building on kernels.
- KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.base.svm.KernelMachine
-
Constructor.
- KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.regression.KernelMachine
-
Constructor.
- KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.base.svm.KernelMachine
-
Constructor.
- KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.KernelMachine
-
Constructor.
- KernelPCA - Class in smile.feature.extraction
-
Kernel PCA transform.
- KernelPCA(KPCA<double[]>, String...) - Constructor for class smile.feature.extraction.KernelPCA
-
Constructor.
- KMeans - Class in smile.clustering
-
K-Means clustering.
- KMeans(double, double[][], int[]) - Constructor for class smile.clustering.KMeans
-
Constructor.
- KMedoidsImputer - Class in smile.feature.imputation
-
Missing value imputation by K-Medoids clustering.
- KMedoidsImputer(CLARANS<Tuple>) - Constructor for class smile.feature.imputation.KMedoidsImputer
-
Constructor.
- KModes - Class in smile.clustering
-
K-Modes clustering.
- KModes(double, int[][], int[]) - Constructor for class smile.clustering.KModes
-
Constructor.
- KNN<T> - Class in smile.classification
-
K-nearest neighbor classifier.
- KNN(KNNSearch<T, T>, int[], int) - Constructor for class smile.classification.KNN
-
Constructor.
- KNNImputer - Class in smile.feature.imputation
-
Missing value imputation with k-nearest neighbors.
- KNNImputer(DataFrame, int, String...) - Constructor for class smile.feature.imputation.KNNImputer
-
Constructor with Euclidean distance on selected columns.
- KNNImputer(DataFrame, int, Distance<Tuple>) - Constructor for class smile.feature.imputation.KNNImputer
-
Constructor.
- kpca - Variable in class smile.feature.extraction.KernelPCA
-
Kernel PCA.
- KPCA<T> - Class in smile.manifold
-
Kernel principal component analysis.
- KPCA(T[], MercerKernel<T>, double[], double, double[][], double[], Matrix) - Constructor for class smile.manifold.KPCA
-
Constructor.
L
- L - Variable in class smile.regression.GaussianProcessRegression
-
The log marginal likelihood, which may be not available (NaN) when the model is fit with approximate methods.
- L - Variable in class smile.vq.BIRCH
-
The number of CF entries in the leaf nodes.
- L_INF - Enum constant in enum class smile.feature.transform.Normalizer.Norm
-
Normalize L-infinity vector norm.
- L1 - Enum constant in enum class smile.feature.transform.Normalizer.Norm
-
Normalize L1 vector norm.
- L2 - Enum constant in enum class smile.feature.transform.Normalizer.Norm
-
Normalize L2 vector norm.
- lad() - Static method in interface smile.base.cart.Loss
-
Least absolute deviation regression loss.
- lambda - Variable in class smile.base.mlp.MultilayerPerceptron
-
The L2 regularization factor, which is also the weight decay factor.
- LaplacianEigenmap - Class in smile.manifold
-
Laplacian Eigenmap.
- LaplacianEigenmap(double, int[], double[][], AdjacencyList) - Constructor for class smile.manifold.LaplacianEigenmap
-
Constructor with Gaussian kernel.
- LaplacianEigenmap(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.LaplacianEigenmap
-
Constructor with discrete weights.
- LASSO - Class in smile.regression
-
Lasso (least absolute shrinkage and selection operator) regression.
- LASSO() - Constructor for class smile.regression.LASSO
- LASVM<T> - Class in smile.base.svm
-
LASVM is an approximate SVM solver that uses online approximation.
- LASVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.LASVM
-
Constructor.
- LASVM(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.LASVM
-
Constructor.
- lattice(int, int, double[][]) - Static method in class smile.vq.SOM
-
Creates a lattice of which the weight vectors are randomly selected from samples.
- Layer - Class in smile.base.mlp
-
A layer in the neural network.
- Layer(int, int) - Constructor for class smile.base.mlp.Layer
-
Constructor.
- Layer(int, int, double) - Constructor for class smile.base.mlp.Layer
-
Constructor.
- Layer(Matrix, double[]) - Constructor for class smile.base.mlp.Layer
-
Constructor.
- Layer(Matrix, double[], double) - Constructor for class smile.base.mlp.Layer
-
Constructor.
- LayerBuilder - Class in smile.base.mlp
-
The builder of layers.
- LayerBuilder(int, double) - Constructor for class smile.base.mlp.LayerBuilder
-
Constructor.
- LDA - Class in smile.classification
-
Linear discriminant analysis.
- LDA(double[], double[][], double[], Matrix) - Constructor for class smile.classification.LDA
-
Constructor.
- LDA(double[], double[][], double[], Matrix, IntSet) - Constructor for class smile.classification.LDA
-
Constructor.
- LeafNode - Class in smile.base.cart
-
A leaf node in decision tree.
- LeafNode(int) - Constructor for class smile.base.cart.LeafNode
-
Constructor.
- leaky() - Static method in interface smile.base.mlp.ActivationFunction
-
The leaky rectifier activation function
max(x, 0.01x)
. - leaky() - Static method in interface smile.deep.activation.ActivationFunction
-
Returns the leaky rectifier activation function
max(x, 0.01x)
. - leaky(double) - Static method in interface smile.base.mlp.ActivationFunction
-
The leaky rectifier activation function
max(x, ax)
where0 <= a < 1
. - leaky(double) - Static method in interface smile.deep.activation.ActivationFunction
-
Returns the leaky rectifier activation function
max(x, ax)
where0 <= a < 1
. - leaky(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with leaky rectified linear activation function.
- leaky(int, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with leaky rectified linear activation function.
- leaky(int, double, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with leaky rectified linear activation function.
- LeakyReLU - Class in smile.deep.activation
-
The leaky rectifier activation function
max(x, ax)
where0 <= a < 1
. - LeakyReLU(double) - Constructor for class smile.deep.activation.LeakyReLU
-
Constructor.
- learningRate - Variable in class smile.base.mlp.MultilayerPerceptron
-
The learning rate.
- LeastAbsoluteDeviation - Enum constant in enum class smile.base.cart.Loss.Type
-
Least absolute deviation regression.
- LeastSquares - Enum constant in enum class smile.base.cart.Loss.Type
-
Least squares regression.
- leaves() - Method in class smile.base.cart.InternalNode
- leaves() - Method in class smile.base.cart.LeafNode
- leaves() - Method in interface smile.base.cart.Node
-
Returns the number of leaf nodes in the subtree.
- leverage - Variable in class smile.association.AssociationRule
-
The difference between the probability of the rule and the expected probability if the items were statistically independent.
- lift - Variable in class smile.association.AssociationRule
-
How many times more often antecedent and consequent occur together than expected if they were statistically independent.
- LIKELIHOOD - Enum constant in enum class smile.base.mlp.Cost
-
Negative likelihood (or log-likelihood) cost.
- linear() - Static method in interface smile.base.mlp.ActivationFunction
-
Linear/Identity activation function.
- linear(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with linear activation function.
- linear(int, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with linear activation function.
- LINEAR - Enum constant in enum class smile.base.mlp.OutputFunction
-
Linear/Identity function.
- LinearKernelMachine - Class in smile.base.svm
-
Linear kernel machine.
- LinearKernelMachine(double[], double) - Constructor for class smile.base.svm.LinearKernelMachine
-
Constructor.
- LinearModel - Class in smile.regression
-
Linear model.
- LinearModel(Formula, StructType, Matrix, double[], double[], double) - Constructor for class smile.regression.LinearModel
-
Constructor.
- link(double) - Method in interface smile.glm.model.Model
-
The link function.
- Linkage - Class in smile.clustering.linkage
-
A measure of dissimilarity between clusters (i.e.
- Linkage(double[][]) - Constructor for class smile.clustering.linkage.Linkage
-
Constructor.
- Linkage(int, float[]) - Constructor for class smile.clustering.linkage.Linkage
-
Constructor.
- ljung(double[], int) - Static method in class smile.timeseries.BoxTest
-
Box-Pierce test.
- Ljung_Box - Enum constant in enum class smile.timeseries.BoxTest.Type
-
Ljung-Box test.
- LLE - Class in smile.manifold
-
Locally Linear Embedding.
- LLE(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.LLE
-
Constructor.
- lloyd(double[][], int) - Static method in class smile.clustering.KMeans
-
The implementation of Lloyd algorithm as a benchmark.
- lloyd(double[][], int, int, double) - Static method in class smile.clustering.KMeans
-
The implementation of Lloyd algorithm as a benchmark.
- loadings() - Method in class smile.feature.extraction.PCA
-
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
- loadings() - Method in class smile.feature.extraction.ProbabilisticPCA
-
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
- log() - Static method in interface smile.glm.model.Poisson
-
log link function.
- logistic(int[]) - Static method in interface smile.base.cart.Loss
-
Logistic regression loss for binary classification.
- logistic(int, int, int[], double[][]) - Static method in interface smile.base.cart.Loss
-
Logistic regression loss for multi-class classification.
- LogisticRegression - Class in smile.classification
-
Logistic regression.
- LogisticRegression(int, double, double, IntSet) - Constructor for class smile.classification.LogisticRegression
-
Constructor.
- LogisticRegression.Binomial - Class in smile.classification
-
Binomial logistic regression.
- LogisticRegression.Multinomial - Class in smile.classification
-
Multinomial logistic regression.
- logit() - Static method in interface smile.glm.model.Bernoulli
-
logit link function.
- logit(int[]) - Static method in interface smile.glm.model.Binomial
-
logit link function.
- loglikelihood() - Method in class smile.classification.LogisticRegression
-
Returns the log-likelihood of model.
- loglikelihood() - Method in class smile.classification.Maxent
-
Returns the log-likelihood of model.
- loglikelihood() - Method in class smile.classification.SparseLogisticRegression
-
Returns the log-likelihood of model.
- logLikelihood - Variable in class smile.glm.GLM
-
Log-likelihood.
- logLikelihood() - Method in class smile.glm.GLM
-
Returns the log-likelihood of model.
- logLikelihood(double[], double[]) - Method in interface smile.glm.model.Model
-
The log-likelihood function.
- logloss - Variable in class smile.validation.ClassificationMetrics
-
The log loss on validation data.
- LogLoss - Class in smile.validation.metric
-
Log loss is a evaluation metric for binary classifiers and it is sometimes the optimization objective as well in case of logistic regression and neural networks.
- LogLoss() - Constructor for class smile.validation.metric.LogLoss
- logp(int[]) - Method in class smile.sequence.HMM
-
Returns the logarithm probability of an observation sequence given this HMM.
- logp(int[], int[]) - Method in class smile.sequence.HMM
-
Returns the log joint probability of an observation sequence along a state sequence given this HMM.
- logp(T[]) - Method in class smile.sequence.HMMLabeler
-
Returns the logarithm probability of an observation sequence.
- logp(T[], int[]) - Method in class smile.sequence.HMMLabeler
-
Returns the log joint probability of an observation sequence along a state sequence.
- LOOCV - Interface in smile.validation
-
Leave-one-out cross validation.
- Loss - Interface in smile.base.cart
-
Regression loss function.
- Loss.Type - Enum Class in smile.base.cart
-
The type of loss.
- ls() - Static method in interface smile.base.cart.Loss
-
Least squares regression loss.
- ls(double[]) - Static method in interface smile.base.cart.Loss
-
Least squares regression loss.
M
- ma() - Method in class smile.timeseries.ARMA
-
Returns the linear coefficients of MA(q).
- mad - Variable in class smile.validation.RegressionMetrics
-
The mean absolute deviation on validation data.
- MAD - Class in smile.validation.metric
-
Mean absolute deviation error.
- MAD() - Constructor for class smile.validation.metric.MAD
- mask - Variable in class smile.base.mlp.Layer
-
The dropout mask.
- matrix - Variable in class smile.validation.metric.ConfusionMatrix
-
Confusion matrix.
- MatthewsCorrelation - Class in smile.validation.metric
-
Matthews correlation coefficient.
- MatthewsCorrelation() - Constructor for class smile.validation.metric.MatthewsCorrelation
- max(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (max(H(y1), H(y2)) - E(MI)).
- max(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / max(H(y1), H(y2)).
- MAX - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
I(y1, y2) / max(H(y1), H(y2))
- MAX - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
I(y1, y2) / max(H(y1), H(y2))
- MAX - Static variable in class smile.validation.metric.AdjustedMutualInformation
-
Default instance with max normalization.
- MAX - Static variable in class smile.validation.metric.NormalizedMutualInformation
-
Default instance with max normalization.
- MaxAbsScaler - Class in smile.feature.transform
-
Scales each feature by its maximum absolute value.
- MaxAbsScaler() - Constructor for class smile.feature.transform.MaxAbsScaler
- maxDepth - Variable in class smile.base.cart.CART
-
The maximum depth of the tree.
