Package smile.validation
Class ClassificationValidation<M>
java.lang.Object
smile.validation.ClassificationValidation<M>
- Type Parameters:
M- the model type.
- All Implemented Interfaces:
Serializable
Classification model validation results.
- See Also:
-
Field Summary
FieldsModifier and TypeFieldDescriptionfinal ConfusionMatrixThe confusion matrix.final ClassificationMetricsThe classification metrics.final MThe model.final double[][]The posteriori probability of prediction if the model is a soft classifier.final int[]The model prediction.final int[]The true class labels of validation data. -
Constructor Summary
ConstructorsConstructorDescriptionClassificationValidation(M model, double fitTime, double scoreTime, int[] truth, int[] prediction) Constructor.ClassificationValidation(M model, double fitTime, double scoreTime, int[] truth, int[] prediction, double[][] posteriori) Constructor of soft classifier validation. -
Method Summary
Modifier and TypeMethodDescriptionstatic <M extends DataFrameClassifier>
ClassificationValidation<M>of(smile.data.formula.Formula formula, smile.data.DataFrame train, smile.data.DataFrame test, BiFunction<smile.data.formula.Formula, smile.data.DataFrame, M> trainer) Trains and validates a model on a train/validation split.static <M extends DataFrameClassifier>
ClassificationValidations<M>of(Bag[] bags, smile.data.formula.Formula formula, smile.data.DataFrame data, BiFunction<smile.data.formula.Formula, smile.data.DataFrame, M> trainer) Trains and validates a model on multiple train/validation split.static <T,M extends Classifier<T>>
ClassificationValidations<M>of(Bag[] bags, T[] x, int[] y, BiFunction<T[], int[], M> trainer) Trains and validates a model on multiple train/validation split.static <T,M extends Classifier<T>>
ClassificationValidation<M>of(T[] x, int[] y, T[] testx, int[] testy, BiFunction<T[], int[], M> trainer) Trains and validates a model on a train/validation split.toString()
-
Field Details
-
model
The model. -
truth
public final int[] truthThe true class labels of validation data. -
prediction
public final int[] predictionThe model prediction. -
posteriori
public final double[][] posterioriThe posteriori probability of prediction if the model is a soft classifier. -
confusion
The confusion matrix. -
metrics
The classification metrics.
-
-
Constructor Details
-
ClassificationValidation
public ClassificationValidation(M model, double fitTime, double scoreTime, int[] truth, int[] prediction) Constructor.- Parameters:
model- the model.fitTime- the time in milliseconds of fitting the model.scoreTime- the time in milliseconds of scoring the validation data.truth- the ground truth.prediction- the predictions.
-
ClassificationValidation
public ClassificationValidation(M model, double fitTime, double scoreTime, int[] truth, int[] prediction, double[][] posteriori) Constructor of soft classifier validation.- Parameters:
model- the model.fitTime- the time in milliseconds of fitting the model.scoreTime- the time in milliseconds of scoring the validation data.truth- the ground truth.prediction- the predictions.posteriori- the posteriori probabilities of predictions.
-
-
Method Details
-
toString
-
of
public static <T,M extends Classifier<T>> ClassificationValidation<M> of(T[] x, int[] y, T[] testx, int[] testy, BiFunction<T[], int[], M> trainer) Trains and validates a model on a train/validation split.- Type Parameters:
T- the data type of samples.M- the model type.- Parameters:
x- the training data.y- the class labels of training data.testx- the validation data.testy- the class labels of validation data.trainer- the lambda to train the model.- Returns:
- the validation results.
-
of
public static <T,M extends Classifier<T>> ClassificationValidations<M> of(Bag[] bags, T[] x, int[] y, BiFunction<T[], int[], M> trainer) Trains and validates a model on multiple train/validation split.- Type Parameters:
T- the data type of samples.M- the model type.- Parameters:
bags- the data splits.x- the training data.y- the class labels.trainer- the lambda to train the model.- Returns:
- the validation results.
-
of
public static <M extends DataFrameClassifier> ClassificationValidation<M> of(smile.data.formula.Formula formula, smile.data.DataFrame train, smile.data.DataFrame test, BiFunction<smile.data.formula.Formula, smile.data.DataFrame, M> trainer) Trains and validates a model on a train/validation split.- Type Parameters:
M- the model type.- Parameters:
formula- the model formula.train- the training data.test- the validation data.trainer- the lambda to train the model.- Returns:
- the validation results.
-
of
public static <M extends DataFrameClassifier> ClassificationValidations<M> of(Bag[] bags, smile.data.formula.Formula formula, smile.data.DataFrame data, BiFunction<smile.data.formula.Formula, smile.data.DataFrame, M> trainer) Trains and validates a model on multiple train/validation split.- Type Parameters:
M- the model type.- Parameters:
bags- the data splits.formula- the model formula.data- the data.trainer- the lambda to train the model.- Returns:
- the validation results.
-