Class/Object

com.intel.analytics.bigdl.nn

SparseLinear

Related Docs: object SparseLinear | package nn

Permalink

class SparseLinear[T] extends Linear[T]

SparseLinear is the sparse version of module Linear. SparseLinear has two different from Linear: firstly, SparseLinear's input Tensor is a SparseTensor. Secondly, SparseLinear doesn't backward gradient to next layer in the backpropagation by default, as the gradInput of SparseLinear is useless and very big in most cases.

But, considering model like Wide&Deep, we provide backwardStart and backwardLength to backward part of the gradient to next layer.

Linear Supertypes
Linear[T], Initializable, TensorModule[T], AbstractModule[Tensor[T], Tensor[T], T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SparseLinear
  2. Linear
  3. Initializable
  4. TensorModule
  5. AbstractModule
  6. Serializable
  7. Serializable
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SparseLinear(inputSize: Int, outputSize: Int, backwardStart: Int = 1, backwardLength: Int = 1, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: Tensor[T] = null, initBias: Tensor[T] = null, initGradWeight: Tensor[T] = null, initGradBias: Tensor[T] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

    inputSize

    the size the each input sample

    outputSize

    the size of the module output of each sample

    backwardStart

    backwardStart index, counting from 1

    backwardLength

    backward length

    withBias

    if has bias

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def accGradParameters(input: Tensor[T], gradOutput: Tensor[T]): Unit

    Permalink

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

    Definition Classes
    SparseLinearLinearAbstractModule
  5. val addBuffer: Tensor[T]

    Permalink
    Definition Classes
    Linear
  6. def apply(name: String): Option[AbstractModule[Activity, Activity, T]]

    Permalink

    Find a module with given name.

    Find a module with given name. If there is no module with given name, it will return None. If there are multiple modules with the given name, an exception will be thrown.

    Definition Classes
    AbstractModule
  7. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  8. var bRegularizer: Regularizer[T]

    Permalink
    Definition Classes
    Linear
  9. def backward(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Permalink

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractModule
  10. val backwardLength: Int

    Permalink

    backward length

  11. val backwardStart: Int

    Permalink

    backwardStart index, counting from 1

  12. var backwardTime: Long

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  13. val bias: Tensor[T]

    Permalink
    Definition Classes
    Linear
  14. var biasInitMethod: InitializationMethod

    Permalink
    Attributes
    protected
    Definition Classes
    Initializable
  15. def canEqual(other: Any): Boolean

    Permalink
    Definition Classes
    SparseLinearAbstractModule
  16. def checkEngineType(): SparseLinear.this.type

    Permalink

    get execution engine type

    get execution engine type

    Definition Classes
    AbstractModule
  17. def clearState(): SparseLinear.this.type

    Permalink

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

    Definition Classes
    LinearAbstractModule
  18. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. def cloneModule(): AbstractModule[Tensor[T], Tensor[T], T]

    Permalink
    Definition Classes
    AbstractModule
  20. def copyStatus(src: Module[T]): SparseLinear.this.type

    Permalink

    Copy the useful running status from src to this.

    Copy the useful running status from src to this.

    The subclass should override this method if it has some parameters besides weight and bias. Such as runningMean and runningVar of BatchNormalization.

    src

    source Module

    returns

    this

    Definition Classes
    AbstractModule
  21. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  22. def equals(other: Any): Boolean

    Permalink
    Definition Classes
    SparseLinearLinearAbstractModule → AnyRef → Any
  23. def evaluate(dataSet: LocalDataSet[MiniBatch[T]], vMethods: Array[ValidationMethod[T]]): Array[(ValidationResult, ValidationMethod[T])]

    Permalink
    Definition Classes
    AbstractModule
  24. def evaluate(dataset: RDD[Sample[T]], vMethods: Array[ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    Permalink

    use ValidationMethod to evaluate module

    use ValidationMethod to evaluate module

    dataset

    dataset for test

    vMethods

    validation methods

    batchSize

    total batchsize of all partitions, optional param and default 4 * partitionNum of dataset

    Definition Classes
    AbstractModule
  25. def evaluate(): SparseLinear.this.type

    Permalink
    Definition Classes
    AbstractModule
  26. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  27. final def forward(input: Tensor[T]): Tensor[T]

    Permalink

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

    Definition Classes
    AbstractModule
  28. var forwardTime: Long

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  29. def freeze(names: String*): SparseLinear.this.type