- Maxent - Class in smile.classification
-
Maximum Entropy Classifier.
- Maxent(int, double, double, IntSet) - Constructor for class smile.classification.Maxent
-
Constructor.
- Maxent.Binomial - Class in smile.classification
-
Binomial maximum entropy classifier.
- Maxent.Multinomial - Class in smile.classification
-
Multinomial maximum entropy classifier.
- maxNodes - Variable in class smile.base.cart.CART
-
The maximum number of leaf nodes in the tree.
- mcc - Variable in class smile.validation.ClassificationMetrics
-
The Matthews correlation coefficient on validation data.
- MDS - Class in smile.manifold
-
Classical multidimensional scaling, also known as principal coordinates analysis.
- MDS(double[], double[], double[][]) - Constructor for class smile.manifold.MDS
-
Constructor.
- mean - Variable in class smile.regression.GaussianProcessRegression
-
The mean of responsible variable.
- mean() - Method in class smile.base.cart.RegressionNode
-
Returns the mean of response variable.
- mean() - Method in class smile.timeseries.AR
-
Returns the mean of time series.
- mean() - Method in class smile.timeseries.ARMA
-
Returns the mean of time series.
- MEAN_SQUARED_ERROR - Enum constant in enum class smile.base.mlp.Cost
-
Mean squares error cost.
- MEC<T> - Class in smile.clustering
-
Non-parametric Minimum Conditional Entropy Clustering.
- MEC(double, double, RNNSearch<T, T>, int, int[]) - Constructor for class smile.clustering.MEC
-
Constructor.
- merge() - Method in class smile.base.cart.InternalNode
- merge() - Method in class smile.base.cart.LeafNode
- merge() - Method in interface smile.base.cart.Node
-
Try to merge the children nodes and return a leaf node.
- merge(int, int) - Method in class smile.clustering.linkage.CompleteLinkage
- merge(int, int) - Method in class smile.clustering.linkage.Linkage
-
Merges two clusters into one and update the proximity matrix.
- merge(int, int) - Method in class smile.clustering.linkage.SingleLinkage
- merge(int, int) - Method in class smile.clustering.linkage.UPGMALinkage
- merge(int, int) - Method in class smile.clustering.linkage.UPGMCLinkage
- merge(int, int) - Method in class smile.clustering.linkage.WardLinkage
- merge(int, int) - Method in class smile.clustering.linkage.WPGMALinkage
- merge(int, int) - Method in class smile.clustering.linkage.WPGMCLinkage
- merge(RandomForest) - Method in class smile.classification.RandomForest
-
Merges two random forests.
- merge(RandomForest) - Method in class smile.regression.RandomForest
-
Merges two random forests.
- metrics - Variable in class smile.classification.RandomForest.Model
-
The performance metrics on out-of-bag samples.
- metrics - Variable in class smile.regression.RandomForest.Model
-
The performance metrics on out-of-bag samples.
- metrics - Variable in class smile.validation.ClassificationValidation
-
The classification metrics.
- metrics - Variable in class smile.validation.RegressionValidation
-
The regression metrics.
- metrics() - Method in class smile.classification.RandomForest
-
Returns the overall out-of-bag metric estimations.
- metrics() - Method in class smile.regression.RandomForest
-
Returns the overall out-of-bag metric estimations.
- min(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (min(H(y1), H(y2)) - E(MI)).
- min(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / min(H(y1), H(y2)).
- MIN - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
I(y1, y2) / min(H(y1), H(y2))
- MIN - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
I(y1, y2) / min(H(y1), H(y2))
- MIN - Static variable in class smile.validation.metric.AdjustedMutualInformation
-
Default instance with min normalization.
- MIN - Static variable in class smile.validation.metric.NormalizedMutualInformation
-
Default instance with min normalization.
- minPts - Variable in class smile.clustering.DBSCAN
-
The minimum number of points required to form a cluster
- minSupport() - Method in class smile.association.FPTree
-
Returns the required minimum support of item sets in terms of frequency.
- mle(int, OutputFunction) - Static method in class smile.base.mlp.Layer
-
Returns an output layer with (log-)likelihood cost function.
- MLP - Class in smile.classification
-
Fully connected multilayer perceptron neural network for classification.
- MLP - Class in smile.regression
-
Fully connected multilayer perceptron neural network for regression.
- MLP(LayerBuilder...) - Constructor for class smile.classification.MLP
-
Constructor.
- MLP(LayerBuilder...) - Constructor for class smile.regression.MLP
-
Constructor.
- MLP(Scaler, LayerBuilder...) - Constructor for class smile.regression.MLP
-
Constructor.
- MLP(IntSet, LayerBuilder...) - Constructor for class smile.classification.MLP
-
Constructor.
- model - Variable in class smile.glm.GLM
-
The model specifications (link function, deviance, etc.).
- model - Variable in class smile.sequence.CRFLabeler
-
The CRF model.
- model - Variable in class smile.sequence.HMMLabeler
-
The HMM model.
- model - Variable in class smile.validation.ClassificationValidation
-
The model.
- model - Variable in class smile.validation.RegressionValidation
-
The model.
- Model - Interface in smile.glm.model
-
The GLM model specification.
- models() - Method in class smile.classification.RandomForest
-
Returns the base models.
- models() - Method in class smile.regression.RandomForest
-
Returns the base models.
- ModelSelection - Interface in smile.validation
-
Model selection criteria.
- momentum - Variable in class smile.base.mlp.MultilayerPerceptron
-
The momentum factor.
- mse - Variable in class smile.validation.RegressionMetrics
-
The mean squared error on validation data.
- mse(int, OutputFunction) - Static method in class smile.base.mlp.Layer
-
Returns an output layer with mean squared error cost function.
- MSE - Class in smile.validation.metric
-
Mean squared error.
- MSE() - Constructor for class smile.validation.metric.MSE
- mtry - Variable in class smile.base.cart.CART
-
The number of input variables to be used to determine the decision at a node of the tree.
- mu - Variable in class smile.glm.GLM
-
The fitted mean values.
- mu - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
-
The mean of predictive distribution at query points.
- MultilayerPerceptron - Class in smile.base.mlp
-
Fully connected multilayer perceptron neural network.
- MultilayerPerceptron(Layer...) - Constructor for class smile.base.mlp.MultilayerPerceptron
-
Constructor.
- multinomial(double[][], int[]) - Static method in class smile.classification.LogisticRegression
-
Fits multinomial logistic regression.
- multinomial(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
-
Fits multinomial logistic regression.
- multinomial(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
-
Fits multinomial logistic regression.
- multinomial(int, int[][], int[]) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- multinomial(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- multinomial(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- multinomial(SparseDataset, int[]) - Static method in class smile.classification.SparseLogisticRegression
-
Fits multinomial logistic regression.
- multinomial(SparseDataset, int[], double, double, int) - Static method in class smile.classification.SparseLogisticRegression
-
Fits multinomial logistic regression.
- multinomial(SparseDataset, int[], Properties) - Static method in class smile.classification.SparseLogisticRegression
-
Fits multinomial logistic regression.
- Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.LogisticRegression.Multinomial
-
Constructor.
- Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.Maxent.Multinomial
-
Constructor.
- Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression.Multinomial
-
Constructor.
- MULTINOMIAL - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
The document multinomial model generates one term from the vocabulary in each position of the document.
- mustart(double) - Method in interface smile.glm.model.Model
-
The function to estimates the starting value of mean given y.
- MutualInformation - Class in smile.validation.metric
-
Mutual Information for comparing clustering.
- MutualInformation() - Constructor for class smile.validation.metric.MutualInformation
N
- n - Variable in class smile.base.mlp.Layer
-
The number of neurons in this layer
- n - Variable in class smile.validation.metric.ContingencyTable
-
The number of observations.
- n1 - Variable in class smile.validation.metric.ContingencyTable
-
The number of clusters of first clustering.
- n2 - Variable in class smile.validation.metric.ContingencyTable
-
The number of clusters of second clustering.
- NaiveBayes - Class in smile.classification
-
Naive Bayes classifier.
- NaiveBayes(double[], Distribution[][]) - Constructor for class smile.classification.NaiveBayes
-
Constructor of general naive Bayes classifier.
- NaiveBayes(double[], Distribution[][], IntSet) - Constructor for class smile.classification.NaiveBayes
-
Constructor of general naive Bayes classifier.
- name() - Method in interface smile.base.mlp.ActivationFunction
-
Returns the name of activation function.
- name() - Method in interface smile.deep.activation.ActivationFunction
-
Returns the name of activation function.
- name() - Method in class smile.deep.activation.LeakyReLU
- name() - Method in class smile.deep.activation.ReLU
- name() - Method in class smile.deep.activation.Sigmoid
- name() - Method in class smile.deep.activation.Softmax
- name() - Method in class smile.deep.activation.Tanh
- neighbor - Variable in class smile.vq.hebb.Edge
-
The neighbor neuron.
- Neighborhood - Interface in smile.vq
-
The neighborhood function for 2-dimensional lattice topology (e.g.
- net - Variable in class smile.base.mlp.MultilayerPerceptron
-
The input and hidden layers.
- network() - Method in class smile.vq.NeuralGas
-
Returns the network of neurons.
- NeuralGas - Class in smile.vq
-
Neural Gas soft competitive learning algorithm.
- NeuralGas(double[][], TimeFunction, TimeFunction, TimeFunction) - Constructor for class smile.vq.NeuralGas
-
Constructor.
- NeuralMap - Class in smile.vq
-
NeuralMap is an efficient competitive learning algorithm inspired by growing neural gas and BIRCH.
- NeuralMap(double, double, double, int, double) - Constructor for class smile.vq.NeuralMap
-
Constructor.
- Neuron - Class in smile.vq.hebb
-
The neuron vertex in the growing neural gas network.
- Neuron(double[]) - Constructor for class smile.vq.hebb.Neuron
-
Constructor.
- Neuron(double[], double) - Constructor for class smile.vq.hebb.Neuron
-
Constructor.
- neurons - Variable in class smile.base.mlp.LayerBuilder
-
The number of neurons.
- neurons() - Method in class smile.base.mlp.LayerBuilder
-
Returns the number of neurons.
- neurons() - Method in class smile.vq.GrowingNeuralGas
-
Returns the neurons in the network.
- neurons() - Method in class smile.vq.NeuralGas
-
Returns the neurons.
- neurons() - Method in class smile.vq.NeuralMap
-
Returns the neurons.
- neurons() - Method in class smile.vq.SOM
-
Returns the lattice of neurons.
- newNode(int[]) - Method in class smile.base.cart.CART
-
Creates a new leaf node.
- newNode(int[]) - Method in class smile.classification.DecisionTree
- newNode(int[]) - Method in class smile.regression.RegressionTree
- ni - Variable in class smile.classification.ClassLabels
-
The number of samples per classes.
- Node - Interface in smile.base.cart
-
CART tree node.
- nodeSize - Variable in class smile.base.cart.CART
-
The number of instances in a node below which the tree will not split, setting nodeSize = 5 generally gives good results.
- noise - Variable in class smile.regression.GaussianProcessRegression
-
The variance of noise.
- NominalNode - Class in smile.base.cart
-
A node with a nominal split variable.
- NominalNode(int, int, double, double, Node, Node) - Constructor for class smile.base.cart.NominalNode
-
Constructor.
- NominalSplit - Class in smile.base.cart
-
The data about of a potential split for a leaf node.
- NominalSplit(LeafNode, int, int, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.NominalSplit
-
Constructor.
- nonoverlap(int[], int) - Static method in interface smile.validation.CrossValidation
-
Cross validation with non-overlapping groups.
- NormalizedMutualInformation - Class in smile.validation.metric
-
Normalized Mutual Information (NMI) for comparing clustering.
- NormalizedMutualInformation(NormalizedMutualInformation.Method) - Constructor for class smile.validation.metric.NormalizedMutualInformation
-
Constructor.
- NormalizedMutualInformation.Method - Enum Class in smile.validation.metric
-
The normalization method.
- Normalizer - Class in smile.feature.transform
-
Normalize samples individually to unit norm.
- Normalizer(Normalizer.Norm, String...) - Constructor for class smile.feature.transform.Normalizer
-
Constructor.
- Normalizer.Norm - Enum Class in smile.feature.transform
-
Vector norm.
- nullDeviance - Variable in class smile.glm.GLM
-
The null deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Null Model)).
- nullDeviance(double[], double) - Method in interface smile.glm.model.Model
-
The NULL deviance function.
- numClasses() - Method in class smile.classification.AbstractClassifier
- numClasses() - Method in interface smile.classification.Classifier
-
Returns the number of classes.
