Serialized Form

  • Package smile.anomaly

  • Package smile.base.cart

    • Class smile.base.cart.CART

      class CART extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • formula
          smile.data.formula.Formula formula
          The model formula.
        • importance
          double[] importance
          Variable importance. Every time a split of a node is made on variable the (GINI, information gain, etc.) impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over the tree gives a simple measure of variable importance.
        • maxDepth
          int maxDepth
          The maximum depth of the tree.
        • maxNodes
          int maxNodes
          The maximum number of leaf nodes in the tree.
        • mtry
          int mtry
          The number of input variables to be used to determine the decision at a node of the tree.
        • nodeSize
          int nodeSize
          The number of instances in a node below which the tree will not split, setting nodeSize = 5 generally gives good results.
        • response
          smile.data.type.StructField response
          The schema of response variable.
        • root
          Node root
          The root of decision tree.
        • schema
          smile.data.type.StructType schema
          The schema of predictors.
    • Class smile.base.cart.DecisionNode

      class DecisionNode extends LeafNode implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • count
          int[] count
          The number of node samples in each class.
        • output
          int output
          The predicted output.
    • Class smile.base.cart.InternalNode

      class InternalNode extends Object implements Serializable
      • Serialized Fields

        • deviance
          double deviance
          The deviance of node.
        • falseChild
          Node falseChild
          Children node.
        • feature
          int feature
          The split feature for this node.
        • score
          double score
          Reduction in impurity compared to parent.
        • size
          int size
          The number of samples in the node.
        • trueChild
          Node trueChild
          Children node.
    • Class smile.base.cart.LeafNode

      class LeafNode extends Object implements Serializable
      • Serialized Fields

        • size
          int size
          The number of samples in the node.
    • Class smile.base.cart.NominalNode

      class NominalNode extends InternalNode implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • value
          int value
          The split value.
    • Class smile.base.cart.OrdinalNode

      class OrdinalNode extends InternalNode implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • value
          double value
          The split value.
    • Class smile.base.cart.RegressionNode

      class RegressionNode extends LeafNode implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • mean
          double mean
          The mean of response variable.
        • output
          double output
          The predicted output. In standard regression tree, this is same as the mean. However, in gradient tree boosting, this may be different.
        • rss
          double rss
          The residual sum of squares.
  • Package smile.base.mlp

    • Class smile.base.mlp.HiddenLayer

      class HiddenLayer extends Layer implements Serializable
      serialVersionUID:
      2L
    • Class smile.base.mlp.InputLayer

      class InputLayer extends Layer implements Serializable
      serialVersionUID:
      2L
    • Class smile.base.mlp.Layer

      class Layer extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialization Methods

      • Serialized Fields

        • bias
          double[] bias
          The bias.
        • dropout
          double dropout
          The dropout rate. Dropout randomly sets input units to 0 with this rate at each step during training time, which helps prevent overfitting.
        • n
          int n
          The number of neurons in this layer
        • p
          int p
          The number of input variables.
        • weight
          smile.math.matrix.Matrix weight
          The affine transformation matrix.
    • Class smile.base.mlp.MultilayerPerceptron

      class MultilayerPerceptron extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialization Methods

      • Serialized Fields

        • clipNorm
          double clipNorm
          The gradient clipping norm.
        • clipValue
          double clipValue
          The gradient clipping value.
        • epsilon
          double epsilon
          A small constant for numerical stability in RMSProp.
        • lambda
          double lambda
          The L2 regularization factor, which is also the weight decay factor.
        • learningRate
          smile.math.TimeFunction learningRate
          The learning rate.
        • momentum
          smile.math.TimeFunction momentum
          The momentum factor.
        • net
          Layer[] net
          The input and hidden layers.
        • output
          OutputLayer output
          The output layer.
        • p
          int p
          The dimensionality of input data.
        • rho
          double rho
          The discounting factor for the history/coming gradient in RMSProp.
        • t
          int t
          The training iterations.
    • Class smile.base.mlp.OutputLayer

      class OutputLayer extends Layer implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • activation
          OutputFunction activation
          The output activation function.
        • cost
          Cost cost
          The cost function.
  • Package smile.base.rbf

    • Class smile.base.rbf.RBF

      class RBF extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • center
          T center
          The center of neuron.
        • distance
          smile.math.distance.Metric<T> distance
          Metric distance.
        • rbf
          smile.math.rbf.RadialBasisFunction rbf
          Radial basis function.
  • Package smile.base.svm

