Serialized Form
-
Package smile.anomaly
-
Class smile.anomaly.IsolationForest
class IsolationForest extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
c
double c
The normalizing factor. -
extensionLevel
int extensionLevel
The extension level, i.e. how many dimension are specified in the random slope. With 0 extension level, it is coincident with the standard Isolation Forest. -
trees
IsolationTree[] trees
Forest of isolation trees.
-
-
Class smile.anomaly.IsolationTree
class IsolationTree extends Object implements Serializable-
Serialized Fields
-
root
smile.anomaly.IsolationTree.Node root
Tree root node.
-
-
-
Class smile.anomaly.SVM
-
-
Package smile.base.cart
-
Class smile.base.cart.CART
class CART extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
formula
smile.data.formula.Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the (GINI, information gain, etc.) impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over the tree gives a simple measure of variable importance. -
maxDepth
int maxDepth
The maximum depth of the tree. -
maxNodes
int maxNodes
The maximum number of leaf nodes in the tree. -
mtry
int mtry
The number of input variables to be used to determine the decision at a node of the tree. -
nodeSize
int nodeSize
The number of instances in a node below which the tree will not split, setting nodeSize = 5 generally gives good results. -
response
smile.data.type.StructField response
The schema of response variable. -
root
Node root
The root of decision tree. -
schema
smile.data.type.StructType schema
The schema of predictors.
-
-
Class smile.base.cart.DecisionNode
class DecisionNode extends LeafNode implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
count
int[] count
The number of node samples in each class. -
output
int output
The predicted output.
-
-
Class smile.base.cart.InternalNode
class InternalNode extends Object implements Serializable-
Serialized Fields
-
-
Class smile.base.cart.LeafNode
class LeafNode extends Object implements Serializable-
Serialized Fields
-
size
int size
The number of samples in the node.
-
-
-
Class smile.base.cart.NominalNode
class NominalNode extends InternalNode implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
value
int value
The split value.
-
-
Class smile.base.cart.OrdinalNode
class OrdinalNode extends InternalNode implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
value
double value
The split value.
-
-
Class smile.base.cart.RegressionNode
class RegressionNode extends LeafNode implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
mean
double mean
The mean of response variable. -
output
double output
The predicted output. In standard regression tree, this is same as the mean. However, in gradient tree boosting, this may be different. -
rss
double rss
The residual sum of squares.
-
-
-
Package smile.base.mlp
-
Class smile.base.mlp.HiddenLayer
class HiddenLayer extends Layer implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
activation
ActivationFunction activation
The activation function.
-
-
Class smile.base.mlp.InputLayer
class InputLayer extends Layer implements Serializable- serialVersionUID:
- 2L
-
Serialization Methods
-
readObject
Initializes the workspace when deserializing the object.- Parameters:
in
- the input stream.- Throws:
IOException
- when fails to read the stream.ClassNotFoundException
- when fails to load the class.
-
-
Class smile.base.mlp.Layer
class Layer extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialization Methods
-
readObject
Initializes the workspace when deserializing the object.- Parameters:
in
- the input stream.- Throws:
IOException
- when fails to read the stream.ClassNotFoundException
- when fails to load the class.
-
-
Serialized Fields
-
bias
double[] bias
The bias. -
dropout
double dropout
The dropout rate. Dropout randomly sets input units to 0 with this rate at each step during training time, which helps prevent overfitting. -
n
int n
The number of neurons in this layer -
p
int p
The number of input variables. -
weight
smile.math.matrix.Matrix weight
The affine transformation matrix.
-
-
Class smile.base.mlp.MultilayerPerceptron
class MultilayerPerceptron extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialization Methods
-
readObject
Initializes the workspace when deserializing the object.- Parameters:
in
- the input stream.- Throws:
IOException
- when fails to read the stream.ClassNotFoundException
- when fails to load the class.
-
-
Serialized Fields
-
clipNorm
double clipNorm
The gradient clipping norm. -
clipValue
double clipValue
The gradient clipping value. -
epsilon
double epsilon
A small constant for numerical stability in RMSProp. -
lambda
double lambda
The L2 regularization factor, which is also the weight decay factor. -
learningRate
smile.math.TimeFunction learningRate
The learning rate. -
momentum
smile.math.TimeFunction momentum
The momentum factor. -
net
Layer[] net
The input and hidden layers. -
output
OutputLayer output
The output layer. -
p
int p
The dimensionality of input data. -
rho
double rho
The discounting factor for the history/coming gradient in RMSProp. -
t
int t
The training iterations.
-
-
Class smile.base.mlp.OutputLayer
class OutputLayer extends Layer implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
activation
OutputFunction activation
The output activation function. -
cost
Cost cost
The cost function.