- numClasses() - Method in class smile.classification.DecisionTree
- numClasses() - Method in class smile.classification.MLP
- numClasses() - Method in class smile.classification.SVM
- nystrom(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
- nystrom(T[], double[], T[], MercerKernel<T>, double, boolean) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
- nystrom(T[], double[], T[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
O
- OCSVM<T> - Class in smile.base.svm
-
One-class support vector machine.
- OCSVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.OCSVM
-
Constructor.
- of(double[][]) - Static method in class smile.clustering.linkage.CompleteLinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.SingleLinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.UPGMALinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.UPGMCLinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.WardLinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.WPGMALinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.WPGMCLinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.manifold.IsotonicMDS
-
Fits Kruskal's non-metric MDS with default k = 2, tolerance = 1E-4 and maxIter = 200.
- of(double[][]) - Static method in class smile.manifold.MDS
-
Fits the classical multidimensional scaling.
- of(double[][]) - Static method in class smile.manifold.SammonMapping
-
Fits Sammon's mapping with default k = 2, lambda = 0.2, tolerance = 1E-4 and maxIter = 100.
- of(double[][]) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm.
- of(double[][], double[][], double, double, double, int) - Static method in class smile.manifold.SammonMapping
-
Fits Sammon's mapping.
- of(double[][], double[][], double, int) - Static method in class smile.manifold.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], int) - Static method in class smile.manifold.IsoMap
-
Runs the C-Isomap algorithm with Euclidean distance.
- of(double[][], int) - Static method in class smile.manifold.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], int) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmaps with discrete weights.
- of(double[][], int) - Static method in class smile.manifold.LLE
-
Runs the LLE algorithm.
- of(double[][], int) - Static method in class smile.manifold.MDS
-
Fits the classical multidimensional scaling.
- of(double[][], int) - Static method in class smile.manifold.SammonMapping
-
Fits Sammon's mapping.
- of(double[][], int) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm.
- of(double[][], int, boolean) - Static method in class smile.manifold.MDS
-
Fits the classical multidimensional scaling.
- of(double[][], int, double, double, double, int) - Static method in class smile.manifold.SammonMapping
-
Fits Sammon's mapping.
- of(double[][], int, double, int) - Static method in class smile.manifold.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], int, int) - Static method in class smile.manifold.LLE
-
Runs the LLE algorithm.
- of(double[][], int, int, boolean) - Static method in class smile.manifold.IsoMap
-
Runs the Isomap algorithm.
- of(double[][], int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmap with Gaussian kernel.
- of(double[][], int, int, int, double, double, double, int, double) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm.
- of(double[][], Properties) - Static method in class smile.manifold.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], Properties) - Static method in class smile.manifold.MDS
-
Fits the classical multidimensional scaling.
- of(double[][], Properties) - Static method in class smile.manifold.SammonMapping
-
Fits Sammon's mapping.
- of(double[], double[]) - Static method in class smile.validation.metric.MAD
-
Calculates the mean absolute deviation error.
- of(double[], double[]) - Static method in class smile.validation.metric.MSE
-
Calculates the mean squared error.
- of(double[], double[]) - Static method in class smile.validation.metric.R2
-
Calculates the R squared coefficient.
- of(double[], double[]) - Static method in class smile.validation.metric.RMSE
-
Calculates the root mean squared error.
- of(double[], double[]) - Static method in class smile.validation.metric.RSS
-
Calculates the residual sum of squares.
- of(double, double, double[], double[]) - Static method in class smile.validation.RegressionMetrics
-
Computes the regression metrics.
- of(double, double, int[], int[]) - Static method in class smile.validation.ClassificationMetrics
-
Computes the classification metrics.
- of(double, double, int[], int[], double[][]) - Static method in class smile.validation.ClassificationMetrics
-
Computes the soft classification metrics.
- of(double, int[][]) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available in main memory.
- of(double, int[], int[]) - Static method in class smile.validation.metric.FScore
-
Calculates the F1 score.
- of(double, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available as stream.
- of(double, M, Formula, DataFrame) - Static method in class smile.validation.ClassificationMetrics
-
Validates a model on a test data.
- of(double, M, Formula, DataFrame) - Static method in class smile.validation.RegressionMetrics
-
Trains and validates a model on a train/validation split.
- of(double, M, T[], double[]) - Static method in class smile.validation.RegressionMetrics
-
Validates a model on a test data.
- of(double, M, T[], int[]) - Static method in class smile.validation.ClassificationMetrics
-
Validates a model on a test data.
- of(int) - Static method in interface smile.validation.LOOCV
-
Returns the training sample index for each round.
- of(int[], double[]) - Static method in class smile.validation.metric.AUC
-
Calculates AUC for binary classifier.
- of(int[], double[]) - Static method in class smile.validation.metric.LogLoss
-
Calculates the Log Loss for binary classifier.
- of(int[], double[][]) - Static method in interface smile.validation.metric.CrossEntropy
-
Calculates the cross entropy for multiclass classifier.
- of(int[], int) - Static method in interface smile.validation.Bootstrap
-
Stratified bootstrap sampling.
- of(int[], int[]) - Static method in class smile.validation.metric.Accuracy
-
Calculates the classification accuracy.
- of(int[], int[]) - Static method in class smile.validation.metric.AdjustedRandIndex
-
Calculates the adjusted rand index.
- of(int[], int[]) - Static method in class smile.validation.metric.ConfusionMatrix
-
Creates the confusion matrix.
- of(int[], int[]) - Static method in class smile.validation.metric.Error
-
Calculates the number of errors.
- of(int[], int[]) - Static method in class smile.validation.metric.Fallout
-
Calculates the false alarm rate.
- of(int[], int[]) - Static method in class smile.validation.metric.FDR
-
Calculates the false discovery rate.
- of(int[], int[]) - Static method in class smile.validation.metric.MatthewsCorrelation
-
Calculates Matthews correlation coefficient.
- of(int[], int[]) - Static method in class smile.validation.metric.MutualInformation
-
Calculates the mutual information.
- of(int[], int[]) - Static method in class smile.validation.metric.Precision
-
Calculates the precision.
- of(int[], int[]) - Static method in class smile.validation.metric.RandIndex
-
Calculates the rand index.
- of(int[], int[]) - Static method in class smile.validation.metric.Recall
-
Calculates the recall/sensitivity.
- of(int[], int[]) - Static method in class smile.validation.metric.Sensitivity
-
Calculates the sensitivity.
- of(int[], int[]) - Static method in class smile.validation.metric.Specificity
-
Calculates the specificity.
- of(int, int) - Static method in interface smile.validation.Bootstrap
-
Bootstrap sampling.
- of(int, int) - Static method in interface smile.validation.CrossValidation
-
Creates a k-fold cross validation.
- of(int, int[][]) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available in main memory.
- of(int, int, int) - Method in interface smile.vq.Neighborhood
-
Returns the changing rate of neighborhood at a given iteration.
- of(int, int, String) - Static method in class smile.base.mlp.Layer
-
Returns the layer builders given a string representation such as "Input(10, 0.2)|ReLU(50, 0.5)|Sigmoid(30, 0.5)|...".
- of(int, int, String...) - Static method in class smile.feature.extraction.RandomProjection
-
Generates a non-sparse random projection.
- of(int, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available as stream.
- of(M, Formula, DataFrame) - Static method in class smile.validation.ClassificationMetrics
-
Validates a model on a test data.
- of(M, Formula, DataFrame) - Static method in class smile.validation.RegressionMetrics
-
Trains and validates a model on a train/validation split.
- of(M, T[], double[]) - Static method in class smile.validation.RegressionMetrics
-
Validates a model on a test data.
- of(M, T[], int[]) - Static method in class smile.validation.ClassificationMetrics
-
Validates a model on a test data.
- of(KernelMachine<double[]>) - Static method in class smile.base.svm.LinearKernelMachine
-
Creates a linear kernel machine.
- of(Formula, DataFrame, Properties, Classifier.Trainer<double[], ?>) - Static method in interface smile.classification.DataFrameClassifier
-
Fits a vector classifier on data frame.
- of(Formula, DataFrame, Properties, Regression.Trainer<double[], ?>) - Static method in interface smile.regression.DataFrameRegression
-
Fits a vector regression model on data frame.
- of(Formula, DataFrame, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.ClassificationValidation
-
Trains and validates a model on a train/validation split.
- of(Formula, DataFrame, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.RegressionValidation
-
Trains and validates a model on a train/validation split.
- of(Bag[], Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.ClassificationValidation
-
Trains and validates a model on multiple train/validation split.
- of(Bag[], Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.RegressionValidation
-
Trains and validates a model on multiple train/validation split.
- of(Bag[], T[], double[], BiFunction<T[], double[], M>) - Static method in class smile.validation.RegressionValidation
-
Trains and validates a model on multiple train/validation split.
- of(Bag[], T[], int[], BiFunction<T[], int[], M>) - Static method in class smile.validation.ClassificationValidation
-
Trains and validates a model on multiple train/validation split.
- of(T[], double[], T[], double[], BiFunction<T[], double[], M>) - Static method in class smile.validation.RegressionValidation
-
Trains and validates a model on a train/validation split.
- of(T[], int[], T[], int[], BiFunction<T[], int[], M>) - Static method in class smile.validation.ClassificationValidation
-
Trains and validates a model on a train/validation split.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.CompleteLinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.SingleLinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMALinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMCLinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WardLinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMALinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMCLinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm.
- of(T[], Distance<T>, int) - Static method in class smile.manifold.IsoMap
-
Runs the C-Isomap algorithm.
- of(T[], Distance<T>, int) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmaps with discrete weights.
- of(T[], Distance<T>, int) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm.
- of(T[], Distance<T>, int, int, boolean) - Static method in class smile.manifold.IsoMap
-
Runs the Isomap algorithm.
- of(T[], Distance<T>, int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmap with Gaussian kernel.
- of(T[], Distance<T>, int, int, int, double, double, double, int, double) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm.
- of(T[], RadialBasisFunction[], Metric<T>) - Static method in class smile.base.rbf.RBF
-
Makes a set of RBF neurons.
- of(T[], RadialBasisFunction, Metric<T>) - Static method in class smile.base.rbf.RBF
-
Makes a set of RBF neurons.
- ols(double[], int) - Static method in class smile.timeseries.AR
-
Fits an autoregressive model with least squares method.
- ols(double[], int, boolean) - Static method in class smile.timeseries.AR
-
Fits an autoregressive model with least squares method.
- OLS - Class in smile.regression
-
Ordinary least squares.
- OLS - Enum constant in enum class smile.timeseries.AR.Method
-
Ordinary least squares.
- OLS() - Constructor for class smile.regression.OLS
- OneVersusOne<T> - Class in smile.classification
-
One-vs-one strategy for reducing the problem of multiclass classification to multiple binary classification problems.
- OneVersusOne(Classifier<T>[][], PlattScaling[][]) - Constructor for class smile.classification.OneVersusOne
-
Constructor.
- OneVersusOne(Classifier<T>[][], PlattScaling[][], IntSet) - Constructor for class smile.classification.OneVersusOne
-
Constructor.
- OneVersusRest<T> - Class in smile.classification
-
One-vs-rest (or one-vs-all) strategy for reducing the problem of multiclass classification to multiple binary classification problems.
- OneVersusRest(Classifier<T>[], PlattScaling[]) - Constructor for class smile.classification.OneVersusRest
-
Constructor.
- OneVersusRest(Classifier<T>[], PlattScaling[], IntSet) - Constructor for class smile.classification.OneVersusRest
-
Constructor.
- online() - Method in interface smile.classification.Classifier
-
Returns true if this is an online learner.
- online() - Method in class smile.classification.DiscreteNaiveBayes
- online() - Method in class smile.classification.LogisticRegression
- online() - Method in class smile.classification.Maxent
- online() - Method in class smile.classification.MLP
- online() - Method in class smile.classification.SparseLogisticRegression
- online() - Method in class smile.regression.LinearModel
- online() - Method in class smile.regression.MLP
- online() - Method in interface smile.regression.Regression
-
Returns true if this is an online learner.
- oob - Variable in class smile.validation.Bag
-
The index of testing instances.
- Optimizer - Interface in smile.deep.optimizer
-
The neural network optimizer.
- order - Variable in class smile.base.cart.CART
-
An index of training values.
- order(DataFrame) - Static method in class smile.base.cart.CART
-
Returns the index of ordered samples for each ordinal column.
- ordinal - Variable in class smile.sequence.HMMLabeler
-
The lambda returns the ordinal numbers of symbols.
- OrdinalNode - Class in smile.base.cart
-
A node with a ordinal split variable (real-valued or ordinal categorical value).
- OrdinalNode(int, double, double, double, Node, Node) - Constructor for class smile.base.cart.OrdinalNode
-
Constructor.