    • Class smile.base.svm.KernelMachine

      class KernelMachine extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • b
          double b
          The intercept.
        • kernel
          smile.math.kernel.MercerKernel<T> kernel
          The kernel function.
        • vectors
          T[] vectors
          The support vectors (or control points).
        • w
          double[] w
          The linear weights.
    • Class smile.base.svm.LASVM

      class LASVM extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • b
          double b
          Threshold of decision function.
        • Cn
          double Cn
          The soft margin penalty parameter for negative samples.
        • Cp
          double Cp
          The soft margin penalty parameter for positive samples.
        • gmax
          double gmax
          The gradient of most violating pair.
        • gmin
          double gmin
          The gradient of most violating pair.
        • K
          double[][] K
          The kernel matrix.
        • kernel
          smile.math.kernel.MercerKernel<T> kernel
          The kernel function.
        • minmaxflag
          boolean minmaxflag
          True if minmax() is already called after update.
        • svmax
          SupportVector<T> svmax
          The most violating pair.
        • svmin
          SupportVector<T> svmin
          The most violating pair.
        • tol
          double tol
          The tolerance of convergence test.
        • vectors
          ArrayList<SupportVector<T>> vectors
          Support vectors.
        • x
          T[] x
          The training samples.
    • Class smile.base.svm.LinearKernelMachine

      class LinearKernelMachine extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • b
          double b
          The intercept.
        • w
          double[] w
          The weight vector.
    • Class smile.base.svm.SupportVector

      class SupportVector extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • alpha
          double alpha
          Lagrangian multiplier of support vector.
        • cmax
          double cmax
          Upper bound of alpha.
        • cmin
          double cmin
          Lower bound of alpha.
        • g
          double g
          Gradient y - Kα.
        • i
          int i
          The index of support vector in training samples.
        • k
          double k
          Kernel value k(x, x)
        • x
          T x
          Support vector.
  • Package smile.classification

    • Class smile.classification.AbstractClassifier

      class AbstractClassifier extends Object implements Serializable
      • Serialized Fields

        • classes
          smile.util.IntSet classes
          The class labels.
    • Class smile.classification.AdaBoost

      class AdaBoost extends AbstractClassifier<smile.data.Tuple> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • alpha
          double[] alpha
          The weight of each decision tree.
        • error
          double[] error
          The weighted error of each decision tree during training.
        • formula
          smile.data.formula.Formula formula
          The model formula.
        • importance
          double[] importance
          Variable importance. Every time a split of a node is made on variable the (GINI, information gain, etc.) impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a fast variable importance that is often very consistent with the permutation importance measure.
        • k
          int k
          The number of classes.
        • trees
          DecisionTree[] trees
          Forest of decision trees.
    • Class smile.classification.ClassLabels

      class ClassLabels extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • classes
          smile.util.IntSet classes
          The class labels.
        • k
          int k
          The number of classes.
        • ni
          int[] ni
          The number of samples per classes.
        • priori
          double[] priori
          The estimated priori probabilities.
        • y
          int[] y
          The sample class id in [0, k).
    • Class smile.classification.DecisionTree

      class DecisionTree extends CART implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • classes
          smile.util.IntSet classes
          The class labels.
        • k
          int k
          The number of classes.
        • rule
          SplitRule rule
          The splitting rule.
    • Class smile.classification.DiscreteNaiveBayes

      class DiscreteNaiveBayes extends AbstractClassifier<int[]> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • fixedPriori
          boolean fixedPriori
          If true, don't update the priori during learning.
        • k
          int k
          The number of classes.
        • logcondprob
          double[][] logcondprob
          The log conditional probabilities for document classification.
        • model
          DiscreteNaiveBayes.Model model
          The generation model of naive Bayes.
        • n
          int n
          The total number of documents.
        • nc
          int[] nc
          The number of documents in each class.
        • nt
          int[] nt
          The number of terms per class.
        • ntc
          int[][] ntc
          The number of each term per class.
        • p
          int p
          The number of independent variables.
        • priori
          double[] priori
          The priori probability of each class.
        • sigma
          double sigma
          Amount of add-k smoothing of evidence. By default, we use add-one or Laplace smoothing, which simply adds one to each count to eliminate zeros. Add-one smoothing can be interpreted as a uniform prior (each term occurs once for each class) that is then updated as evidence from the training data comes in.
    • Class smile.classification.FLD

      class FLD extends AbstractClassifier<double[]> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • k
          int k
          The number of classes.
        • mean
          double[] mean
          Projected mean vector.
        • mu
          double[][] mu
          Projected class mean vectors.
        • p
          int p
          The dimensionality of data.
        • scaling
          smile.math.matrix.Matrix scaling
          Project matrix.
    • Class smile.classification.GradientTreeBoost

      class GradientTreeBoost extends AbstractClassifier<smile.data.Tuple> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • b
          double b
          The intercept for binary classification.
        • forest
          RegressionTree[][] forest
          Forest of regression trees for multi-class classification.
        • formula
          smile.data.formula.Formula formula
          The model formula.
        • importance
          double[] importance
          Variable importance. Every time a split of a node is made on variable the impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a simple variable importance.
        • k
          int k
          The number of classes.
        • shrinkage
          double shrinkage
          The shrinkage parameter in (0, 1] controls the learning rate of procedure.
        • trees
          RegressionTree[] trees
          Forest of regression trees for binary classification.
    • Class smile.classification.IsotonicRegressionScaling