-
-
-
Package smile.base.rbf
-
Class smile.base.rbf.RBF
class RBF extends Object implements Serializable- serialVersionUID:
- 2L
-
-
Package smile.base.svm
-
Class smile.base.svm.KernelMachine
class KernelMachine extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.base.svm.LASVM
class LASVM extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
b
double b
Threshold of decision function. -
Cn
double Cn
The soft margin penalty parameter for negative samples. -
Cp
double Cp
The soft margin penalty parameter for positive samples. -
gmax
double gmax
The gradient of most violating pair. -
gmin
double gmin
The gradient of most violating pair. -
K
double[][] K
The kernel matrix. -
kernel
smile.math.kernel.MercerKernel<T> kernel
The kernel function. -
minmaxflag
boolean minmaxflag
True if minmax() is already called after update. -
svmax
SupportVector<T> svmax
The most violating pair. -
svmin
SupportVector<T> svmin
The most violating pair. -
tol
double tol
The tolerance of convergence test. -
vectors
ArrayList<SupportVector<T>> vectors
Support vectors. -
x
T[] x
The training samples.
-
-
Class smile.base.svm.LinearKernelMachine
class LinearKernelMachine extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
b
double b
The intercept. -
w
double[] w
The weight vector.
-
-
Class smile.base.svm.SupportVector
class SupportVector extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
double alpha
Lagrangian multiplier of support vector. -
cmax
double cmax
Upper bound of alpha. -
cmin
double cmin
Lower bound of alpha. -
g
double g
Gradient y - Kα. -
i
int i
The index of support vector in training samples. -
k
double k
Kernel value k(x, x) -
x
T x
Support vector.
-
-
-
Package smile.classification
-
Class smile.classification.AbstractClassifier
class AbstractClassifier extends Object implements Serializable-
Serialized Fields
-
classes
smile.util.IntSet classes
The class labels.
-
-
-
Class smile.classification.AdaBoost
class AdaBoost extends AbstractClassifier<smile.data.Tuple> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
double[] alpha
The weight of each decision tree. -
error
double[] error
The weighted error of each decision tree during training. -
formula
smile.data.formula.Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the (GINI, information gain, etc.) impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a fast variable importance that is often very consistent with the permutation importance measure. -
k
int k
The number of classes. -
trees
DecisionTree[] trees
Forest of decision trees.
-
-
Class smile.classification.ClassLabels
class ClassLabels extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
classes
smile.util.IntSet classes
The class labels. -
k
int k
The number of classes. -
ni
int[] ni
The number of samples per classes. -
priori
double[] priori
The estimated priori probabilities. -
y
int[] y
The sample class id in [0, k).
-
-
Class smile.classification.DecisionTree
class DecisionTree extends CART implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
classes
smile.util.IntSet classes
The class labels. -
k
int k
The number of classes. -
rule
SplitRule rule
The splitting rule.
-
-
Class smile.classification.DiscreteNaiveBayes
class DiscreteNaiveBayes extends AbstractClassifier<int[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
fixedPriori
boolean fixedPriori
If true, don't update the priori during learning. -
k
int k
The number of classes. -
logcondprob
double[][] logcondprob
The log conditional probabilities for document classification. -
model
DiscreteNaiveBayes.Model model
The generation model of naive Bayes. -
n
int n
The total number of documents. -
nc
int[] nc
The number of documents in each class. -
nt
int[] nt
The number of terms per class. -
ntc
int[][] ntc
The number of each term per class. -
p
int p
The number of independent variables. -
priori
double[] priori
The priori probability of each class. -
sigma
double sigma
Amount of add-k smoothing of evidence. By default, we use add-one or Laplace smoothing, which simply adds one to each count to eliminate zeros. Add-one smoothing can be interpreted as a uniform prior (each term occurs once for each class) that is then updated as evidence from the training data comes in.
-
-
Class smile.classification.FLD
class FLD extends AbstractClassifier<double[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
k
int k
The number of classes. -
mean
double[] mean
Projected mean vector. -
mu
double[][] mu
Projected class mean vectors. -
p
int p
The dimensionality of data. -
scaling
smile.math.matrix.Matrix scaling
Project matrix.
-
-
Class smile.classification.GradientTreeBoost
class GradientTreeBoost extends AbstractClassifier<smile.data.Tuple> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
b
double b
The intercept for binary classification. -
forest
RegressionTree[][] forest
Forest of regression trees for multi-class classification. -
formula
smile.data.formula.Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a simple variable importance. -
k
int k
The number of classes. -
shrinkage
double shrinkage
The shrinkage parameter in (0, 1] controls the learning rate of procedure. -
trees
RegressionTree[] trees
Forest of regression trees for binary classification.
-
-
Class smile.classification.IsotonicRegressionScaling
class IsotonicRegressionScaling extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
buckets
double[] buckets
The step-wise buckets of function values in ascending order. -
prob
double[] prob
The probability of instances falling into the corresponding buckets.
-
-
Class smile.classification.KNN
- serialVersionUID:
- 2L
-
Class smile.classification.LDA
class LDA extends AbstractClassifier<double[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
eigen
double[] eigen
The eigen values of common variance matrix. -
k
int k
The number of classes. -
logppriori
double[] logppriori
The constant term of discriminant function of each class. -
mu
double[][] mu
THe mean vectors of each class. -
p
int p
The dimensionality of data. -
priori
double[] priori
The a priori probabilities of each class. -
scaling
smile.math.matrix.Matrix scaling
The eigen vectors of common covariance matrix, which transforms observations to discriminant functions, normalized so that common covariance matrix is spherical.