- OrdinalSplit - Class in smile.base.cart
-
The data about of a potential split for a leaf node.
- OrdinalSplit(LeafNode, int, double, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.OrdinalSplit
-
Constructor.
- OUTLIER - Static variable in class smile.clustering.PartitionClustering
-
Cluster label for outliers or noises.
- OUTLIER - Static variable in interface smile.vq.VectorQuantizer
-
The label for outliers or noises.
- output - Variable in class smile.base.mlp.Layer
-
The output vector.
- output - Variable in class smile.base.mlp.MultilayerPerceptron
-
The output layer.
- output() - Method in class smile.base.cart.DecisionNode
-
Returns the predicted value.
- output() - Method in class smile.base.cart.RegressionNode
-
Returns the predicted value.
- output() - Method in class smile.base.mlp.Layer
-
Returns the output vector.
- output(int[], int[]) - Method in interface smile.base.cart.Loss
-
Calculate the node output.
- OutputFunction - Enum Class in smile.base.mlp
-
The output function of neural networks.
- outputGradient - Variable in class smile.base.mlp.Layer
-
The output gradient.
- OutputLayer - Class in smile.base.mlp
-
The output layer in the neural network.
- OutputLayer(int, int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayer
-
Constructor.
- OutputLayerBuilder - Class in smile.base.mlp
-
The builder of output layers.
- OutputLayerBuilder(int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayerBuilder
-
Constructor.
P
- p - Variable in class smile.base.mlp.Layer
-
The number of input variables.
- p - Variable in class smile.base.mlp.MultilayerPerceptron
-
The dimensionality of input data.
- p() - Method in class smile.timeseries.AR
-
Returns the order of AR.
- p() - Method in class smile.timeseries.ARMA
-
Returns the order of AR.
- p(int[]) - Method in class smile.sequence.HMM
-
Returns the probability of an observation sequence given this HMM.
- p(int[], int[]) - Method in class smile.sequence.HMM
-
Returns the joint probability of an observation sequence along a state sequence given this HMM.
- p(T[]) - Method in class smile.sequence.HMMLabeler
-
Returns the probability of an observation sequence.
- p(T[], int[]) - Method in class smile.sequence.HMMLabeler
-
Returns the joint probability of an observation sequence along a state sequence.
- pacf(double[], int) - Static method in interface smile.timeseries.TimeSeries
-
Partial autocorrelation function.
- partition(double) - Method in class smile.clustering.HierarchicalClustering
-
Cuts a tree into several groups by specifying the cut height.
- partition(int) - Method in class smile.clustering.HierarchicalClustering
-
Cuts a tree into several groups by specifying the desired number.
- PartitionClustering - Class in smile.clustering
-
Partition clustering.
- PartitionClustering(int, int[]) - Constructor for class smile.clustering.PartitionClustering
-
Constructor.
- path(double[]) - Method in class smile.anomaly.IsolationTree
-
Returns the path length from the root to the leaf node.
- PCA - Class in smile.feature.extraction
-
Principal component analysis.
- PCA(double[], double[], Matrix, Matrix, String...) - Constructor for class smile.feature.extraction.PCA
-
Constructor.
- pierce(double[], int) - Static method in class smile.timeseries.BoxTest
-
Box-Pierce test.
- PlattScaling - Class in smile.classification
-
Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.
- PlattScaling(double, double) - Constructor for class smile.classification.PlattScaling
-
Constructor.
- Poisson - Interface in smile.glm.model
-
The response variable is of Poisson distribution.
- POLYAURN - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
The document Polya Urn model is similar to MULTINOMIAL but different in the conditional probability update during learning.
- posteriori - Variable in class smile.validation.ClassificationValidation
-
The posteriori probability of prediction if the model is a soft classifier.
- posteriori(double[]) - Method in class smile.base.cart.DecisionNode
-
Returns the class probability.
- posteriori(int[], double[]) - Static method in class smile.base.cart.DecisionNode
-
Returns the class probability.
- postprocess(double[]) - Method in class smile.feature.extraction.PCA
- postprocess(double[]) - Method in class smile.feature.extraction.ProbabilisticPCA
- postprocess(double[]) - Method in class smile.feature.extraction.Projection
-
Postprocess the output vector after projection.
- precision - Variable in class smile.validation.ClassificationMetrics
-
The precision on validation data.
- Precision - Class in smile.validation.metric
-
The precision or positive predictive value (PPV) is ratio of true positives to combined true and false positives, which is different from sensitivity.
- Precision() - Constructor for class smile.validation.metric.Precision
- predicate() - Method in class smile.base.cart.NominalSplit
- predicate() - Method in class smile.base.cart.OrdinalSplit
- predicate() - Method in class smile.base.cart.Split
-
Returns the lambda that tests on the split feature.
- predict(double) - Method in class smile.classification.IsotonicRegressionScaling
-
Returns the posterior probability estimate P(y = 1 | x).
- predict(double[]) - Method in class smile.classification.FLD
- predict(double[]) - Method in class smile.classification.LDA
- predict(double[]) - Method in class smile.classification.LogisticRegression.Binomial
- predict(double[]) - Method in class smile.classification.LogisticRegression.Multinomial
- predict(double[]) - Method in class smile.classification.MLP
- predict(double[]) - Method in class smile.classification.NaiveBayes
-
Predict the class of an instance.
- predict(double[]) - Method in class smile.classification.QDA
- predict(double[]) - Method in class smile.clustering.DENCLUE
-
Classifies a new observation.
- predict(double[]) - Method in class smile.regression.LinearModel
-
Predicts the dependent variable of an instance.
- predict(double[]) - Method in class smile.regression.MLP
- predict(double[], double[]) - Method in class smile.classification.LDA
- predict(double[], double[]) - Method in class smile.classification.LogisticRegression.Binomial
- predict(double[], double[]) - Method in class smile.classification.LogisticRegression.Multinomial
- predict(double[], double[]) - Method in class smile.classification.MLP
- predict(double[], double[]) - Method in class smile.classification.NaiveBayes
-
Predict the class of an instance.
- predict(double[], double[]) - Method in class smile.classification.QDA
- predict(int[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(int[]) - Method in class smile.classification.Maxent.Binomial
- predict(int[]) - Method in class smile.classification.Maxent.Multinomial
- predict(int[]) - Method in class smile.sequence.HMM
-
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of
P(I | O, HMM)
. - predict(int[], double[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(int[], double[]) - Method in class smile.classification.Maxent.Binomial
- predict(int[], double[]) - Method in class smile.classification.Maxent.Multinomial
- predict(List<T>) - Method in interface smile.classification.Classifier
-
Predicts the class labels of a list of instances.
- predict(List<T>) - Method in interface smile.regression.Regression
-
Predicts the dependent variable of a list of instances.
- predict(List<T>, List<double[]>) - Method in interface smile.classification.Classifier
-
Predicts the class labels of a list of instances.
- predict(DataFrame) - Method in interface smile.classification.DataFrameClassifier
-
Predicts the class labels of a data frame.
- predict(DataFrame) - Method in class smile.glm.GLM
-
Predicts the mean response.
- predict(DataFrame) - Method in interface smile.regression.DataFrameRegression
-
Predicts the dependent variables of a data frame.
- predict(DataFrame) - Method in class smile.regression.LinearModel
- predict(DataFrame, List<double[]>) - Method in interface smile.classification.DataFrameClassifier
-
Predicts the class labels of a dataset.
- predict(Dataset<T>) - Method in interface smile.classification.Classifier
-
Predicts the class labels of a dataset.
- predict(Dataset<T>) - Method in interface smile.regression.Regression
-
Predicts the dependent variable of a dataset.
- predict(Dataset<T>, List<double[]>) - Method in interface smile.classification.Classifier
-
Predicts the class labels of a dataset.
- predict(Tuple) - Method in class smile.base.cart.InternalNode
- predict(Tuple) - Method in class smile.base.cart.LeafNode
- predict(Tuple) - Method in interface smile.base.cart.Node
-
Evaluate the tree over an instance.
- predict(Tuple) - Method in class smile.base.cart.NominalNode
- predict(Tuple) - Method in class smile.base.cart.OrdinalNode
- predict(Tuple) - Method in class smile.classification.AdaBoost
- predict(Tuple) - Method in class smile.classification.DecisionTree
- predict(Tuple) - Method in class smile.classification.GradientTreeBoost
- predict(Tuple) - Method in class smile.classification.RandomForest
- predict(Tuple) - Method in class smile.glm.GLM
-
Predicts the mean response.
- predict(Tuple) - Method in class smile.regression.GradientTreeBoost
- predict(Tuple) - Method in class smile.regression.LinearModel
- predict(Tuple) - Method in class smile.regression.RandomForest
- predict(Tuple) - Method in class smile.regression.RegressionTree
- predict(Tuple[]) - Method in class smile.sequence.CRF
-
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
- predict(Tuple, double[]) - Method in class smile.classification.AdaBoost
-
Predicts the class label of an instance and also calculate a posteriori probabilities.
- predict(Tuple, double[]) - Method in class smile.classification.DecisionTree
-
Predicts the class label of an instance and also calculate a posteriori probabilities.
- predict(Tuple, double[]) - Method in class smile.classification.GradientTreeBoost
- predict(Tuple, double[]) - Method in class smile.classification.RandomForest
- predict(SparseArray) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Binomial
- predict(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Multinomial
- predict(SparseArray, double[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(SparseArray, double[]) - Method in class smile.classification.SparseLogisticRegression.Binomial
- predict(SparseArray, double[]) - Method in class smile.classification.SparseLogisticRegression.Multinomial
- predict(T) - Method in interface smile.classification.Classifier
-
Predicts the class label of an instance.
- predict(T) - Method in class smile.classification.KNN
- predict(T) - Method in class smile.classification.OneVersusOne
-
Prediction is based on voting.
- predict(T) - Method in class smile.classification.OneVersusRest
- predict(T) - Method in class smile.classification.RBFNetwork
- predict(T) - Method in class smile.classification.SVM
- predict(T) - Method in class smile.clustering.DBSCAN
-
Classifies a new observation.
- predict(T) - Method in class smile.clustering.MEC
-
Cluster a new instance.
- predict(T) - Method in class smile.regression.GaussianProcessRegression
- predict(T) - Method in class smile.regression.KernelMachine
- predict(T) - Method in class smile.regression.RBFNetwork
- predict(T) - Method in interface smile.regression.Regression
-
Predicts the dependent variable of an instance.
- predict(T[]) - Method in interface smile.classification.Classifier
-
Predicts the class labels of an array of instances.
- predict(T[]) - Method in interface smile.regression.Regression
-
Predicts the dependent variable of an array of instances.
- predict(T[]) - Method in class smile.sequence.CRFLabeler
-
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
- predict(T[]) - Method in class smile.sequence.HMMLabeler
-
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of
P(I | O, HMM)
. - predict(T[]) - Method in interface smile.sequence.SequenceLabeler
-
Predicts the sequence labels.
- predict(T[], double[][]) - Method in interface smile.classification.Classifier
-
Predicts the class labels of an array of instances.
- predict(T, double[]) - Method in interface smile.classification.Classifier
-
Predicts the class label of an instance and also calculate a posteriori probabilities.
- predict(T, double[]) - Method in class smile.classification.KNN
- predict(T, double[]) - Method in class smile.classification.OneVersusOne
-
Prediction is based posteriori probability estimation.
- predict(T, double[]) - Method in class smile.classification.OneVersusRest
- predict(T, double[]) - Method in class smile.regression.GaussianProcessRegression
-
Predicts the mean and standard deviation of an instance.
- predict(U) - Method in class smile.clustering.CentroidClustering
-
Classifies a new observation.
- prediction - Variable in class smile.validation.ClassificationValidation
-
The model prediction.
- prediction - Variable in class smile.validation.RegressionValidation
-
The model prediction.
- predictors(Tuple) - Method in class smile.base.cart.CART
-
Returns the predictors by the model formula if it is not null.
- preprocess(double[]) - Method in class smile.feature.extraction.Projection
-
Preprocess the input vector before projection.
- priori - Variable in class smile.classification.ClassLabels
-
The estimated priori probabilities.
- priori() - Method in class smile.classification.DiscreteNaiveBayes
-
Returns a priori probabilities.
- priori() - Method in class smile.classification.LDA
-
Returns a priori probabilities.
- priori() - Method in class smile.classification.NaiveBayes
-
Returns a priori probabilities.
- priori() - Method in class smile.classification.QDA
-
Returns a priori probabilities.
- ProbabilisticClassificationMetric - Interface in smile.validation.metric
-
An abstract interface to measure the probabilistic classification performance.
- ProbabilisticPCA - Class in smile.feature.extraction
-
Probabilistic principal component analysis.