      class IsotonicRegressionScaling extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • buckets
          double[] buckets
          The step-wise buckets of function values in ascending order.
        • prob
          double[] prob
          The probability of instances falling into the corresponding buckets.
    • Class smile.classification.KNN

      class KNN extends AbstractClassifier<T> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • k
          int k
          The number of neighbors for decision.
        • knn
          smile.neighbor.KNNSearch<T,T> knn
          The data structure for nearest neighbor search.
        • y
          int[] y
          The labels of training samples.
    • Class smile.classification.LDA

      class LDA extends AbstractClassifier<double[]> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • eigen
          double[] eigen
          The eigen values of common variance matrix.
        • k
          int k
          The number of classes.
        • logppriori
          double[] logppriori
          The constant term of discriminant function of each class.
        • mu
          double[][] mu
          THe mean vectors of each class.
        • p
          int p
          The dimensionality of data.
        • priori
          double[] priori
          The a priori probabilities of each class.
        • scaling
          smile.math.matrix.Matrix scaling
          The eigen vectors of common covariance matrix, which transforms observations to discriminant functions, normalized so that common covariance matrix is spherical.
    • Class smile.classification.LogisticRegression

      class LogisticRegression extends AbstractClassifier<double[]> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • eta
          double eta
          learning rate for stochastic gradient descent.
        • k
          int k
          The number of classes.
        • L
          double L
          The log-likelihood of learned model.
        • lambda
          double lambda
          Regularization factor.
        • p
          int p
          The dimension of input space.
    • Class smile.classification.LogisticRegression.Binomial

      class Binomial extends LogisticRegression implements Serializable
      • Serialized Fields

        • w
          double[] w
          The linear weights.
    • Class smile.classification.LogisticRegression.Multinomial

      class Multinomial extends LogisticRegression implements Serializable
      • Serialized Fields

        • w
          double[][] w
          The linear weights.
    • Class smile.classification.Maxent

      class Maxent extends AbstractClassifier<int[]> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • eta
          double eta
          learning rate for stochastic gradient descent.
        • k
          int k
          The number of classes.
        • L
          double L
          The log-likelihood of learned model.
        • lambda
          double lambda
          Regularization factor.
        • p
          int p
          The dimension of input space.
    • Class smile.classification.Maxent.Binomial

      class Binomial extends Maxent implements Serializable
      • Serialized Fields

        • w
          double[] w
          The linear weights.
    • Class smile.classification.Maxent.Multinomial

      class Multinomial extends Maxent implements Serializable
      • Serialized Fields

        • w
          double[][] w
          The linear weights.
    • Class smile.classification.MLP

      class MLP extends MultilayerPerceptron implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • classes
          smile.util.IntSet classes
          The class label encoder.
        • k
          int k
          The number of classes.
    • Class smile.classification.NaiveBayes

      class NaiveBayes extends AbstractClassifier<double[]> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • k
          int k
          The number of classes.
        • p
          int p
          The number of independent variables.
        • priori
          double[] priori
          The priori probability of each class.
        • prob
          smile.stat.distribution.Distribution[][] prob
          The conditional distribution for general purpose naive Bayes classifier.
    • Class smile.classification.OneVersusOne

      class OneVersusOne extends AbstractClassifier<T> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • classifiers
          Classifier<T>[][] classifiers
          The binary classifier.
        • k
          int k
          The number of classes.
        • platt
          PlattScaling[][] platt
          The binary classifier.
    • Class smile.classification.OneVersusRest

      class OneVersusRest extends AbstractClassifier<T> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • classifiers
          Classifier<T>[] classifiers
          The binary classifier.
        • k
          int k
          The number of classes.
        • platt
          PlattScaling[] platt
          The probability estimation by Platt scaling.
    • Class smile.classification.PlattScaling

      class PlattScaling extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • alpha
          double alpha
          The scaling parameter.
        • beta
          double beta
          The scaling parameter.
    • Class smile.classification.QDA

      class QDA extends AbstractClassifier<double[]> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • eigen
          double[][] eigen
          Eigen values of each covariance matrix.
        • k
          int k
          The number of classes.
        • logppriori
          double[] logppriori
          Constant term of discriminant function of each class.
        • mu
          double[][] mu
          Mean vectors of each class.
        • p
          int p
          The dimensionality of data.
        • priori
          double[] priori
          A priori probabilities of each class.
        • scaling
          smile.math.matrix.Matrix[] scaling
          Eigen vectors of each covariance matrix, which transforms observations to discriminant functions, normalized so that within groups covariance matrix is spherical.
    • Class smile.classification.RandomForest