-
-
Class smile.classification.LogisticRegression
class LogisticRegression extends AbstractClassifier<double[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
eta
double eta
learning rate for stochastic gradient descent. -
k
int k
The number of classes. -
L
double L
The log-likelihood of learned model. -
lambda
double lambda
Regularization factor. -
p
int p
The dimension of input space.
-
-
Class smile.classification.LogisticRegression.Binomial
class Binomial extends LogisticRegression implements Serializable-
Serialized Fields
-
w
double[] w
The linear weights.
-
-
-
Class smile.classification.LogisticRegression.Multinomial
class Multinomial extends LogisticRegression implements Serializable-
Serialized Fields
-
w
double[][] w
The linear weights.
-
-
-
Class smile.classification.Maxent
class Maxent extends AbstractClassifier<int[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
eta
double eta
learning rate for stochastic gradient descent. -
k
int k
The number of classes. -
L
double L
The log-likelihood of learned model. -
lambda
double lambda
Regularization factor. -
p
int p
The dimension of input space.
-
-
Class smile.classification.Maxent.Binomial
class Binomial extends Maxent implements Serializable-
Serialized Fields
-
w
double[] w
The linear weights.
-
-
-
Class smile.classification.Maxent.Multinomial
class Multinomial extends Maxent implements Serializable-
Serialized Fields
-
w
double[][] w
The linear weights.
-
-
-
Class smile.classification.MLP
class MLP extends MultilayerPerceptron implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
classes
smile.util.IntSet classes
The class label encoder. -
k
int k
The number of classes.
-
-
Class smile.classification.NaiveBayes
class NaiveBayes extends AbstractClassifier<double[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
k
int k
The number of classes. -
p
int p
The number of independent variables. -
priori
double[] priori
The priori probability of each class. -
prob
smile.stat.distribution.Distribution[][] prob
The conditional distribution for general purpose naive Bayes classifier.
-
-
Class smile.classification.OneVersusOne
- serialVersionUID:
- 2L
-
Serialized Fields
-
classifiers
Classifier<T>[][] classifiers
The binary classifier. -
k
int k
The number of classes. -
platt
PlattScaling[][] platt
The binary classifier.
-
-
Class smile.classification.OneVersusRest
- serialVersionUID:
- 2L
-
Serialized Fields
-
classifiers
Classifier<T>[] classifiers
The binary classifier. -
k
int k
The number of classes. -
platt
PlattScaling[] platt
The probability estimation by Platt scaling.
-
-
Class smile.classification.PlattScaling
class PlattScaling extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
double alpha
The scaling parameter. -
beta
double beta
The scaling parameter.
-
-
Class smile.classification.QDA
class QDA extends AbstractClassifier<double[]> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
eigen
double[][] eigen
Eigen values of each covariance matrix. -
k
int k
The number of classes. -
logppriori
double[] logppriori
Constant term of discriminant function of each class. -
mu
double[][] mu
Mean vectors of each class. -
p
int p
The dimensionality of data. -
priori
double[] priori
A priori probabilities of each class. -
scaling
smile.math.matrix.Matrix[] scaling
Eigen vectors of each covariance matrix, which transforms observations to discriminant functions, normalized so that within groups covariance matrix is spherical.
-
-
Class smile.classification.RandomForest
class RandomForest extends AbstractClassifier<smile.data.Tuple> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
formula
smile.data.formula.Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the (GINI, information gain, etc.) impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a fast variable importance that is often very consistent with the permutation importance measure. -
k
int k
The number of classes. -
metrics
ClassificationMetrics metrics
The overall out-of-bag metrics, which are quite accurate given that enough trees have been grown (otherwise the OOB error estimate can bias upward). -
models
RandomForest.Model[] models
Forest of decision trees. The second value is the accuracy of tree on the OOB samples, which can be used a weight when aggregating tree votes.
-
-
Class smile.classification.RandomForest.Model
class Model extends Object implements Serializable-
Serialized Fields
-
metrics
ClassificationMetrics metrics
The performance metrics on out-of-bag samples. -
tree
DecisionTree tree
The decision tree. -
weight
double weight
The weight of tree, which can be used when aggregating tree votes.
-
-
-
Class smile.classification.RBFNetwork
- serialVersionUID:
- 2L
-
Class smile.classification.RDA
class RDA extends QDA implements Serializable- serialVersionUID:
- 2L
-
Class smile.classification.SparseLogisticRegression
class SparseLogisticRegression extends AbstractClassifier<smile.util.SparseArray> implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
eta
double eta
learning rate for stochastic gradient descent. -
k
int k
The number of classes. -
L
double L
The log-likelihood of learned model. -
lambda
double lambda
Regularization factor. -
p
int p
The dimension of input space.
-
-
Class smile.classification.SparseLogisticRegression.Binomial
class Binomial extends SparseLogisticRegression implements Serializable-
Serialized Fields
-
w
double[] w
The linear weights.
-
-
-
Class smile.classification.SparseLogisticRegression.Multinomial
class Multinomial extends SparseLogisticRegression implements Serializable-
Serialized Fields
-
w
double[][] w
The linear weights.
-
-
-
Class smile.classification.SVM
-
-
Package smile.clustering
-
Class smile.clustering.CentroidClustering
class CentroidClustering extends PartitionClustering implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
centroids
T[] centroids
The centroids of each cluster. -
distortion
double distortion
The total distortion.