- ProbabilisticPCA(double, double[], Matrix, Matrix, String...) - Constructor for class smile.feature.extraction.ProbabilisticPCA
-
Constructor.
- project(double[]) - Method in class smile.classification.FLD
-
Projects a sample to the feature space.
- project(double[][]) - Method in class smile.classification.FLD
-
Projects samples to the feature space.
- projection - Variable in class smile.feature.extraction.Projection
-
The projection matrix.
- projection() - Method in class smile.manifold.KPCA
-
Returns the projection matrix.
- Projection - Class in smile.feature.extraction
-
A projection is a kind of feature extraction technique that transforms data from the input space to a feature space, linearly or non-linearly.
- Projection(Matrix, String, String...) - Constructor for class smile.feature.extraction.Projection
-
Constructor.
- propagate(double[]) - Method in class smile.base.mlp.InputLayer
- propagate(double[]) - Method in class smile.base.mlp.Layer
-
Propagates the signals from a lower layer to this layer.
- propagate(double[], boolean) - Method in class smile.base.mlp.MultilayerPerceptron
-
Propagates the signals through the neural network.
- propagateDropout() - Method in class smile.base.mlp.Layer
-
Propagates the output signals through the implicit dropout layer.
- proportion - Variable in class smile.manifold.MDS
-
The proportion of variance contained in each principal component.
- proximity(double[][]) - Static method in class smile.clustering.linkage.Linkage
-
Computes the proximity matrix (linearized in column major) based on Euclidean distance.
- proximity(T[], Distance<T>) - Static method in class smile.clustering.linkage.Linkage
-
Computes the proximity matrix (linearized in column major).
- prune(DataFrame) - Method in class smile.classification.DecisionTree
-
Returns a new decision tree by reduced error pruning.
- prune(DataFrame) - Method in class smile.classification.RandomForest
-
Returns a new random forest by reduced error pruning.
- pvalue - Variable in class smile.timeseries.BoxTest
-
p-value
- pvalue() - Method in class smile.regression.LinearModel
-
Returns the p-value of goodness-of-fit test.
Q
- q - Variable in class smile.timeseries.BoxTest
-
Box-Pierce or Ljung-Box statistic.
- q() - Method in class smile.timeseries.ARMA
-
Returns the order of MA.
- QDA - Class in smile.classification
-
Quadratic discriminant analysis.
- QDA(double[], double[][], double[][], Matrix[]) - Constructor for class smile.classification.QDA
-
Constructor.
- QDA(double[], double[][], double[][], Matrix[], IntSet) - Constructor for class smile.classification.QDA
-
Constructor.
- quantile(double) - Static method in interface smile.base.cart.Loss
-
Quantile regression loss.
- Quantile - Enum constant in enum class smile.base.cart.Loss.Type
-
Quantile regression.
- quantize(double[]) - Method in class smile.vq.BIRCH
- quantize(double[]) - Method in class smile.vq.GrowingNeuralGas
- quantize(double[]) - Method in class smile.vq.NeuralGas
- quantize(double[]) - Method in class smile.vq.NeuralMap
- quantize(double[]) - Method in class smile.vq.SOM
- quantize(double[]) - Method in interface smile.vq.VectorQuantizer
-
Quantize a new observation.
- query(T[]) - Method in class smile.regression.GaussianProcessRegression
-
Evaluates the Gaussian Process at some query points.
R
- r2 - Variable in class smile.validation.RegressionMetrics
-
The R-squared score on validation data.
- R2 - Class in smile.validation.metric
-
R2.
- R2() - Constructor for class smile.validation.metric.R2
- R2() - Method in class smile.timeseries.AR
-
Returns R2 statistic.
- R2() - Method in class smile.timeseries.ARMA
-
Returns R2 statistic.
- radius - Variable in class smile.clustering.DBSCAN
-
The neighborhood radius.
- radius - Variable in class smile.clustering.MEC
-
The range of neighborhood.
- RandIndex - Class in smile.validation.metric
-
Rand Index.
- RandIndex() - Constructor for class smile.validation.metric.RandIndex
- random() - Method in class smile.hpo.Hyperparameters
-
Generates a stream of hyperparameters for random search.
- RandomForest - Class in smile.classification
-
Random forest for classification.
- RandomForest - Class in smile.regression
-
Random forest for regression.
- RandomForest(Formula, int, RandomForest.Model[], ClassificationMetrics, double[]) - Constructor for class smile.classification.RandomForest
-
Constructor.
- RandomForest(Formula, int, RandomForest.Model[], ClassificationMetrics, double[], IntSet) - Constructor for class smile.classification.RandomForest
-
Constructor.
- RandomForest(Formula, RandomForest.Model[], RegressionMetrics, double[]) - Constructor for class smile.regression.RandomForest
-
Constructor.
- RandomForest.Model - Class in smile.classification
-
The base model.
- RandomForest.Model - Class in smile.regression
-
The base model.
- RandomProjection - Class in smile.feature.extraction
-
Random projection is a promising dimensionality reduction technique for learning mixtures of Gaussians.
- RandomProjection(Matrix, String...) - Constructor for class smile.feature.extraction.RandomProjection
-
Constructor.
- RBF<T> - Class in smile.base.rbf
-
A neuron in radial basis function network.
- RBF(T, RadialBasisFunction, Metric<T>) - Constructor for class smile.base.rbf.RBF
-
Constructor.
- RBFNetwork<T> - Class in smile.classification
-
Radial basis function networks.
- RBFNetwork<T> - Class in smile.regression
-
Radial basis function network.
- RBFNetwork(int, RBF<T>[], Matrix, boolean) - Constructor for class smile.classification.RBFNetwork
-
Constructor.
- RBFNetwork(int, RBF<T>[], Matrix, boolean, IntSet) - Constructor for class smile.classification.RBFNetwork
-
Constructor.
- RBFNetwork(RBF<T>[], double[], boolean) - Constructor for class smile.regression.RBFNetwork
-
Constructor.
- RDA - Class in smile.classification
-
Regularized discriminant analysis.
- RDA(double[], double[][], double[][], Matrix[]) - Constructor for class smile.classification.RDA
-
Constructor.
- RDA(double[], double[][], double[][], Matrix[], IntSet) - Constructor for class smile.classification.RDA
-
Constructor.
- Recall - Class in smile.validation.metric
-
In information retrieval area, sensitivity is called recall.
- Recall() - Constructor for class smile.validation.metric.Recall
- rectifier() - Static method in interface smile.base.mlp.ActivationFunction
-
The rectifier activation function
max(0, x)
. - rectifier(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with rectified linear activation function.
- rectifier(int, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with rectified linear activation function.
- regression(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Repeated cross validation of regression.
- regression(int, int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.CrossValidation
-
Repeated cross validation of regression.
- regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.Bootstrap
-
Runs regression bootstrap validation.
- regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Cross validation of regression.
- regression(int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.Bootstrap
-
Runs regression bootstrap validation.
- regression(int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.CrossValidation
-
Cross validation of regression.
- regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in interface smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- regression(T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- Regression<T> - Interface in smile.regression
-
Regression analysis includes any techniques for modeling and analyzing the relationship between a dependent variable and one or more independent variables.
- Regression.Trainer<T,
M extends Regression<T>> - Interface in smile.regression -
The regression trainer.
- RegressionMetric - Interface in smile.validation.metric
-
An abstract interface to measure the regression performance.
- RegressionMetrics - Class in smile.validation
-
The regression validation metrics.
- RegressionMetrics(double, double, int, double, double, double, double, double) - Constructor for class smile.validation.RegressionMetrics
-
Constructor.
- RegressionNode - Class in smile.base.cart
-
A leaf node in regression tree.
- RegressionNode(int, double, double, double) - Constructor for class smile.base.cart.RegressionNode
-
Constructor.
- RegressionTree - Class in smile.regression
-
Regression tree.
- RegressionTree(DataFrame, Loss, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.regression.RegressionTree
-
Constructor.
- RegressionValidation<M> - Class in smile.validation
-
Regression model validation results.
- RegressionValidation(M, double[], double[], RegressionMetrics) - Constructor for class smile.validation.RegressionValidation
-
Constructor.
- RegressionValidations<M> - Class in smile.validation
-
Regression model validation results.
- RegressionValidations(List<RegressionValidation<M>>) - Constructor for class smile.validation.RegressionValidations
-
Constructor.
- regressors - Variable in class smile.regression.GaussianProcessRegression
-
The regressors.
- relu() - Static method in interface smile.deep.activation.ActivationFunction
-
Returns the rectifier activation function
max(0, x)
. - ReLU - Class in smile.deep.activation
-
The rectifier activation function
max(0, x)
. - ReLU() - Constructor for class smile.deep.activation.ReLU
-
Constructor.
- removeEdge(Neuron) - Method in class smile.vq.hebb.Neuron
-
Removes an edge.
- replace(Node, Node) - Method in class smile.base.cart.InternalNode
-
Returns a new internal node with children replaced.
- replace(Node, Node) - Method in class smile.base.cart.NominalNode
- replace(Node, Node) - Method in class smile.base.cart.OrdinalNode
- residual() - Method in interface smile.base.cart.Loss
-
Returns the residual vector.
- residuals() - Method in class smile.regression.LinearModel
-
Returns the residuals, which is response minus fitted values.
- residuals() - Method in class smile.timeseries.AR
-
Returns the residuals, that is response minus fitted values.
- residuals() - Method in class smile.timeseries.ARMA
-
Returns the residuals, that is response minus fitted values.
- response - Variable in class smile.base.cart.CART
-
The schema of response variable.
- response() - Method in interface smile.base.cart.Loss
-
Returns the response variable for next iteration.
- rho - Variable in class smile.base.mlp.MultilayerPerceptron
-
The discounting factor for the history/coming gradient in RMSProp.
- RidgeRegression - Class in smile.regression
-
Ridge Regression.
- RidgeRegression() - Constructor for class smile.regression.RidgeRegression
- rmse - Variable in class smile.validation.RegressionMetrics
-
The root mean squared error on validation data.
- RMSE - Class in smile.validation.metric
-
Root mean squared error.
- RMSE() - Constructor for class smile.validation.metric.RMSE
- RMSProp - Class in smile.deep.optimizer
-
RMSProp optimizer with adaptive learning rate.
- RMSProp() - Constructor for class smile.deep.optimizer.RMSProp
-
Constructor.
- RMSProp(TimeFunction) - Constructor for class smile.deep.optimizer.RMSProp
-
Constructor.
- RMSProp(TimeFunction, double, double) - Constructor for class smile.deep.optimizer.RMSProp
-
Constructor.
- RobustStandardizer - Class in smile.feature.transform
-
Robustly standardizes numeric feature by subtracting the median and dividing by the IQR.
- RobustStandardizer() - Constructor for class smile.feature.transform.RobustStandardizer
- root - Variable in class smile.base.cart.CART
-
The root of decision tree.
- root() - Method in class smile.base.cart.CART
-
Returs the root node.
- rounds - Variable in class smile.validation.ClassificationValidations
-
The multiple round validations.
- rounds - Variable in class smile.validation.RegressionValidations
-
The multiple round validations.
- RSquared() - Method in class smile.regression.LinearModel
-
Returns R2 statistic.
- rss - Variable in class smile.validation.RegressionMetrics
-
The residual sum of squares on validation data.
- RSS - Class in smile.validation.metric
-
Residual sum of squares.
- RSS() - Constructor for class smile.validation.metric.RSS
- RSS() - Method in class smile.regression.LinearModel
-
Returns the residual sum of squares.
- RSS() - Method in class smile.timeseries.AR
-
Returns the residual sum of squares.
- RSS() - Method in class smile.timeseries.ARMA
-
Returns the residual sum of squares.
- run(int, Supplier<T>) - Static method in class smile.clustering.PartitionClustering
-
Runs a clustering algorithm multiple times and return the best one (e.g.
S
- s2n - Variable in class smile.feature.selection.SignalNoiseRatio
-
Signal noise ratio.
- SammonMapping - Class in smile.manifold
-
The Sammon's mapping is an iterative technique for making interpoint distances in the low-dimensional projection as close as possible to the interpoint distances in the high-dimensional object.
- SammonMapping(double, double[][]) - Constructor for class smile.manifold.SammonMapping
-
Constructor.
- sample(int) - Method in class smile.regression.GaussianProcessRegression.JointPrediction
-
Draw samples from Gaussian process.
- samples - Variable in class smile.base.cart.CART
-
The samples for training this node.
- samples - Variable in class smile.validation.Bag
-
The random samples.
- scale() - Method in class smile.classification.ClassLabels
-
Returns the nominal scale of the class labels.
- scale(double) - Method in class smile.classification.PlattScaling
-
Returns the posterior probability estimate P(y = 1 | x).