      class RandomForest extends AbstractClassifier<smile.data.Tuple> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • formula
          smile.data.formula.Formula formula
          The model formula.
        • importance
          double[] importance
          Variable importance. Every time a split of a node is made on variable the (GINI, information gain, etc.) impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a fast variable importance that is often very consistent with the permutation importance measure.
        • k
          int k
          The number of classes.
        • metrics
          ClassificationMetrics metrics
          The overall out-of-bag metrics, which are quite accurate given that enough trees have been grown (otherwise the OOB error estimate can bias upward).
        • models
          RandomForest.Model[] models
          Forest of decision trees. The second value is the accuracy of tree on the OOB samples, which can be used a weight when aggregating tree votes.
    • Class smile.classification.RandomForest.Model

      class Model extends Object implements Serializable
      • Serialized Fields

        • metrics
          ClassificationMetrics metrics
          The performance metrics on out-of-bag samples.
        • tree
          DecisionTree tree
          The decision tree.
        • weight
          double weight
          The weight of tree, which can be used when aggregating tree votes.
    • Class smile.classification.RBFNetwork

      class RBFNetwork extends AbstractClassifier<T> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • k
          int k
          The number of classes.
        • normalized
          boolean normalized
          True to fit a normalized RBF network.
        • rbf
          RBF<T>[] rbf
          The radial basis function.
        • w
          smile.math.matrix.Matrix w
          The linear weights.
    • Class smile.classification.RDA

      class RDA extends QDA implements Serializable
      serialVersionUID:
      2L
    • Class smile.classification.SparseLogisticRegression

      class SparseLogisticRegression extends AbstractClassifier<smile.util.SparseArray> implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • eta
          double eta
          learning rate for stochastic gradient descent.
        • k
          int k
          The number of classes.
        • L
          double L
          The log-likelihood of learned model.
        • lambda
          double lambda
          Regularization factor.
        • p
          int p
          The dimension of input space.
    • Class smile.classification.SparseLogisticRegression.Binomial

      class Binomial extends SparseLogisticRegression implements Serializable
      • Serialized Fields

        • w
          double[] w
          The linear weights.
    • Class smile.classification.SparseLogisticRegression.Multinomial

      class Multinomial extends SparseLogisticRegression implements Serializable
      • Serialized Fields

        • w
          double[][] w
          The linear weights.
    • Class smile.classification.SVM

      class SVM extends KernelMachine<T> implements Serializable
  • Package smile.clustering

  • Package smile.deep.activation

  • Package smile.deep.optimizer

    • Class smile.deep.optimizer.Adam

      class Adam extends Object implements Serializable
      • Serialized Fields

        • beta1
          double beta1
          The exponential decay rate for the 1st moment estimates.
        • beta2
          double beta2
          The exponential decay rate for the 2nd moment estimates.
        • epsilon
          double epsilon
          A small constant for numerical stability.
        • learningRate
          smile.math.TimeFunction learningRate
          The learning rate.
    • Class smile.deep.optimizer.RMSProp

      class RMSProp extends Object implements Serializable
      • Serialized Fields

        • epsilon
          double epsilon
          A small constant for numerical stability.
        • learningRate
          smile.math.TimeFunction learningRate
          The learning rate.
        • rho
          double rho
          The discounting factor for the history/coming gradient.
    • Class smile.deep.optimizer.SGD

      class SGD extends Object implements Serializable
      • Serialized Fields

        • learningRate
          smile.math.TimeFunction learningRate
          The learning rate.
        • momentum
          smile.math.TimeFunction momentum
          The momentum factor.
  • Package smile.feature.extraction

    • Class smile.feature.extraction.BagOfWords

      class BagOfWords extends Object implements Serializable
      • Serialized Fields

        • binary
          boolean binary
          True to check if feature words appear in a document instead of their frequencies.
        • columns
          String[] columns
          The input text fields.
        • featureIndex
          Map<String,Integer> featureIndex
          The mapping from feature words to indices.
        • schema
          smile.data.type.StructType schema
          The schema of output space.
        • tokenizer
          Function<String,String[]> tokenizer
          The tokenizer of text, which may include additional processing such as filtering stop word, converting to lowercase, stemming, etc.
        • words
          String[] words
          The feature words.
    • Class smile.feature.extraction.GHA

      class GHA extends Projection implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • n
          int n
          The dimension of input space.
        • p
          int p
          The dimension of feature space.
        • r
          smile.math.TimeFunction r
          The learning rate;
        • t
          int t
          The training iterations.
        • wy
          double[] wy
          Workspace for W' * y.
        • y
          double[] y
          Workspace for W * x.
    • Class smile.feature.extraction.KernelPCA