-
-
Class smile.clustering.CLARANS
- serialVersionUID:
- 2L
-
Serialized Fields
-
distance
smile.math.distance.Distance<T> distance
The lambda of distance measure.
-
-
Class smile.clustering.DBSCAN
class DBSCAN extends PartitionClustering implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
core
boolean[] core
The flag if the point is a core point (at least minPts points are within radius). -
minPts
double minPts
The minimum number of points required to form a cluster -
nns
smile.neighbor.RNNSearch<T,
T> nns Data structure for neighborhood search. -
radius
double radius
The neighborhood radius.
-
-
Class smile.clustering.DENCLUE
class DENCLUE extends PartitionClustering implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
attractors
double[][] attractors
The density attractor of each observation. -
radius
double[] radius
The radius of density attractor. -
samples
double[][] samples
The samples decided by k-means used in the iterations of hill climbing. -
sigma
double sigma
The smooth parameter in the Gaussian kernel. -
tol
double tol
The tolerance of hill-climbing procedure.
-
-
Class smile.clustering.DeterministicAnnealing
class DeterministicAnnealing extends CentroidClustering<double[],double[]> implements Serializable - serialVersionUID:
- 2L
-
Class smile.clustering.GMeans
class GMeans extends CentroidClustering<double[],double[]> implements Serializable - serialVersionUID:
- 2L
-
Class smile.clustering.HierarchicalClustering
class HierarchicalClustering extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
height
double[] height
A set of n-1 non-decreasing real values, which are the clustering height, i.e., the value of the criterion associated with the clustering method for the particular agglomeration. -
merge
int[][] merge
An n-1 by 2 matrix of which row i describes the merging of clusters at step i of the clustering. If an element j in the row is less than n, then observation j was merged at this stage. Ifj >= n
then the merge was with the cluster formed at the (earlier) stage j-n of the algorithm.
-
-
Class smile.clustering.KMeans
class KMeans extends CentroidClustering<double[],double[]> implements Serializable - serialVersionUID:
- 2L
-
Class smile.clustering.KModes
class KModes extends CentroidClustering<int[],int[]> implements Serializable - serialVersionUID:
- 2L
-
Class smile.clustering.MEC
class MEC extends PartitionClustering implements Serializable- serialVersionUID:
- 2L
-
Class smile.clustering.PartitionClustering
class PartitionClustering extends Object implements Serializable-
Serialized Fields
-
k
int k
The number of clusters. -
size
int[] size
The number of observations in each cluster. -
y
int[] y
The cluster labels of data.
-
-
-
Class smile.clustering.SIB
class SIB extends CentroidClustering<double[],smile.util.SparseArray> implements Serializable - serialVersionUID:
- 2L
-
Class smile.clustering.SpectralClustering
class SpectralClustering extends PartitionClustering implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
distortion
double distortion
The distortion in feature space.
-
-
Class smile.clustering.XMeans
class XMeans extends CentroidClustering<double[],double[]> implements Serializable - serialVersionUID:
- 2L
-
-
Package smile.deep.activation
-
Class smile.deep.activation.LeakyReLU
class LeakyReLU extends Object implements Serializable-
Serialized Fields
-
a
double a
The leaky parameter0 <= a < 1
.
-
-
-
Class smile.deep.activation.ReLU
class ReLU extends Object implements Serializable -
Class smile.deep.activation.Sigmoid
class Sigmoid extends Object implements Serializable -
Class smile.deep.activation.Softmax
class Softmax extends Object implements Serializable -
Class smile.deep.activation.Tanh
class Tanh extends Object implements Serializable
-
-
Package smile.deep.optimizer
-
Class smile.deep.optimizer.Adam
class Adam extends Object implements Serializable-
Serialized Fields
-
beta1
double beta1
The exponential decay rate for the 1st moment estimates. -
beta2
double beta2
The exponential decay rate for the 2nd moment estimates. -
epsilon
double epsilon
A small constant for numerical stability. -
learningRate
smile.math.TimeFunction learningRate
The learning rate.
-
-
-
Class smile.deep.optimizer.RMSProp
class RMSProp extends Object implements Serializable-
Serialized Fields
-
epsilon
double epsilon
A small constant for numerical stability. -
learningRate
smile.math.TimeFunction learningRate
The learning rate. -
rho
double rho
The discounting factor for the history/coming gradient.
-
-
-
Class smile.deep.optimizer.SGD
class SGD extends Object implements Serializable-
Serialized Fields
-
learningRate
smile.math.TimeFunction learningRate
The learning rate. -
momentum
smile.math.TimeFunction momentum
The momentum factor.
-
-
-
-
Package smile.feature.extraction
-
Class smile.feature.extraction.BagOfWords
class BagOfWords extends Object implements Serializable-
Serialized Fields
-
binary
boolean binary
True to check if feature words appear in a document instead of their frequencies. -
columns
String[] columns
The input text fields. -
featureIndex
Map<String,
Integer> featureIndex The mapping from feature words to indices. -
schema
smile.data.type.StructType schema
The schema of output space. -
tokenizer
Function<String,
String[]> tokenizer The tokenizer of text, which may include additional processing such as filtering stop word, converting to lowercase, stemming, etc. -
words
String[] words
The feature words.
