public class UnitUpperTriangBandMatrix extends UpperTriangBandMatrix
LowerTriangBandMatrix
, but
the main diagonal is assumed to be all ones. It is still allocated, however.Matrix.Norm
numColumns, numRows
Constructor and Description |
---|
UnitUpperTriangBandMatrix(int n,
int kd)
Constructor for UnitUpperTriangBandMatrix
|
UnitUpperTriangBandMatrix(Matrix A,
int kd)
Constructor for UnitUpperTriangBandMatrix
|
UnitUpperTriangBandMatrix(Matrix A,
int kd,
boolean deep)
Constructor for UnitUpperTriangBandMatrix
|
Modifier and Type | Method and Description |
---|---|
void |
add(int row,
int column,
double value)
A(row,column) += value |
UnitUpperTriangBandMatrix |
copy()
Creates a deep copy of the matrix
|
double |
get(int row,
int column)
Returns
A(row,column) |
double[] |
getData()
Returns the matrix contents
|
Iterator<MatrixEntry> |
iterator() |
Vector |
mult(double alpha,
Vector x,
Vector y)
y = alpha*A*x |
int |
numSubDiagonals()
Returns the number of lower diagonals
|
int |
numSuperDiagonals()
Returns the number of upper diagonals
|
void |
set(int row,
int column,
double value)
A(row,column) = value |
Matrix |
set(Matrix B)
A=B . |
Matrix |
solve(Matrix B,
Matrix X)
X = A\B . |
Vector |
solve(Vector b,
Vector x)
x = A\b . |
Vector |
transMult(double alpha,
Vector x,
Vector y)
y = alpha*AT*x |
Matrix |
transSolve(Matrix B,
Matrix X)
X = AT\B . |
Vector |
transSolve(Vector b,
Vector x)
x = AT\b . |
Matrix |
zero()
Zeros all the entries in the matrix, while preserving any underlying
structure.
|
add, add, check, checkMultAdd, checkMultAdd, checkRank1, checkRank1, checkRank2, checkRank2, checkSize, checkSolve, checkSolve, checkTransABmultAdd, checkTransAmultAdd, checkTransBmultAdd, checkTransMultAdd, checkTranspose, checkTranspose, checkTransRank1, checkTransRank2, isSquare, max, max, mult, mult, mult, multAdd, multAdd, multAdd, multAdd, norm, norm1, normF, normInf, numColumns, numRows, rank1, rank1, rank1, rank1, rank1, rank1, rank2, rank2, rank2, rank2, scale, set, toString, transABmult, transABmult, transABmultAdd, transABmultAdd, transAmult, transAmult, transAmultAdd, transAmultAdd, transBmult, transBmult, transBmultAdd, transBmultAdd, transMult, transMultAdd, transMultAdd, transpose, transpose, transRank1, transRank1, transRank2, transRank2
public UnitUpperTriangBandMatrix(int n, int kd)
n
- Size of the matrix. Since the matrix must be square, this
equals both the number of rows and columnskd
- Number of bands above the main diagonal (superdiagonals)public UnitUpperTriangBandMatrix(Matrix A, int kd)
A
- Matrix to copy contents from. Only the parts of A
that lie within the allocated band are copied over, the rest
is ignored (including main diagonal entries)kd
- Number of bands above the main diagonal (superdiagonals)public UnitUpperTriangBandMatrix(Matrix A, int kd, boolean deep)
A
- Matrix to copy contents from. Only the parts of A
that lie within the allocated band are copied over, the rest
is ignored (including main diagonal entries)kd
- Number of bands above the main diagonal (superdiagonals)deep
- True for a deep copy. For shallow copies, A
must be a banded matrixpublic void add(int row, int column, double value)
Matrix
A(row,column) += value
public double get(int row, int column)
Matrix
A(row,column)
public void set(int row, int column, double value)
Matrix
A(row,column) = value
public UnitUpperTriangBandMatrix copy()
Matrix
copy
in interface Matrix
copy
in class UpperTriangBandMatrix
public Matrix zero()
Matrix
public Vector mult(double alpha, Vector x, Vector y)
Matrix
y = alpha*A*x
mult
in interface Matrix
mult
in class AbstractMatrix
x
- Vector of size A.numColumns()
y
- Vector of size A.numRows()
public Vector transMult(double alpha, Vector x, Vector y)
Matrix
y = alpha*AT*x
transMult
in interface Matrix
transMult
in class AbstractMatrix
x
- Vector of size A.numRows()
y
- Vector of size A.numColumns()
public Matrix solve(Matrix B, Matrix X)
Matrix
X = A\B
. Not all matrices support this operation, those
that do not throw UnsupportedOperationException
. Note
that it is often more efficient to use a matrix decomposition and its
associated solversolve
in interface Matrix
solve
in class AbstractMatrix
B
- Matrix with the same number of rows as A
, and
the same number of columns as X
X
- Matrix with a number of rows equal A.numColumns()
,
and the same number of columns as B
public Vector solve(Vector b, Vector x)
Matrix
x = A\b
. Not all matrices support this operation, those
that do not throw UnsupportedOperationException
. Note
that it is often more efficient to use a matrix decomposition and its
associated solversolve
in interface Matrix
solve
in class AbstractMatrix
b
- Vector of size A.numRows()
x
- Vector of size A.numColumns()
public Matrix transSolve(Matrix B, Matrix X)
Matrix
X = AT\B
. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException
. Note that it is often more
efficient to use a matrix decomposition and its associated transpose
solvertransSolve
in interface Matrix
transSolve
in class AbstractMatrix
B
- Matrix with a number of rows equal A.numColumns()
,
and the same number of columns as X
X
- Matrix with the same number of rows as A
, and
the same number of columns as B
public Vector transSolve(Vector b, Vector x)
Matrix
x = AT\b
. Not all matrices support this
operation, those that do not throw
UnsupportedOperationException
. Note that it is often more
efficient to use a matrix decomposition and its associated solvertransSolve
in interface Matrix
transSolve
in class AbstractMatrix
b
- Vector of size A.numColumns()
x
- Vector of size A.numRows()
public double[] getData()
public int numSubDiagonals()
public int numSuperDiagonals()
public Matrix set(Matrix B)
Matrix
A=B
. The matrices must be of the same sizeset
in interface Matrix
set
in class AbstractMatrix
public Iterator<MatrixEntry> iterator()
iterator
in interface Iterable<MatrixEntry>
iterator
in class AbstractMatrix
Copyright © 2013. All Rights Reserved.