      class KernelPCA extends Projection implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • kpca
          KPCA<double[]> kpca
          Kernel PCA.
    • Class smile.feature.extraction.PCA

      class PCA extends Projection implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • cumulativeProportion
          double[] cumulativeProportion
          The cumulative proportion of variance contained in principal components.
        • eigvalues
          double[] eigvalues
          Eigenvalues of principal components.
        • eigvectors
          smile.math.matrix.Matrix eigvectors
          The matrix of variable loadings, whose columns contain the eigenvectors.
        • mu
          double[] mu
          The sample mean.
        • pmu
          double[] pmu
          The projected sample mean.
        • proportion
          double[] proportion
          The proportion of variance contained in each principal component.
    • Class smile.feature.extraction.ProbabilisticPCA

      class ProbabilisticPCA extends Projection implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • loading
          smile.math.matrix.Matrix loading
          The loading matrix.
        • mu
          double[] mu
          The sample mean.
        • noise
          double noise
          The variance of noise part.
        • pmu
          double[] pmu
          The projected sample mean.
    • Class smile.feature.extraction.Projection

      class Projection extends Object implements Serializable
      • Serialized Fields

        • columns
          String[] columns
          The fields of input space.
        • projection
          smile.math.matrix.Matrix projection
          The projection matrix. The dimension reduced data can be obtained by y = W * x.
        • schema
          smile.data.type.StructType schema
          The schema of output space.
    • Class smile.feature.extraction.RandomProjection

      class RandomProjection extends Projection implements Serializable
      serialVersionUID:
      2L
  • Package smile.feature.imputation

  • Package smile.feature.transform

  • Package smile.glm

    • Class smile.glm.GLM

      class GLM extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • beta
          double[] beta
          The linear weights.
        • deviance
          double deviance
          The deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Proposed Model)).
        • devianceResiduals
          double[] devianceResiduals
          The deviance residuals.
        • df
          int df
          The degrees of freedom of the residual deviance.
        • formula
          smile.data.formula.Formula formula
          The symbolic description of the model to be fitted.
        • logLikelihood
          double logLikelihood
          Log-likelihood.
        • model
          Model model
          The model specifications (link function, deviance, etc.).
        • mu
          double[] mu
          The fitted mean values.
        • nullDeviance
          double nullDeviance
          The null deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Null Model)).

          The saturated model, also referred to as the full model or maximal model, allows a different mean response for each group of replicates. One can think of the saturated model as having the most general possible mean structure for the data since the means are unconstrained.

          The null model assumes that all observations have the same distribution with common parameter. Like the saturated model, the null model does not depend on predictor variables. While the saturated most is the most general model, the null model is the most restricted model.

        • predictors
          String[] predictors
          The predictors of design matrix.
        • ztest
          double[][] ztest
          The coefficients, their standard errors, z-scores, and p-values.
  • Package smile.glm.model

  • Package smile.manifold

    • Class smile.manifold.IsoMap

      class IsoMap extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • coordinates
          double[][] coordinates
          The coordinate matrix in embedding space.
        • graph
          smile.graph.AdjacencyList graph
          The nearest neighbor graph.
        • index
          int[] index
          The original sample index.
    • Class smile.manifold.KPCA

      class KPCA extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • coordinates
          double[][] coordinates
          The coordinates of projected training data.
        • data
          T[] data
          Training data.
        • kernel
          smile.math.kernel.MercerKernel<T> kernel
          Mercer kernel.
        • latent
          double[] latent
          The eigenvalues of kernel principal components.
        • mean
          double[] mean
          The row mean of kernel matrix.
        • mu
          double mu
          The mean of kernel matrix.
        • projection
          smile.math.matrix.Matrix projection
          The projection matrix.
    • Class smile.manifold.LaplacianEigenmap

      class LaplacianEigenmap extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • coordinates
          double[][] coordinates
          The coordinate matrix in embedding space.
        • graph
          smile.graph.AdjacencyList graph
          Nearest neighbor graph.
        • index
          int[] index
          The original sample index.
        • width
          double width
          The width of heat kernel.
    • Class smile.manifold.LLE

      class LLE extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • coordinates
          double[][] coordinates
          The coordinate matrix in embedding space.
        • graph
          smile.graph.AdjacencyList graph
          Nearest neighbor graph.
        • index
          int[] index
          The original sample index.
    • Class smile.manifold.TSNE

      class TSNE extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • coordinates
          double[][] coordinates
          The coordinate matrix in embedding space.
        • cost
          double cost
          The cost function value.
        • eta
          double eta
          The learning rate.
        • finalMomentum
          double finalMomentum
          The momentum in later stage.
        • gains
          double[][] gains
          The gain matrix.
        • minGain
          double minGain
          The floor of gain.
        • momentum
          double momentum
          The momentum factor.
        • momentumSwitchIter
          int momentumSwitchIter
          The number of iterations at which switch the momentum to finalMomentum.
        • P
          double[][] P
          The probability matrix of the distances in the input space.
        • Q
          double[][] Q
          The probability matrix of the distances in the feature space.
        • Qsum
          double Qsum
          The sum of Q matrix.
        • totalIter
          int totalIter
          The number of iterations so far.
    • Class smile.manifold.UMAP

      class UMAP extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • coordinates
          double[][] coordinates
          The coordinate matrix in embedding space.
        • graph
          smile.graph.AdjacencyList graph
          The nearest neighbor graph.
        • index
          int[] index
          The original sample index.
  • Package smile.regression