-
-
-
Class smile.feature.extraction.GHA
class GHA extends Projection implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
n
int n
The dimension of input space. -
p
int p
The dimension of feature space. -
r
smile.math.TimeFunction r
The learning rate; -
t
int t
The training iterations. -
wy
double[] wy
Workspace for W' * y. -
y
double[] y
Workspace for W * x.
-
-
Class smile.feature.extraction.KernelPCA
class KernelPCA extends Projection implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
kpca
KPCA<double[]> kpca
Kernel PCA.
-
-
Class smile.feature.extraction.PCA
class PCA extends Projection implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
cumulativeProportion
double[] cumulativeProportion
The cumulative proportion of variance contained in principal components. -
eigvalues
double[] eigvalues
Eigenvalues of principal components. -
eigvectors
smile.math.matrix.Matrix eigvectors
The matrix of variable loadings, whose columns contain the eigenvectors. -
mu
double[] mu
The sample mean. -
pmu
double[] pmu
The projected sample mean. -
proportion
double[] proportion
The proportion of variance contained in each principal component.
-
-
Class smile.feature.extraction.ProbabilisticPCA
class ProbabilisticPCA extends Projection implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
loading
smile.math.matrix.Matrix loading
The loading matrix. -
mu
double[] mu
The sample mean. -
noise
double noise
The variance of noise part. -
pmu
double[] pmu
The projected sample mean.
-
-
Class smile.feature.extraction.Projection
class Projection extends Object implements Serializable-
Serialized Fields
-
columns
String[] columns
The fields of input space. -
projection
smile.math.matrix.Matrix projection
The projection matrix. The dimension reduced data can be obtained by y = W * x. -
schema
smile.data.type.StructType schema
The schema of output space.
-
-
-
Class smile.feature.extraction.RandomProjection
class RandomProjection extends Projection implements Serializable- serialVersionUID:
- 2L
-
-
Package smile.feature.imputation
-
Class smile.feature.imputation.KMedoidsImputer
class KMedoidsImputer extends Object implements Serializable-
Serialized Fields
-
kmedoids
CLARANS<smile.data.Tuple> kmedoids
The K-Medoids clustering.
-
-
-
Class smile.feature.imputation.KNNImputer
class KNNImputer extends Object implements Serializable-
Serialized Fields
-
k
int k
The number of nearest neighbors used for imputation. -
knn
smile.neighbor.KNNSearch<smile.data.Tuple,
smile.data.Tuple> knn K-nearest neighbor search algorithm.
-
-
-
Class smile.feature.imputation.SimpleImputer
class SimpleImputer extends Object implements Serializable
-
-
Package smile.feature.transform
-
Class smile.feature.transform.Normalizer
class Normalizer extends Object implements Serializable-
Serialized Fields
-
columns
Set<String> columns
The columns to transform. -
norm
Normalizer.Norm norm
The vector norm.
-
-
-
-
Package smile.glm
-
Class smile.glm.GLM
class GLM extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
beta
double[] beta
The linear weights. -
deviance
double deviance
The deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Proposed Model)). -
devianceResiduals
double[] devianceResiduals
The deviance residuals. -
df
int df
The degrees of freedom of the residual deviance. -
formula
smile.data.formula.Formula formula
The symbolic description of the model to be fitted. -
logLikelihood
double logLikelihood
Log-likelihood. -
model
Model model
The model specifications (link function, deviance, etc.). -
mu
double[] mu
The fitted mean values. -
nullDeviance
double nullDeviance
The null deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Null Model)).The saturated model, also referred to as the full model or maximal model, allows a different mean response for each group of replicates. One can think of the saturated model as having the most general possible mean structure for the data since the means are unconstrained.
The null model assumes that all observations have the same distribution with common parameter. Like the saturated model, the null model does not depend on predictor variables. While the saturated most is the most general model, the null model is the most restricted model.
-
predictors
String[] predictors
The predictors of design matrix. -
ztest
double[][] ztest
The coefficients, their standard errors, z-scores, and p-values.
-
-
-
Package smile.glm.model
-
Package smile.manifold
-
Class smile.manifold.IsoMap
class IsoMap extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinate matrix in embedding space. -
graph
smile.graph.AdjacencyList graph
The nearest neighbor graph. -
index
int[] index
The original sample index.
-
-
Class smile.manifold.KPCA
class KPCA extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinates of projected training data. -
data
T[] data
Training data. -
kernel
smile.math.kernel.MercerKernel<T> kernel
Mercer kernel. -
latent
double[] latent
The eigenvalues of kernel principal components. -
mean
double[] mean
The row mean of kernel matrix. -
mu
double mu
The mean of kernel matrix. -
projection
smile.math.matrix.Matrix projection
The projection matrix.
-
-
Class smile.manifold.LaplacianEigenmap
class LaplacianEigenmap extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinate matrix in embedding space. -
graph
smile.graph.AdjacencyList graph
Nearest neighbor graph. -
index
int[] index
The original sample index. -
width
double width
The width of heat kernel.
-
-
Class smile.manifold.LLE
class LLE extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinate matrix in embedding space. -
graph
smile.graph.AdjacencyList graph
Nearest neighbor graph. -
index
int[] index
The original sample index.