- Scaler - Class in smile.feature.transform
-
Scales the numeric variables into the range [0, 1].
- Scaler() - Constructor for class smile.feature.transform.Scaler
- schema - Variable in class smile.base.cart.CART
-
The schema of predictors.
- schema - Variable in class smile.feature.extraction.Projection
-
The schema of output space.
- schema() - Method in class smile.classification.AdaBoost
- schema() - Method in interface smile.classification.DataFrameClassifier
-
Returns the predictor schema.
- schema() - Method in class smile.classification.DecisionTree
- schema() - Method in class smile.classification.GradientTreeBoost
- schema() - Method in class smile.classification.RandomForest
- schema() - Method in interface smile.regression.DataFrameRegression
-
Returns the schema of predictors.
- schema() - Method in class smile.regression.GradientTreeBoost
- schema() - Method in class smile.regression.LinearModel
- schema() - Method in class smile.regression.RandomForest
- schema() - Method in class smile.regression.RegressionTree
- score() - Method in class smile.base.cart.InternalNode
-
Returns the split score (reduction of impurity).
- score(double[]) - Method in class smile.anomaly.IsolationForest
-
Returns the anomaly score.
- score(double[]) - Method in class smile.classification.LogisticRegression.Binomial
- score(double[][]) - Method in class smile.anomaly.IsolationForest
-
Returns the anomaly scores.
- score(double[], double[]) - Method in class smile.validation.metric.MAD
- score(double[], double[]) - Method in class smile.validation.metric.MSE
- score(double[], double[]) - Method in class smile.validation.metric.R2
- score(double[], double[]) - Method in interface smile.validation.metric.RegressionMetric
-
Returns a score to measure the quality of regression.
- score(double[], double[]) - Method in class smile.validation.metric.RMSE
- score(double[], double[]) - Method in class smile.validation.metric.RSS
- score(int[]) - Method in class smile.classification.Maxent.Binomial
- score(int[], double[]) - Method in class smile.validation.metric.AUC
- score(int[], double[]) - Method in class smile.validation.metric.LogLoss
- score(int[], double[]) - Method in interface smile.validation.metric.ProbabilisticClassificationMetric
-
Returns a score to measure the quality of classification.
- score(int[], int[]) - Method in class smile.validation.metric.Accuracy
- score(int[], int[]) - Method in class smile.validation.metric.AdjustedMutualInformation
- score(int[], int[]) - Method in class smile.validation.metric.AdjustedRandIndex
- score(int[], int[]) - Method in interface smile.validation.metric.ClassificationMetric
-
Returns a score to measure the quality of classification.
- score(int[], int[]) - Method in interface smile.validation.metric.ClusteringMetric
-
Returns a score to measure the quality of clustering.
- score(int[], int[]) - Method in class smile.validation.metric.Error
- score(int[], int[]) - Method in class smile.validation.metric.Fallout
- score(int[], int[]) - Method in class smile.validation.metric.FDR
- score(int[], int[]) - Method in class smile.validation.metric.FScore
- score(int[], int[]) - Method in class smile.validation.metric.MatthewsCorrelation
- score(int[], int[]) - Method in class smile.validation.metric.MutualInformation
- score(int[], int[]) - Method in class smile.validation.metric.NormalizedMutualInformation
- score(int[], int[]) - Method in class smile.validation.metric.Precision
- score(int[], int[]) - Method in class smile.validation.metric.RandIndex
- score(int[], int[]) - Method in class smile.validation.metric.Recall
- score(int[], int[]) - Method in class smile.validation.metric.Sensitivity
- score(int[], int[]) - Method in class smile.validation.metric.Specificity
- score(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Binomial
- score(T) - Method in class smile.base.svm.KernelMachine
-
Returns the decision function value.
- score(T) - Method in interface smile.classification.Classifier
-
The raw prediction score.
- scores - Variable in class smile.manifold.MDS
-
The component scores.
- scoreTime - Variable in class smile.validation.ClassificationMetrics
-
The time in milliseconds of scoring the validation data.
- scoreTime - Variable in class smile.validation.RegressionMetrics
-
The time in milliseconds of scoring the validation data.
- sd - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
-
The standard deviation of predictive distribution at query points.
- sd - Variable in class smile.regression.GaussianProcessRegression
-
The standard deviation of responsible variable.
- sd - Variable in class smile.validation.ClassificationValidations
-
The standard deviation of metrics.
- sd - Variable in class smile.validation.RegressionValidations
-
The standard deviation of metrics.
- seed(int, double[][]) - Static method in class smile.vq.NeuralGas
-
Selects random samples as initial neurons of Neural Gas.
- seed(T[], T[], int[], ToDoubleBiFunction<T, T>) - Static method in class smile.clustering.PartitionClustering
-
Initialize cluster membership of input objects with K-Means++ algorithm.
- sensitivity - Variable in class smile.validation.ClassificationMetrics
-
The sensitivity on validation data.
- Sensitivity - Class in smile.validation.metric
-
Sensitivity or true positive rate (TPR) (also called hit rate, recall) is a statistical measures of the performance of a binary classification test.
- Sensitivity() - Constructor for class smile.validation.metric.Sensitivity
- SequenceLabeler<T> - Interface in smile.sequence
-
A sequence labeler assigns a class label to each position of the sequence.
- setClipNorm(double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the gradient clipping norm.
- setClipValue(double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the gradient clipping value.
- setEdgeAge(Neuron, int) - Method in class smile.vq.hebb.Neuron
-
Sets the age of edge.
- setLearningRate(double) - Method in class smile.classification.LogisticRegression
-
Sets the learning rate of stochastic gradient descent.
- setLearningRate(double) - Method in class smile.classification.Maxent
-
Sets the learning rate of stochastic gradient descent.
- setLearningRate(double) - Method in class smile.classification.SparseLogisticRegression
-
Sets the learning rate of stochastic gradient descent.
- setLearningRate(TimeFunction) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the learning rate.
- setMomentum(TimeFunction) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the momentum factor.
- setParameters(Properties) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets MLP hyper-parameters such as learning rate, weight decay, momentum, RMSProp, etc.
- setRMSProp(double, double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets RMSProp parameters.
- setWeightDecay(double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the weight decay factor.
- SGD - Class in smile.deep.optimizer
-
Stochastic gradient descent (with momentum) optimizer.
- SGD() - Constructor for class smile.deep.optimizer.SGD
-
Constructor.
- SGD(TimeFunction) - Constructor for class smile.deep.optimizer.SGD
-
Constructor.
- SGD(TimeFunction, TimeFunction) - Constructor for class smile.deep.optimizer.SGD
-
Constructor.
- shap(Stream<T>) - Method in interface smile.feature.importance.SHAP
-
Returns the average of absolute SHAP values over a data set.
- shap(DataFrame) - Method in class smile.base.cart.CART
-
Returns the average of absolute SHAP values over a data frame.
- shap(DataFrame) - Method in class smile.classification.GradientTreeBoost
-
Returns the average of absolute SHAP values over a data frame.
- shap(DataFrame) - Method in interface smile.feature.importance.TreeSHAP
-
Returns the average of absolute SHAP values over a data frame.
- shap(Tuple) - Method in class smile.base.cart.CART
- shap(Tuple) - Method in class smile.classification.GradientTreeBoost
- shap(Tuple) - Method in interface smile.feature.importance.TreeSHAP
- shap(T) - Method in interface smile.feature.importance.SHAP
-
Returns the SHAP values.
- SHAP<T> - Interface in smile.feature.importance
-
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.
- SIB - Class in smile.clustering
-
The Sequential Information Bottleneck algorithm.
- SIB(double, double[][], int[]) - Constructor for class smile.clustering.SIB
-
Constructor.
- sigmoid() - Static method in interface smile.base.mlp.ActivationFunction
-
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
- sigmoid() - Static method in interface smile.deep.activation.ActivationFunction
-
Returns the logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
- sigmoid(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with sigmoid activation function.
- sigmoid(int, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with sigmoid activation function.
- Sigmoid - Class in smile.deep.activation
-
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
- Sigmoid() - Constructor for class smile.deep.activation.Sigmoid
-
Constructor.
- SIGMOID - Enum constant in enum class smile.base.mlp.OutputFunction
-
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
- SignalNoiseRatio - Class in smile.feature.selection
-
The signal-to-noise (S2N) metric ratio is a univariate feature ranking metric, which can be used as a feature selection criterion for binary classification problems.
- SignalNoiseRatio(String, double) - Constructor for class smile.feature.selection.SignalNoiseRatio
-
Constructor.
- SimpleImputer - Class in smile.feature.imputation
-
Simple algorithm replaces missing values with the constant value along each column.
- SimpleImputer(Map<String, Object>) - Constructor for class smile.feature.imputation.SimpleImputer
-
Constructor.
- SingleLinkage - Class in smile.clustering.linkage
-
Single linkage.
- SingleLinkage(double[][]) - Constructor for class smile.clustering.linkage.SingleLinkage
-
Constructor.
- SingleLinkage(int, float[]) - Constructor for class smile.clustering.linkage.SingleLinkage
-
Constructor.
- size - Variable in class smile.base.cart.LeafNode
-
The number of samples in the node.
- size - Variable in class smile.clustering.PartitionClustering
-
The number of observations in each cluster.
- size - Variable in class smile.validation.ClassificationMetrics
-
The validation data size.
- size - Variable in class smile.validation.RegressionMetrics
-
The validation data size.
- size() - Method in class smile.anomaly.IsolationForest
-
Returns the number of trees in the model.
- size() - Method in class smile.association.FPGrowth
-
Returns the number transactions in the database.
- size() - Method in class smile.association.FPTree
-
Returns the number transactions in the database.
- size() - Method in class smile.base.cart.CART
-
Returns the number of nodes in the tree.
- size() - Method in class smile.base.cart.InternalNode
- size() - Method in class smile.base.cart.LeafNode
- size() - Method in interface smile.base.cart.Node
-
Returns the number of samples in the node.
- size() - Method in class smile.classification.AdaBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.classification.GradientTreeBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.classification.RandomForest
-
Returns the number of trees in the model.
- size() - Method in class smile.clustering.linkage.Linkage
-
Returns the proximity matrix size.
- size() - Method in class smile.regression.GradientTreeBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.regression.RandomForest
-
Returns the number of trees in the model.
- smile.anomaly - package smile.anomaly
-
Anomaly detection is the identification of rare items, events or observations which raise suspicions by differing significantly from the majority of the data.
- smile.association - package smile.association
-
Frequent item set mining and association rule mining.
- smile.base.cart - package smile.base.cart
-
Classification and regression tree base package.
- smile.base.mlp - package smile.base.mlp
-
Multilayer perceptron neural network base package.
- smile.base.rbf - package smile.base.rbf
-
RBF network base package.
- smile.base.svm - package smile.base.svm
-
Support vector machine base package.
- smile.classification - package smile.classification
-
Classification algorithms.
- smile.clustering - package smile.clustering
-
Clustering analysis.
- smile.clustering.linkage - package smile.clustering.linkage
-
Cluster dissimilarity measures.
- smile.deep.activation - package smile.deep.activation
- smile.deep.optimizer - package smile.deep.optimizer
- smile.feature.extraction - package smile.feature.extraction
-
Feature extraction.
- smile.feature.importance - package smile.feature.importance
-
Feature importance.
- smile.feature.imputation - package smile.feature.imputation
-
Missing value imputation.
- smile.feature.selection - package smile.feature.selection
-
Feature selection.
- smile.feature.transform - package smile.feature.transform
- smile.glm - package smile.glm
-
Generalized linear models.
- smile.glm.model - package smile.glm.model
-
The error distribution models.
- smile.hpo - package smile.hpo
-
Hyperparameter optimization.
- smile.manifold - package smile.manifold
-
Manifold learning finds a low-dimensional basis for describing high-dimensional data.
- smile.regression - package smile.regression
-
Regression analysis.
- smile.sequence - package smile.sequence
-
Learning algorithms for sequence data.
- smile.timeseries - package smile.timeseries
-
Time series analysis.
- smile.validation - package smile.validation
-
Model validation and selection.
- smile.validation.metric - package smile.validation.metric
-
Model validation metrics.
- smile.vq - package smile.vq
-
Vector quantization is a lossy compression technique used in speech and image coding.
- smile.vq.hebb - package smile.vq.hebb
-
Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell.
- soft() - Method in class smile.classification.AdaBoost
- soft() - Method in interface smile.classification.Classifier
-
Returns true if this is a soft classifier that can estimate the posteriori probabilities of classification.