    • Class smile.regression.GaussianProcessRegression

      class GaussianProcessRegression extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • cholesky
          smile.math.matrix.Matrix.Cholesky cholesky
          The Cholesky decomposition of kernel matrix.
        • kernel
          smile.math.kernel.MercerKernel<T> kernel
          The covariance/kernel function.
        • L
          double L
          The log marginal likelihood, which may be not available (NaN) when the model is fit with approximate methods.
        • mean
          double mean
          The mean of responsible variable.
        • noise
          double noise
          The variance of noise.
        • regressors
          T[] regressors
          The regressors.
        • sd
          double sd
          The standard deviation of responsible variable.
        • w
          double[] w
          The linear weights.
    • Class smile.regression.GradientTreeBoost

      class GradientTreeBoost extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • b
          double b
          The intercept.
        • formula
          smile.data.formula.Formula formula
          The model formula.
        • importance
          double[] importance
          Variable importance. Every time a split of a node is made on variable the impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a simple variable importance.
        • shrinkage
          double shrinkage
          The shrinkage parameter in (0, 1] controls the learning rate of procedure.
        • trees
          RegressionTree[] trees
          Forest of regression trees.
    • Class smile.regression.KernelMachine

      class KernelMachine extends KernelMachine<T> implements Serializable
      serialVersionUID:
      2L
    • Class smile.regression.LinearModel

      class LinearModel extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • adjustedRSquared
          double adjustedRSquared
          Adjusted R2. The adjusted R2 has almost same explanation as R2 but it penalizes the statistic as extra variables are included in the model.
        • b
          double b
          The intercept.
        • bias
          boolean bias
          True if the linear weights w includes the intercept.
        • df
          int df
          The degree-of-freedom of residual standard error.
        • error
          double error
          Residual standard error.
        • F
          double F
          The F-statistic of the goodness-of-fit of the model.
        • fittedValues
          double[] fittedValues
          The fitted values.
        • formula
          smile.data.formula.Formula formula
          Design matrix formula
        • p
          int p
          The dimensionality.
        • predictors
          String[] predictors
          The predictors of design matrix.
        • pvalue
          double pvalue
          The p-value of the goodness-of-fit test of the model.
        • residuals
          double[] residuals
          The residuals, that is response minus fitted values.
        • RSquared
          double RSquared
          R2. R2 is a statistic that will give some information about the goodness of fit of a model. In regression, the R2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.

          In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.

        • RSS
          double RSS
          Residual sum of squares.
        • schema
          smile.data.type.StructType schema
          The schema of design matrix.
        • ttest
          double[][] ttest
          The coefficients, their standard errors, t-scores, and p-values.
        • V
          smile.math.matrix.Matrix V
          First initialized to the matrix (XTX)-1, it is updated with each new learning instance.
        • w
          double[] w
          The linear weights.
    • Class smile.regression.MLP

      class MLP extends MultilayerPerceptron implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • scaler
          smile.math.Scaler scaler
          The scaling function of output values.
    • Class smile.regression.RandomForest

      class RandomForest extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • formula
          smile.data.formula.Formula formula
          The model formula.
        • importance
          double[] importance
          Variable importance. Every time a split of a node is made on variable the impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a fast variable importance that is often very consistent with the permutation importance measure.
        • metrics
          RegressionMetrics metrics
          The overall out-of-bag metrics, which are quite accurate given that enough trees have been grown (otherwise the OOB error estimate can bias upward).
        • models
          RandomForest.Model[] models
          Forest of regression trees.
    • Class smile.regression.RandomForest.Model

      class Model extends Object implements Serializable
    • Class smile.regression.RBFNetwork

      class RBFNetwork extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • normalized
          boolean normalized
          True to fit a normalized RBF network.
        • rbf
          RBF<T>[] rbf
          The radial basis functions.
        • w
          double[] w
          The linear weights.
    • Class smile.regression.RegressionTree

      class RegressionTree extends CART implements Serializable
      serialVersionUID:
      2L
  • Package smile.sequence