-
-
Class smile.manifold.TSNE
class TSNE extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinate matrix in embedding space. -
cost
double cost
The cost function value. -
eta
double eta
The learning rate. -
finalMomentum
double finalMomentum
The momentum in later stage. -
gains
double[][] gains
The gain matrix. -
minGain
double minGain
The floor of gain. -
momentum
double momentum
The momentum factor. -
momentumSwitchIter
int momentumSwitchIter
The number of iterations at which switch the momentum to finalMomentum. -
P
double[][] P
The probability matrix of the distances in the input space. -
Q
double[][] Q
The probability matrix of the distances in the feature space. -
Qsum
double Qsum
The sum of Q matrix. -
totalIter
int totalIter
The number of iterations so far.
-
-
Class smile.manifold.UMAP
class UMAP extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
coordinates
double[][] coordinates
The coordinate matrix in embedding space. -
graph
smile.graph.AdjacencyList graph
The nearest neighbor graph. -
index
int[] index
The original sample index.
-
-
-
Package smile.regression
-
Class smile.regression.GaussianProcessRegression
class GaussianProcessRegression extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
cholesky
smile.math.matrix.Matrix.Cholesky cholesky
The Cholesky decomposition of kernel matrix. -
kernel
smile.math.kernel.MercerKernel<T> kernel
The covariance/kernel function. -
L
double L
The log marginal likelihood, which may be not available (NaN) when the model is fit with approximate methods. -
mean
double mean
The mean of responsible variable. -
noise
double noise
The variance of noise. -
regressors
T[] regressors
The regressors. -
sd
double sd
The standard deviation of responsible variable. -
w
double[] w
The linear weights.
-
-
Class smile.regression.GradientTreeBoost
class GradientTreeBoost extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
b
double b
The intercept. -
formula
smile.data.formula.Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a simple variable importance. -
shrinkage
double shrinkage
The shrinkage parameter in (0, 1] controls the learning rate of procedure. -
trees
RegressionTree[] trees
Forest of regression trees.
-
-
Class smile.regression.KernelMachine
- serialVersionUID:
- 2L
-
Class smile.regression.LinearModel
class LinearModel extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
adjustedRSquared
double adjustedRSquared
Adjusted R2. The adjusted R2 has almost same explanation as R2 but it penalizes the statistic as extra variables are included in the model. -
b
double b
The intercept. -
bias
boolean bias
True if the linear weights w includes the intercept. -
df
int df
The degree-of-freedom of residual standard error. -
error
double error
Residual standard error. -
F
double F
The F-statistic of the goodness-of-fit of the model. -
fittedValues
double[] fittedValues
The fitted values. -
formula
smile.data.formula.Formula formula
Design matrix formula -
p
int p
The dimensionality. -
predictors
String[] predictors
The predictors of design matrix. -
pvalue
double pvalue
The p-value of the goodness-of-fit test of the model. -
residuals
double[] residuals
The residuals, that is response minus fitted values. -
RSquared
double RSquared
R2. R2 is a statistic that will give some information about the goodness of fit of a model. In regression, the R2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.
-
RSS
double RSS
Residual sum of squares. -
schema
smile.data.type.StructType schema
The schema of design matrix. -
ttest
double[][] ttest
The coefficients, their standard errors, t-scores, and p-values. -
V
smile.math.matrix.Matrix V
First initialized to the matrix (XTX)-1, it is updated with each new learning instance. -
w
double[] w
The linear weights.
-
-
Class smile.regression.MLP
class MLP extends MultilayerPerceptron implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
scaler
smile.math.Scaler scaler
The scaling function of output values.
-
-
Class smile.regression.RandomForest
class RandomForest extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
formula
smile.data.formula.Formula formula
The model formula. -
importance
double[] importance
Variable importance. Every time a split of a node is made on variable the impurity criterion for the two descendent nodes is less than the parent node. Adding up the decreases for each individual variable over all trees in the forest gives a fast variable importance that is often very consistent with the permutation importance measure. -
metrics
RegressionMetrics metrics
The overall out-of-bag metrics, which are quite accurate given that enough trees have been grown (otherwise the OOB error estimate can bias upward). -
models
RandomForest.Model[] models
Forest of regression trees.
-
-
Class smile.regression.RandomForest.Model
class Model extends Object implements Serializable-
Serialized Fields
-
metrics
RegressionMetrics metrics
The performance metrics on out-of-bag samples. -
tree
RegressionTree tree
The decision tree.
-
-
-
Class smile.regression.RBFNetwork
class RBFNetwork extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.regression.RegressionTree
class RegressionTree extends CART implements Serializable- serialVersionUID:
- 2L
-
-
Package smile.sequence
-
Class smile.sequence.CRF
class CRF extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
potentials
RegressionTree[][] potentials
The potential functions for each class. -
schema
smile.data.type.StructType schema
The schema of (x, s_j). -
shrinkage
double shrinkage
The learning rate.
-
-
Class smile.sequence.CRFLabeler
class CRFLabeler extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.sequence.HMM
class HMM extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
a
smile.math.matrix.Matrix a
State transition probabilities. -
b
smile.math.matrix.Matrix b
Symbol emission probabilities. -
pi
double[] pi
Initial state probabilities.