- soft() - Method in class smile.classification.DecisionTree
- soft() - Method in class smile.classification.DiscreteNaiveBayes
- soft() - Method in class smile.classification.GradientTreeBoost
- soft() - Method in class smile.classification.KNN
- soft() - Method in class smile.classification.LDA
- soft() - Method in class smile.classification.LogisticRegression
- soft() - Method in class smile.classification.Maxent
- soft() - Method in class smile.classification.MLP
- soft() - Method in class smile.classification.NaiveBayes
- soft() - Method in class smile.classification.OneVersusOne
- soft() - Method in class smile.classification.OneVersusRest
- soft() - Method in class smile.classification.QDA
- soft() - Method in class smile.classification.RandomForest
- soft() - Method in class smile.classification.SparseLogisticRegression
- softmax() - Static method in interface smile.deep.activation.ActivationFunction
-
Returns the softmax activation function for multi-class output layer.
- Softmax - Class in smile.deep.activation
-
Softmax for multi-class cross entropy objection function.
- Softmax() - Constructor for class smile.deep.activation.Softmax
-
Constructor.
- SOFTMAX - Enum constant in enum class smile.base.mlp.OutputFunction
-
Softmax for multi-class cross entropy objection function.
- SOM - Class in smile.vq
-
Self-Organizing Map.
- SOM(double[][][], TimeFunction, Neighborhood) - Constructor for class smile.vq.SOM
-
Constructor.
- sparse(int, int, String...) - Static method in class smile.feature.extraction.RandomProjection
-
Generates a sparse random projection.
- sparse(int, KernelMachine<SparseArray>) - Static method in class smile.base.svm.LinearKernelMachine
-
Creates a linear kernel machine.
- SparseEncoder - Class in smile.feature.extraction
-
Encodes numeric and categorical features into sparse array with on-hot encoding of categorical variables.
- SparseEncoder(StructType, String...) - Constructor for class smile.feature.extraction.SparseEncoder
-
Constructor.
- SparseLogisticRegression - Class in smile.classification
-
Logistic regression on sparse data.
- SparseLogisticRegression(int, double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression
-
Constructor.
- SparseLogisticRegression.Binomial - Class in smile.classification
-
Binomial logistic regression.
- SparseLogisticRegression.Multinomial - Class in smile.classification
-
Multinomial logistic regression.
- specificity - Variable in class smile.validation.ClassificationMetrics
-
The specificity on validation data.
- Specificity - Class in smile.validation.metric
-
Specificity (SPC) or True Negative Rate is a statistical measures of the performance of a binary classification test.
- Specificity() - Constructor for class smile.validation.metric.Specificity
- SpectralClustering - Class in smile.clustering
-
Spectral Clustering.
- SpectralClustering(double, int, int[]) - Constructor for class smile.clustering.SpectralClustering
-
Constructor.
- split(Split, PriorityQueue<Split>) - Method in class smile.base.cart.CART
-
Split a node into two children nodes.
- Split - Class in smile.base.cart
-
The data about of a potential split for a leaf node.
- Split(LeafNode, int, double, int, int, int, int) - Constructor for class smile.base.cart.Split
-
Constructor.
- SplitRule - Enum Class in smile.base.cart
-
The criterion to choose variable to split instances.
- sqrt(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (sqrt(H(y1) * H(y2)) - E(MI)).
- sqrt(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / sqrt(H(y1) * H(y2)).
- SQRT - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
I(y1, y2) / sqrt(H(y1) * H(y2))
- SQRT - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
I(y1, y2) / sqrt(H(y1) * H(y2))
- SQRT - Static variable in class smile.validation.metric.AdjustedMutualInformation
-
Default instance with sqrt normalization.
- SQRT - Static variable in class smile.validation.metric.NormalizedMutualInformation
-
Default instance with sqrt normalization.
- ssr - Variable in class smile.feature.selection.SumSquaresRatio
-
Sum squares ratio.
- Standardizer - Class in smile.feature.transform
-
Standardizes numeric feature to 0 mean and unit variance.
- Standardizer() - Constructor for class smile.feature.transform.Standardizer
- stratify(int[], int) - Static method in interface smile.validation.CrossValidation
-
Cross validation with stratified folds.
- stratify(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Repeated stratified cross validation of classification.
- stratify(int, int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
-
Repeated stratified cross validation of classification.
- stratify(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Stratified cross validation of classification.
- stratify(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
-
Stratified cross validation of classification.
- stress - Variable in class smile.manifold.IsotonicMDS
-
The final stress achieved.
- stress - Variable in class smile.manifold.SammonMapping
-
The final stress achieved.
- sum(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (0.5 * (H(y1) + H(y2)) - E(MI)).
- sum(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
-
Calculates the normalized mutual information of 2 * I(y1, y2) / (H(y1) + H(y2)).
- SUM - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
2 * I(y1, y2) / (H(y1) + H(y2))
- SUM - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
2 * I(y1, y2) / (H(y1) + H(y2))
- SUM - Static variable in class smile.validation.metric.AdjustedMutualInformation
-
Default instance with sum normalization.
- SUM - Static variable in class smile.validation.metric.NormalizedMutualInformation
-
Default instance with sum normalization.
- SumSquaresRatio - Class in smile.feature.selection
-
The ratio of between-groups to within-groups sum of squares is a univariate feature ranking metric, which can be used as a feature selection criterion for multi-class classification problems.
- SumSquaresRatio(String, double) - Constructor for class smile.feature.selection.SumSquaresRatio
-
Constructor.
- support - Variable in class smile.association.AssociationRule
-
The support value.
- support - Variable in class smile.association.ItemSet
-
The associated support of item set.
- SupportVector<T> - Class in smile.base.svm
-
Support vector.
- SupportVector(int, T, int, double, double, double, double, double) - Constructor for class smile.base.svm.SupportVector
-
Constructor.
- SVDImputer - Interface in smile.feature.imputation
-
Missing value imputation with singular value decomposition.
- SVM<T> - Class in smile.anomaly
-
One-class support vector machines for novelty detection.
- SVM<T> - Class in smile.classification
-
Support vector machines for classification.
- SVM - Class in smile.regression
-
Epsilon support vector regression.
- SVM() - Constructor for class smile.regression.SVM
- SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.anomaly.SVM
-
Constructor.
- SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.classification.SVM
-
Constructor.
- SVR<T> - Class in smile.base.svm
-
Epsilon support vector regression.
- SVR(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.SVR
-
Constructor.
T
- t - Variable in class smile.base.mlp.MultilayerPerceptron
-
The training iterations.
- t - Variable in class smile.feature.extraction.GHA
-
The training iterations.
- T - Variable in class smile.vq.BIRCH
-
THe maximum radius of a sub-cluster.
- table - Variable in class smile.validation.metric.ContingencyTable
-
The contingency table.
- tanh() - Static method in interface smile.base.mlp.ActivationFunction
-
Hyperbolic tangent activation function.
- tanh() - Static method in interface smile.deep.activation.ActivationFunction
-
Returns the hyperbolic tangent activation function.
- tanh(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with hyperbolic tangent activation function.
- tanh(int, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with hyperbolic tangent activation function.
- Tanh - Class in smile.deep.activation
-
Hyperbolic tangent activation function.
- Tanh() - Constructor for class smile.deep.activation.Tanh
-
Constructor.
- target - Variable in class smile.base.mlp.MultilayerPerceptron
-
The buffer to store desired target value of training instance.
- test(DataFrame) - Method in class smile.classification.AdaBoost
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.classification.GradientTreeBoost
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.classification.RandomForest
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.regression.GradientTreeBoost
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.regression.RandomForest
-
Test the model on a validation dataset.
- TimeSeries - Interface in smile.timeseries
-
Time series utility functions.
- toNode(Node, Node) - Method in class smile.base.cart.NominalSplit
- toNode(Node, Node) - Method in class smile.base.cart.OrdinalSplit
- toNode(Node, Node) - Method in class smile.base.cart.Split
-
Returns an internal node with the feature, value, and score of this split.
- toString() - Method in class smile.association.AssociationRule
- toString() - Method in class smile.association.ItemSet
- toString() - Method in class smile.base.cart.CART
-
Returns a text representation of the tree in R's rpart format.
- toString() - Method in class smile.base.cart.Split
- toString() - Method in class smile.base.mlp.HiddenLayer
- toString() - Method in class smile.base.mlp.HiddenLayerBuilder
- toString() - Method in class smile.base.mlp.InputLayer
- toString() - Method in class smile.base.mlp.MultilayerPerceptron
- toString() - Method in class smile.base.mlp.OutputLayer
- toString() - Method in class smile.base.mlp.OutputLayerBuilder
- toString() - Method in class smile.base.svm.KernelMachine
- toString() - Method in class smile.classification.IsotonicRegressionScaling
- toString() - Method in class smile.clustering.CentroidClustering
- toString() - Method in class smile.clustering.linkage.CompleteLinkage
- toString() - Method in class smile.clustering.linkage.SingleLinkage
- toString() - Method in class smile.clustering.linkage.UPGMALinkage
- toString() - Method in class smile.clustering.linkage.UPGMCLinkage
- toString() - Method in class smile.clustering.linkage.WardLinkage
- toString() - Method in class smile.clustering.linkage.WPGMALinkage
- toString() - Method in class smile.clustering.linkage.WPGMCLinkage
- toString() - Method in class smile.clustering.MEC
- toString() - Method in class smile.clustering.PartitionClustering
- toString() - Method in class smile.deep.optimizer.Adam
- toString() - Method in class smile.deep.optimizer.RMSProp
- toString() - Method in class smile.deep.optimizer.SGD
- toString() - Method in class smile.feature.imputation.SimpleImputer
- toString() - Method in class smile.feature.selection.InformationValue
- toString() - Method in class smile.feature.selection.SignalNoiseRatio
- toString() - Method in class smile.feature.selection.SumSquaresRatio
- toString() - Method in class smile.feature.transform.Normalizer
- toString() - Method in class smile.glm.GLM
- toString() - Method in class smile.regression.GaussianProcessRegression.JointPrediction
- toString() - Method in class smile.regression.GaussianProcessRegression
- toString() - Method in class smile.regression.LinearModel
- toString() - Method in class smile.sequence.CRFLabeler
- toString() - Method in class smile.sequence.HMM
- toString() - Method in class smile.sequence.HMMLabeler
- toString() - Method in class smile.timeseries.AR
- toString() - Method in class smile.timeseries.ARMA
- toString() - Method in class smile.timeseries.BoxTest
- toString() - Method in class smile.validation.ClassificationMetrics
- toString() - Method in class smile.validation.ClassificationValidation
- toString() - Method in class smile.validation.ClassificationValidations
- toString() - Method in class smile.validation.metric.Accuracy
- toString() - Method in class smile.validation.metric.AdjustedMutualInformation
- toString() - Method in class smile.validation.metric.AdjustedRandIndex
- toString() - Method in class smile.validation.metric.AUC
- toString() - Method in class smile.validation.metric.ConfusionMatrix
- toString() - Method in class smile.validation.metric.Error
- toString() - Method in class smile.validation.metric.Fallout
- toString() - Method in class smile.validation.metric.FDR
- toString() - Method in class smile.validation.metric.FScore
- toString() - Method in class smile.validation.metric.LogLoss
- toString() - Method in class smile.validation.metric.MAD
- toString() - Method in class smile.validation.metric.MatthewsCorrelation
- toString() - Method in class smile.validation.metric.MSE
- toString() - Method in class smile.validation.metric.MutualInformation
- toString() - Method in class smile.validation.metric.NormalizedMutualInformation
- toString() - Method in class smile.validation.metric.Precision
- toString() - Method in class smile.validation.metric.R2
- toString() - Method in class smile.validation.metric.RandIndex
- toString() - Method in class smile.validation.metric.Recall
- toString() - Method in class smile.validation.metric.RMSE
- toString() - Method in class smile.validation.metric.RSS
- toString() - Method in class smile.validation.metric.Sensitivity
- toString() - Method in class smile.validation.metric.Specificity
- toString() - Method in class smile.validation.RegressionMetrics
- toString() - Method in class smile.validation.RegressionValidation
- toString() - Method in class smile.validation.RegressionValidations
- toString(StructType, boolean) - Method in class smile.base.cart.InternalNode
-
Returns the string representation of branch.
- toString(StructType, boolean) - Method in class smile.base.cart.NominalNode
- toString(StructType, boolean) - Method in class smile.base.cart.OrdinalNode
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.DecisionNode
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.InternalNode
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in interface smile.base.cart.Node
-
Adds the string representation (R's rpart format) to a collection.
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.RegressionNode
- toString(InformationValue[]) - Static method in class smile.feature.selection.InformationValue
-
Returns a string representation of the array of information values.
- toTransform(InformationValue[]) - Static method in class smile.feature.selection.InformationValue
-
Returns the data transformation that covert feature value to its weight of evidence.