    • Class smile.sequence.CRF

      class CRF extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • potentials
          RegressionTree[][] potentials
          The potential functions for each class.
        • schema
          smile.data.type.StructType schema
          The schema of (x, s_j).
        • shrinkage
          double shrinkage
          The learning rate.
    • Class smile.sequence.CRFLabeler

      class CRFLabeler extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • features
          Function<T,smile.data.Tuple> features
          The feature function.
        • model
          CRF model
          The CRF model.
    • Class smile.sequence.HMM

      class HMM extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • a
          smile.math.matrix.Matrix a
          State transition probabilities.
        • b
          smile.math.matrix.Matrix b
          Symbol emission probabilities.
        • pi
          double[] pi
          Initial state probabilities.
    • Class smile.sequence.HMMLabeler

      class HMMLabeler extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • model
          HMM model
          The HMM model.
        • ordinal
          ToIntFunction<T> ordinal
          The lambda returns the ordinal numbers of symbols.
  • Package smile.timeseries

    • Class smile.timeseries.AR

      class AR extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • adjustedR2
          double adjustedR2
          Adjusted R2. The adjusted R2 has almost same explanation as R2 but it penalizes the statistic as extra variables are included in the model.
        • ar
          double[] ar
          The linear weights of AR.
        • b
          double b
          The intercept.
        • df
          int df
          The degree-of-freedom of residual variance.
        • fittedValues
          double[] fittedValues
          The fitted values.
        • mean
          double mean
          The mean of time series.
        • method
          AR.Method method
          The fitting method.
        • p
          int p
          The order.
        • R2
          double R2
          R2. R2 is a statistic that will give some information about the goodness of fit of a model. In regression, the R2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.

          In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.

        • residuals
          double[] residuals
          The residuals, that is response minus fitted values.
        • RSS
          double RSS
          Residual sum of squares.
        • ttest
          double[][] ttest
          The coefficients, their standard errors, t-scores, and p-values.
        • variance
          double variance
          Estimated variance.
        • x
          double[] x
          The time series.
    • Class smile.timeseries.ARMA

      class ARMA extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • adjustedR2
          double adjustedR2
          Adjusted R2. The adjusted R2 has almost same explanation as R2 but it penalizes the statistic as extra variables are included in the model.
        • ar
          double[] ar
          The linear weights of AR.
        • b
          double b
          The intercept.
        • df
          int df
          The degree-of-freedom of residual variance.
        • fittedValues
          double[] fittedValues
          The fitted values.
        • ma
          double[] ma
          The linear weights of MA.
        • mean
          double mean
          The mean of time series.
        • p
          int p
          The order of AR.
        • q
          int q
          The order of MA.
        • R2
          double R2
          R2. R2 is a statistic that will give some information about the goodness of fit of a model. In regression, the R2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.

          In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.

        • residuals
          double[] residuals
          The residuals, that is response minus fitted values.
        • RSS
          double RSS
          Residual sum of squares.
        • ttest
          double[][] ttest
          The coefficients, their standard errors, t-scores, and p-values.
        • variance
          double variance
          Estimated variance.
        • x
          double[] x
          The time series.
  • Package smile.validation

    • Class smile.validation.Bag

      class Bag extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • oob
          int[] oob
          The index of testing instances.
        • samples
          int[] samples
          The random samples.
    • Class smile.validation.ClassificationMetrics

      class ClassificationMetrics extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • accuracy
          double accuracy
          The accuracy on validation data.
        • auc
          double auc
          The AUC on validation data.
        • crossentropy
          double crossentropy
          The cross entropy on validation data.
        • error
          int error
          The number of errors.
        • f1
          double f1
          The F-1 score on validation data.
        • fitTime
          double fitTime
          The time in milliseconds of fitting the model.
        • logloss
          double logloss
          The log loss on validation data.
        • mcc
          double mcc
          The Matthews correlation coefficient on validation data.
        • precision
          double precision
          The precision on validation data.
        • scoreTime
          double scoreTime
          The time in milliseconds of scoring the validation data.
        • sensitivity
          double sensitivity
          The sensitivity on validation data.
        • size
          int size
          The validation data size.
        • specificity
          double specificity
          The specificity on validation data.
    • Class smile.validation.ClassificationValidation

      class ClassificationValidation extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • confusion
          ConfusionMatrix confusion
          The confusion matrix.
        • metrics
          ClassificationMetrics metrics
          The classification metrics.
        • model
          M model
          The model.
        • posteriori
          double[][] posteriori
          The posteriori probability of prediction if the model is a soft classifier.
        • prediction
          int[] prediction
          The model prediction.
        • truth
          int[] truth
          The true class labels of validation data.
    • Class smile.validation.ClassificationValidations

      class ClassificationValidations extends Object implements Serializable
      serialVersionUID:
      2L
    • Class smile.validation.RegressionMetrics