-
-
Class smile.sequence.HMMLabeler
class HMMLabeler extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
model
HMM model
The HMM model. -
ordinal
ToIntFunction<T> ordinal
The lambda returns the ordinal numbers of symbols.
-
-
-
Package smile.timeseries
-
Class smile.timeseries.AR
class AR extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
adjustedR2
double adjustedR2
Adjusted R2. The adjusted R2 has almost same explanation as R2 but it penalizes the statistic as extra variables are included in the model. -
ar
double[] ar
The linear weights of AR. -
b
double b
The intercept. -
df
int df
The degree-of-freedom of residual variance. -
fittedValues
double[] fittedValues
The fitted values. -
mean
double mean
The mean of time series. -
method
AR.Method method
The fitting method. -
p
int p
The order. -
R2
double R2
R2. R2 is a statistic that will give some information about the goodness of fit of a model. In regression, the R2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.
-
residuals
double[] residuals
The residuals, that is response minus fitted values. -
RSS
double RSS
Residual sum of squares. -
ttest
double[][] ttest
The coefficients, their standard errors, t-scores, and p-values. -
variance
double variance
Estimated variance. -
x
double[] x
The time series.
-
-
Class smile.timeseries.ARMA
class ARMA extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
adjustedR2
double adjustedR2
Adjusted R2. The adjusted R2 has almost same explanation as R2 but it penalizes the statistic as extra variables are included in the model. -
ar
double[] ar
The linear weights of AR. -
b
double b
The intercept. -
df
int df
The degree-of-freedom of residual variance. -
fittedValues
double[] fittedValues
The fitted values. -
ma
double[] ma
The linear weights of MA. -
mean
double mean
The mean of time series. -
p
int p
The order of AR. -
q
int q
The order of MA. -
R2
double R2
R2. R2 is a statistic that will give some information about the goodness of fit of a model. In regression, the R2 coefficient of determination is a statistical measure of how well the regression line approximates the real data points. An R2 of 1.0 indicates that the regression line perfectly fits the data.In the case of ordinary least-squares regression, R2 increases as we increase the number of variables in the model (R2 will not decrease). This illustrates a drawback to one possible use of R2, where one might try to include more variables in the model until "there is no more improvement". This leads to the alternative approach of looking at the adjusted R2.
-
residuals
double[] residuals
The residuals, that is response minus fitted values. -
RSS
double RSS
Residual sum of squares. -
ttest
double[][] ttest
The coefficients, their standard errors, t-scores, and p-values. -
variance
double variance
Estimated variance. -
x
double[] x
The time series.
-
-
-
Package smile.validation
-
Class smile.validation.Bag
class Bag extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
oob
int[] oob
The index of testing instances. -
samples
int[] samples
The random samples.
-
-
Class smile.validation.ClassificationMetrics
class ClassificationMetrics extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
accuracy
double accuracy
The accuracy on validation data. -
auc
double auc
The AUC on validation data. -
crossentropy
double crossentropy
The cross entropy on validation data. -
error
int error
The number of errors. -
f1
double f1
The F-1 score on validation data. -
fitTime
double fitTime
The time in milliseconds of fitting the model. -
logloss
double logloss
The log loss on validation data. -
mcc
double mcc
The Matthews correlation coefficient on validation data. -
precision
double precision
The precision on validation data. -
scoreTime
double scoreTime
The time in milliseconds of scoring the validation data. -
sensitivity
double sensitivity
The sensitivity on validation data. -
size
int size
The validation data size. -
specificity
double specificity
The specificity on validation data.
-
-
Class smile.validation.ClassificationValidation
class ClassificationValidation extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
confusion
ConfusionMatrix confusion
The confusion matrix. -
metrics
ClassificationMetrics metrics
The classification metrics. -
model
M model
The model. -
posteriori
double[][] posteriori
The posteriori probability of prediction if the model is a soft classifier. -
prediction
int[] prediction
The model prediction. -
truth
int[] truth
The true class labels of validation data.
-
-
Class smile.validation.ClassificationValidations
class ClassificationValidations extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
avg
ClassificationMetrics avg
The average of metrics. -
rounds
List<ClassificationValidation<M>> rounds
The multiple round validations. -
sd
ClassificationMetrics sd
The standard deviation of metrics.
-
-
Class smile.validation.RegressionMetrics
class RegressionMetrics extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
fitTime
double fitTime
The time in milliseconds of fitting the model. -
mad
double mad
The mean absolute deviation on validation data. -
mse
double mse
The mean squared error on validation data. -
r2
double r2
The R-squared score on validation data. -
rmse
double rmse
The root mean squared error on validation data. -
rss
double rss
The residual sum of squares on validation data. -
scoreTime
double scoreTime
The time in milliseconds of scoring the validation data. -
size
int size
The validation data size.
-
-
Class smile.validation.RegressionValidation
class RegressionValidation extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
metrics
RegressionMetrics metrics
The regression metrics. -
model
M model
The model. -
prediction
double[] prediction
The model prediction. -
truth
double[] truth
The true response variable of validation data.
-
-
Class smile.validation.RegressionValidations
class RegressionValidations extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
avg
RegressionMetrics avg
The average of metrics. -
rounds
List<RegressionValidation<M>> rounds
The multiple round validations. -
sd
RegressionMetrics sd
The standard deviation of metrics.