- transform(double[]) - Method in class smile.base.mlp.HiddenLayer
- transform(double[]) - Method in class smile.base.mlp.InputLayer
- transform(double[]) - Method in class smile.base.mlp.Layer
-
The activation or output function.
- transform(double[]) - Method in class smile.base.mlp.OutputLayer
- tree - Variable in class smile.classification.RandomForest.Model
-
The decision tree.
- tree - Variable in class smile.regression.RandomForest.Model
-
The decision tree.
- tree() - Method in class smile.clustering.HierarchicalClustering
-
Returns an n-1 by 2 matrix of which row i describes the merging of clusters at step i of the clustering.
- trees() - Method in class smile.anomaly.IsolationForest
-
Returns the isolation trees in the model.
- trees() - Method in class smile.classification.AdaBoost
-
Returns the decision trees.
- trees() - Method in class smile.classification.GradientTreeBoost
-
Returns the regression trees.
- trees() - Method in class smile.classification.RandomForest
- trees() - Method in interface smile.feature.importance.TreeSHAP
-
Returns the decision trees.
- trees() - Method in class smile.regression.GradientTreeBoost
- trees() - Method in class smile.regression.RandomForest
- TreeSHAP - Interface in smile.feature.importance
-
SHAP of ensemble tree methods.
- trim(int) - Method in class smile.classification.AdaBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.classification.GradientTreeBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.classification.RandomForest
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.regression.GradientTreeBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.regression.RandomForest
-
Trims the tree model set to a smaller size in case of over-fitting.
- trueChild() - Method in class smile.base.cart.InternalNode
-
Returns the true branch child.
- truth - Variable in class smile.validation.ClassificationValidation
-
The true class labels of validation data.
- truth - Variable in class smile.validation.RegressionValidation
-
The true response variable of validation data.
- TSNE - Class in smile.manifold
-
The t-distributed stochastic neighbor embedding.
- TSNE(double[][], int) - Constructor for class smile.manifold.TSNE
-
Constructor.
- TSNE(double[][], int, double, double, int) - Constructor for class smile.manifold.TSNE
-
Constructor.
- ttest() - Method in class smile.regression.LinearModel
-
Returns the t-test of the coefficients (including intercept).
- ttest() - Method in class smile.timeseries.AR
-
Returns the t-test of the coefficients (including intercept).
- ttest() - Method in class smile.timeseries.ARMA
-
Returns the t-test of the coefficients (including intercept).
- TWCNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
Transformed Weight-normalized Complement Naive Bayes.
- type - Variable in class smile.timeseries.BoxTest
-
The type of test.
U
- UMAP - Class in smile.manifold
-
Uniform Manifold Approximation and Projection.
- UMAP(int[], double[][], AdjacencyList) - Constructor for class smile.manifold.UMAP
-
Constructor.
- umatrix() - Method in class smile.vq.SOM
-
Calculates the unified distance matrix (u-matrix) for visualization.
- update(double[]) - Method in class smile.feature.extraction.GHA
-
Update the model with a new sample.
- update(double[]) - Method in class smile.vq.BIRCH
- update(double[]) - Method in class smile.vq.GrowingNeuralGas
- update(double[]) - Method in class smile.vq.NeuralGas
- update(double[]) - Method in class smile.vq.NeuralMap
- update(double[]) - Method in class smile.vq.SOM
- update(double[]) - Method in interface smile.vq.VectorQuantizer
-
Update the codebook with a new observation.
- update(double[][]) - Method in class smile.feature.extraction.GHA
-
Update the model with a set of samples.
- update(double[][], double[]) - Method in class smile.regression.MLP
-
Updates the model with a mini-batch.
- update(double[][], int[]) - Method in class smile.classification.MLP
-
Updates the model with a mini-batch.
- update(double[], double) - Method in class smile.regression.LinearModel
-
Growing window recursive least squares with lambda = 1.
- update(double[], double) - Method in class smile.regression.MLP
-
Updates the model with a single sample.
- update(double[], double) - Method in class smile.vq.hebb.Neuron
-
Updates the reference vector by w += eps * (x - w).
- update(double[], double, double) - Method in class smile.regression.LinearModel
-
Recursive least squares.
- update(double[], int) - Method in class smile.classification.LogisticRegression.Binomial
- update(double[], int) - Method in class smile.classification.LogisticRegression.Multinomial
- update(double[], int) - Method in class smile.classification.MLP
-
Updates the model with a single sample.
- update(int) - Method in class smile.base.mlp.MultilayerPerceptron
-
Updates the weights for mini-batch training.
- update(int) - Method in class smile.manifold.TSNE
-
Performs additional iterations.
- update(int[][], int) - Method in class smile.sequence.HMM
-
Updates the HMM by the Baum-Welch algorithm.
- update(int[][], int[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
- update(int[], int) - Method in class smile.classification.DiscreteNaiveBayes
-
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
- update(int[], int) - Method in class smile.classification.Maxent.Binomial
- update(int[], int) - Method in class smile.classification.Maxent.Multinomial
- update(int, double, double, double, double, double) - Method in class smile.base.mlp.InputLayer
- update(int, double, double, double, double, double) - Method in class smile.base.mlp.Layer
-
Adjust network weights by back-propagation algorithm.
- update(Layer, int, int) - Method in class smile.deep.optimizer.Adam
- update(Layer, int, int) - Method in interface smile.deep.optimizer.Optimizer
-
Updates a layer.
- update(Layer, int, int) - Method in class smile.deep.optimizer.RMSProp
- update(Layer, int, int) - Method in class smile.deep.optimizer.SGD
- update(DataFrame) - Method in class smile.feature.extraction.GHA
-
Update the model with a new data frame.
- update(DataFrame) - Method in class smile.regression.LinearModel
-
Online update the regression model with a new data frame.
- update(Dataset<Instance<T>>) - Method in interface smile.classification.Classifier
-
Updates the model with a mini-batch of new samples.
- update(Dataset<Instance<T>>) - Method in interface smile.regression.Regression
-
Updates the model with a mini-batch of new samples.
- update(Tuple) - Method in class smile.feature.extraction.GHA
-
Update the model with a new sample.
- update(Tuple) - Method in class smile.regression.LinearModel
-
Online update the regression model with a new training instance.
- update(SparseArray[], int[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
- update(SparseArray, int) - Method in class smile.classification.DiscreteNaiveBayes
-
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
- update(SparseArray, int) - Method in class smile.classification.SparseLogisticRegression.Binomial
- update(SparseArray, int) - Method in class smile.classification.SparseLogisticRegression.Multinomial
- update(T[][], int) - Method in class smile.sequence.HMMLabeler
-
Updates the HMM by the Baum-Welch algorithm.
- update(T[][], int, ToIntFunction<T>) - Method in class smile.sequence.HMM
-
Updates the HMM by the Baum-Welch algorithm.
- update(T[], double[]) - Method in interface smile.regression.Regression
-
Updates the model with a mini-batch of new samples.
- update(T[], int[]) - Method in interface smile.classification.Classifier
-
Updates the model with a mini-batch of new samples.
- update(T, double) - Method in interface smile.regression.Regression
-
Online update the classifier with a new training instance.
- update(T, int) - Method in interface smile.classification.Classifier
-
Online update the classifier with a new training instance.
- UPGMALinkage - Class in smile.clustering.linkage
-
Unweighted Pair Group Method with Arithmetic mean (also known as average linkage).
- UPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMALinkage
-
Constructor.
- UPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMALinkage
-
Constructor.
- UPGMCLinkage - Class in smile.clustering.linkage
-
Unweighted Pair Group Method using Centroids (also known as centroid linkage).
- UPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
-
Constructor.
- UPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
-
Constructor.
V
- valueOf(String) - Static method in enum class smile.base.cart.Loss.Type
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in interface smile.base.cart.Loss
-
Parses the loss.
- valueOf(String) - Static method in enum class smile.base.cart.SplitRule
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.base.mlp.Cost
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.base.mlp.OutputFunction
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.classification.DiscreteNaiveBayes.Model
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.feature.transform.Normalizer.Norm
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.timeseries.AR.Method
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.timeseries.BoxTest.Type
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
Returns the enum constant of this class with the specified name.
- values() - Static method in enum class smile.base.cart.Loss.Type
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.base.cart.SplitRule
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.base.mlp.Cost
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.base.mlp.OutputFunction
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.classification.DiscreteNaiveBayes.Model
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.feature.transform.Normalizer.Norm
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.timeseries.AR.Method
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.timeseries.BoxTest.Type
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
Returns an array containing the constants of this enum class, in the order they are declared.
- variance() - Method in class smile.feature.extraction.PCA
-
Returns the principal component variances, ordered from largest to smallest, which are the eigenvalues of the covariance or correlation matrix of learning data.
- variance() - Method in class smile.feature.extraction.ProbabilisticPCA
-
Returns the variance of noise.
- variance() - Method in class smile.timeseries.AR
-
Returns the residual variance.
- variance() - Method in class smile.timeseries.ARMA
-
Returns the residual variance.
- variance(double) - Method in interface smile.glm.model.Model
-
The variance function.
- varianceProportion() - Method in class smile.feature.extraction.PCA
-
Returns the proportion of variance contained in each principal component, ordered from largest to smallest.
- variances() - Method in class smile.manifold.KPCA
-
Returns the eigenvalues of kernel principal components, ordered from largest to smallest.
- VectorQuantizer - Interface in smile.vq
-
Vector quantizer with competitive learning.
- vectors() - Method in class smile.base.svm.KernelMachine
-
Returns the support vectors of kernel machines.
- viterbi(Tuple[]) - Method in class smile.sequence.CRF
-
Labels sequence with Viterbi algorithm.
- viterbi(T[]) - Method in class smile.sequence.CRFLabeler
-
Labels sequence with Viterbi algorithm.
- vote(Tuple, double[]) - Method in class smile.classification.RandomForest
-
Predict and estimate the probability by voting.
W
- w - Variable in class smile.regression.GaussianProcessRegression
-
The linear weights.
- w - Variable in class smile.vq.hebb.Neuron
-
The reference vector.
- WardLinkage - Class in smile.clustering.linkage
-
Ward's linkage.
- WardLinkage(double[][]) - Constructor for class smile.clustering.linkage.WardLinkage
-
Constructor.
- WardLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WardLinkage
-
Constructor.
- WCNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
Weight-normalized Complement Naive Bayes.
- weight - Variable in class smile.base.mlp.Layer
-
The affine transformation matrix.
- weight - Variable in class smile.classification.RandomForest.Model
-
The weight of tree, which can be used when aggregating tree votes.
- weightGradient - Variable in class smile.base.mlp.Layer
-
The weight gradient.
- weightGradientMoment1 - Variable in class smile.base.mlp.Layer
-
The first moment of weight gradient.
- weightGradientMoment2 - Variable in class smile.base.mlp.Layer
-
The second moment of weight gradient.
- weights() - Method in class smile.base.svm.KernelMachine
-
Returns the weights of instances.
- weightUpdate - Variable in class smile.base.mlp.Layer
-
The weight update.
- width - Variable in class smile.manifold.LaplacianEigenmap
-
The width of heat kernel.
- WinsorScaler - Class in smile.feature.transform
-
Scales all numeric variables into the range [0, 1].
- WinsorScaler() - Constructor for class smile.feature.transform.WinsorScaler
- woe - Variable in class smile.feature.selection.InformationValue
-
Weight of evidence.
- WPGMALinkage - Class in smile.clustering.linkage
-
Weighted Pair Group Method with Arithmetic mean.
- WPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMALinkage
-
Constructor.
- WPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMALinkage
-
Constructor.
- WPGMCLinkage - Class in smile.clustering.linkage
-
Weighted Pair Group Method using Centroids (also known as median linkage).
- WPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
-
Constructor.
- WPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
-
Constructor.
X
- x - Variable in class smile.base.cart.CART
-
The training data.
- x - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
-
The query points where the GP is evaluated.
- x() - Method in class smile.timeseries.AR
-
Returns the time series.
- x() - Method in class smile.timeseries.ARMA
-
Returns the time series.
- XMeans - Class in smile.clustering
-
X-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters based on BIC scores.
- XMeans(double, double[][], int[]) - Constructor for class smile.clustering.XMeans
-
Constructor.
Y
- y - Variable in class smile.classification.ClassLabels
-
The sample class id in [0, k).
- y - Variable in class smile.clustering.PartitionClustering
-
The cluster labels of data.
- YuleWalker - Enum constant in enum class smile.timeseries.AR.Method
-
Yule-Walker method.
Z
- ztest - Variable in class smile.glm.GLM
-
The coefficients, their standard errors, z-scores, and p-values.
- ztest() - Method in class smile.glm.GLM
-
Returns the z-test of the coefficients (including intercept).
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form