      class RegressionMetrics extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • fitTime
          double fitTime
          The time in milliseconds of fitting the model.
        • mad
          double mad
          The mean absolute deviation on validation data.
        • mse
          double mse
          The mean squared error on validation data.
        • r2
          double r2
          The R-squared score on validation data.
        • rmse
          double rmse
          The root mean squared error on validation data.
        • rss
          double rss
          The residual sum of squares on validation data.
        • scoreTime
          double scoreTime
          The time in milliseconds of scoring the validation data.
        • size
          int size
          The validation data size.
    • Class smile.validation.RegressionValidation

      class RegressionValidation extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • metrics
          RegressionMetrics metrics
          The regression metrics.
        • model
          M model
          The model.
        • prediction
          double[] prediction
          The model prediction.
        • truth
          double[] truth
          The true response variable of validation data.
    • Class smile.validation.RegressionValidations

      class RegressionValidations extends Object implements Serializable
      serialVersionUID:
      2L
  • Package smile.validation.metric

  • Package smile.vq

    • Class smile.vq.BIRCH

      class BIRCH extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • B
          int B
          The branching factor of non-leaf nodes.
        • d
          int d
          The dimensionality of data.
        • L
          int L
          The number of CF entries in the leaf nodes.
        • root
          smile.vq.BIRCH.Node root
          The root of CF tree.
        • T
          double T
          THe maximum radius of a sub-cluster.
    • Class smile.vq.GrowingNeuralGas

      class GrowingNeuralGas extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • alpha
          double alpha
          Decrease error variables by multiplying them with alpha during inserting a new neuron.
        • beta
          double beta
          Decrease all error variables by multiply them with beta.
        • d
          int d
          The dimensionality of signals.
        • edgeLifetime
          int edgeLifetime
          The maximum age of edges.
        • epsBest
          double epsBest
          The learning rate to update best matching neuron.
        • epsNeighbor
          double epsNeighbor
          The learning rate to update neighbors of best matching neuron.
        • lambda
          int lambda
          If the number of input signals so far is an integer multiple of lambda, insert a new neuron.
        • neurons
          ArrayList<Neuron> neurons
          Neurons in the neural network.
        • t
          int t
          The number of signals processed so far.
        • top2
          Neuron[] top2
          The workspace to find nearest neighbors.
    • Class smile.vq.NeuralGas

      class NeuralGas extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • alpha
          smile.math.TimeFunction alpha
          The learning rate function.
        • dist
          double[] dist
          The distance between a new observation to neurons.
        • eps
          double eps
          The threshold to update neuron if alpha * theta > eps.
        • graph
          smile.graph.AdjacencyMatrix graph
          The network of neurons.
        • lifetime
          smile.math.TimeFunction lifetime
          The lifetime of connections.
        • neurons
          smile.vq.NeuralGas.Neuron[] neurons
          The neurons.
        • t
          int t
          The current iteration.
        • theta
          smile.math.TimeFunction theta
          The neighborhood function.
    • Class smile.vq.NeuralMap

      class NeuralMap extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • beta
          double beta
          Decrease the freshness of all neurons by multiply them with beta.
        • edgeLifetime
          int edgeLifetime
          The maximum age of edges.
        • epsBest
          double epsBest
          The learning rate to update nearest neuron.
        • epsNeighbor
          double epsNeighbor
          The learning to update neighbors of nearest neuron.
        • neurons
          ArrayList<Neuron> neurons
          Neurons in the neural network.
        • r
          double r
          The distance radius to activate a neuron for a given signal.
        • t
          int t
          The number of signals processed so far.
        • top2
          Neuron[] top2
          The workspace to find nearest neighbors.
    • Class smile.vq.SOM

      class SOM extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • alpha
          smile.math.TimeFunction alpha
          The learning rate function.
        • dist
          double[] dist
          The distance between a new observation to neurons.
        • map
          smile.vq.SOM.Neuron[][] map
          The lattice of neurons.
        • ncol
          int ncol
          The number of columns in the lattice.
        • neurons
          smile.vq.SOM.Neuron[] neurons
          The neurons in linear array.
        • nrow
          int nrow
          The number of rows in the lattice.
        • t
          int t
          The current iteration.
        • theta
          Neighborhood theta
          The neighborhood function.
        • tol
          double tol
          The threshold to update neuron if alpha * theta > eps.
  • Package smile.vq.hebb

    • Class smile.vq.hebb.Edge

      class Edge extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • age
          int age
          The age of the edges.
        • neighbor
          Neuron neighbor
          The neighbor neuron.
    • Class smile.vq.hebb.Neuron

      class Neuron extends Object implements Serializable
      serialVersionUID:
      2L
      • Serialized Fields

        • counter
          double counter
          The local counter variable (e.g. the accumulated error, freshness, etc.)
        • edges
          List<Edge> edges
          The direct connected neighbors.
        • w
          double[] w
          The reference vector.