Package smile.feature.imputation
Class KMedoidsImputer
java.lang.Object
smile.feature.imputation.KMedoidsImputer
- All Implemented Interfaces:
Serializable
,Function<smile.data.Tuple,
,smile.data.Tuple> smile.data.transform.Transform
Missing value imputation by K-Medoids clustering. The k-medoids algorithm
is an adaptation of the k-means algorithm. Rather than calculate the mean
of the items in each cluster, a representative item, or medoid, is chosen
for each cluster at each iteration. The missing values of an instance are
replaced the corresponding ones of the nearest medoid.
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionsmile.data.Tuple
apply
(smile.data.Tuple x) static KMedoidsImputer
fit
(smile.data.DataFrame data, smile.math.distance.Distance<smile.data.Tuple> distance, int k) Fits the missing value imputation values.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface smile.data.transform.Transform
andThen, apply, compose
-
Constructor Details
-
KMedoidsImputer
Constructor.- Parameters:
kmedoids
- the K-Medoids clustering.
-
-
Method Details
-
apply
public smile.data.Tuple apply(smile.data.Tuple x) -
fit
public static KMedoidsImputer fit(smile.data.DataFrame data, smile.math.distance.Distance<smile.data.Tuple> distance, int k) Fits the missing value imputation values.- Parameters:
data
- the training data.k
- the number of clusters.distance
- the lambda of distance measure.- Returns:
- the imputer.
-