-
-
-
Package smile.validation.metric
-
Class smile.validation.metric.Accuracy
class Accuracy extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.AdjustedMutualInformation
class AdjustedMutualInformation extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
method
AdjustedMutualInformation.Method method
The normalization method.
-
-
Class smile.validation.metric.AdjustedRandIndex
class AdjustedRandIndex extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.AUC
class AUC extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.ConfusionMatrix
class ConfusionMatrix extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
matrix
int[][] matrix
Confusion matrix.
-
-
Class smile.validation.metric.Error
class Error extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.Fallout
class Fallout extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.FDR
class FDR extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.FScore
class FScore extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
beta
double beta
A positive value such that F-score measures the effectiveness of retrieval with respect to a user who attaches β times as much importance to recall as precision. The default value 1.0 corresponds to F1-score.
-
-
Class smile.validation.metric.LogLoss
class LogLoss extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.MAD
class MAD extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.MatthewsCorrelation
class MatthewsCorrelation extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.MSE
class MSE extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.MutualInformation
class MutualInformation extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.NormalizedMutualInformation
class NormalizedMutualInformation extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
method
NormalizedMutualInformation.Method method
The normalization method.
-
-
Class smile.validation.metric.Precision
class Precision extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.R2
class R2 extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.RandIndex
class RandIndex extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.Recall
class Recall extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.RMSE
class RMSE extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.RSS
class RSS extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.Sensitivity
class Sensitivity extends Object implements Serializable- serialVersionUID:
- 2L
-
Class smile.validation.metric.Specificity
class Specificity extends Object implements Serializable- serialVersionUID:
- 2L
-
-
Package smile.vq
-
Class smile.vq.BIRCH
class BIRCH extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
B
int B
The branching factor of non-leaf nodes. -
d
int d
The dimensionality of data. -
L
int L
The number of CF entries in the leaf nodes. -
root
smile.vq.BIRCH.Node root
The root of CF tree. -
T
double T
THe maximum radius of a sub-cluster.
-
-
Class smile.vq.GrowingNeuralGas
class GrowingNeuralGas extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
double alpha
Decrease error variables by multiplying them with alpha during inserting a new neuron. -
beta
double beta
Decrease all error variables by multiply them with beta. -
d
int d
The dimensionality of signals. -
edgeLifetime
int edgeLifetime
The maximum age of edges. -
epsBest
double epsBest
The learning rate to update best matching neuron. -
epsNeighbor
double epsNeighbor
The learning rate to update neighbors of best matching neuron. -
lambda
int lambda
If the number of input signals so far is an integer multiple of lambda, insert a new neuron. -
neurons
ArrayList<Neuron> neurons
Neurons in the neural network. -
t
int t
The number of signals processed so far. -
top2
Neuron[] top2
The workspace to find nearest neighbors.
-
-
Class smile.vq.NeuralGas
class NeuralGas extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
smile.math.TimeFunction alpha
The learning rate function. -
dist
double[] dist
The distance between a new observation to neurons. -
eps
double eps
The threshold to update neuron ifalpha * theta > eps
. -
graph
smile.graph.AdjacencyMatrix graph
The network of neurons. -
lifetime
smile.math.TimeFunction lifetime
The lifetime of connections. -
neurons
smile.vq.NeuralGas.Neuron[] neurons
The neurons. -
t
int t
The current iteration. -
theta
smile.math.TimeFunction theta
The neighborhood function.
-
-
Class smile.vq.NeuralMap
class NeuralMap extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
beta
double beta
Decrease the freshness of all neurons by multiply them with beta. -
edgeLifetime
int edgeLifetime
The maximum age of edges. -
epsBest
double epsBest
The learning rate to update nearest neuron. -
epsNeighbor
double epsNeighbor
The learning to update neighbors of nearest neuron. -
neurons
ArrayList<Neuron> neurons
Neurons in the neural network. -
r
double r
The distance radius to activate a neuron for a given signal. -
t
int t
The number of signals processed so far. -
top2
Neuron[] top2
The workspace to find nearest neighbors.
-
-
Class smile.vq.SOM
class SOM extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
alpha
smile.math.TimeFunction alpha
The learning rate function. -
dist
double[] dist
The distance between a new observation to neurons. -
map
smile.vq.SOM.Neuron[][] map
The lattice of neurons. -
ncol
int ncol
The number of columns in the lattice. -
neurons
smile.vq.SOM.Neuron[] neurons
The neurons in linear array. -
nrow
int nrow
The number of rows in the lattice. -
t
int t
The current iteration. -
theta
Neighborhood theta
The neighborhood function. -
tol
double tol
The threshold to update neuron ifalpha * theta > eps
.
-
-
-
Package smile.vq.hebb
-
Class smile.vq.hebb.Edge
class Edge extends Object implements Serializable- serialVersionUID:
- 2L
-
Serialized Fields
-
age
int age
The age of the edges. -
neighbor
Neuron neighbor
The neighbor neuron.
-
-
Class smile.vq.hebb.Neuron
class Neuron extends Object implements Serializable- serialVersionUID:
- 2L
-