    Permalink

    freeze the module, i.e.

    freeze the module, i.e. their parameters(weight/bias, if exists) are not changed in training process if names is not empty, set an array of layers that match the given names to be "freezed",

    names

    an array of layer names

    returns

    current graph model

    Definition Classes
    AbstractModule
  30. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  31. def getName(): String

    Permalink

    Get the module name, default name is className@namePostfix

    Get the module name, default name is className@namePostfix

    Definition Classes
    AbstractModule
  32. def getNamePostfix: String

    Permalink
    Definition Classes
    AbstractModule
  33. def getNumericType(): TensorDataType

    Permalink

    returns

    Float or Double

    Definition Classes
    AbstractModule
  34. def getParameters(): (Tensor[T], Tensor[T])

    Permalink

    This method compact all parameters and gradients of the model into two tensors.

    This method compact all parameters and gradients of the model into two tensors. So it's easier to use optim method

    Definition Classes
    AbstractModule
  35. def getParametersTable(): Table

    Permalink

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module. The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    Custom modules should override this function if they have parameters.

    returns

    Table

    Definition Classes
    LinearAbstractModule
  36. def getPrintName(): String

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  37. def getScaleB(): Double

    Permalink

    Get the scale of gradientBias

    Get the scale of gradientBias

    Definition Classes
    AbstractModule
  38. def getScaleW(): Double

    Permalink

    Get the scale of gradientWeight

    Get the scale of gradientWeight

    Definition Classes
    AbstractModule
  39. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)]

    Permalink
    Definition Classes
    AbstractModule
  40. def getWeightsBias(): Array[Tensor[T]]

    Permalink

    Get weight and bias for the module

    Get weight and bias for the module

    returns

    array of weights and bias

    Definition Classes
    AbstractModule
  41. val gradBias: Tensor[T]

    Permalink
    Definition Classes
    Linear
  42. var gradInput: Tensor[T]

    Permalink

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  43. val gradWeight: Tensor[T]

    Permalink
    Definition Classes
    Linear
  44. def hasName: Boolean

    Permalink
    Definition Classes
    AbstractModule
  45. def hashCode(): Int

    Permalink
    Definition Classes
    SparseLinearLinearAbstractModule → AnyRef → Any
  46. val inputSize: Int

    Permalink

    the size the each input sample

    the size the each input sample

    Definition Classes
    Linear
  47. def inputs(first: (ModuleNode[T], Int), nodesWithIndex: (ModuleNode[T], Int)*): ModuleNode[T]

    Permalink

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    first

    distinguish from another inputs when input parameter list is empty

    nodesWithIndex

    upstream module nodes and the output tensor index. The start index is 1.

    returns

    node containing current module

    Definition Classes
    AbstractModule
  48. def inputs(nodes: ModuleNode[T]*): ModuleNode[T]

    Permalink

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes

    returns

    node containing current module

    Definition Classes
    AbstractModule
  49. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  50. final def isTraining(): Boolean

    Permalink
    Definition Classes
    AbstractModule
  51. var line: String

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  52. def loadModelWeights(srcModel: Module[Float], matchAll: Boolean = true): SparseLinear.this.type

    Permalink

    copy weights from another model, mapping by layer name

    copy weights from another model, mapping by layer name

    srcModel

    model to copy from

    matchAll

    whether to match all layers' weights and bias,

    returns

    current module

    Definition Classes
    AbstractModule
  53. def loadWeights(weightPath: String, matchAll: Boolean = true): SparseLinear.this.type

    Permalink

    load pretrained weights and bias to current module

    load pretrained weights and bias to current module

    weightPath

    file to store weights and bias

    matchAll

    whether to match all layers' weights and bias, if not, only load existing pretrained weights and bias

    returns

    current module

    Definition Classes
    AbstractModule
  54. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  55. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  56. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  57. var output: Tensor[T]

    Permalink

    The cached output.

    The cached output. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  58. val outputSize: Int

    Permalink

    the size of the module output of each sample

    the size of the module output of each sample

    Definition Classes
    Linear
  59. def parameters(): (Array[Tensor[T]], Array[Tensor[T]])

    Permalink

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

    Definition Classes
    LinearAbstractModule
  60. def predict(dataset: RDD[Sample[T]], batchSize: Int = 1, shareBuffer: Boolean = false): RDD[Activity]

    Permalink

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of datatset

    shareBuffer

    whether to share same memory for each batch predict results

    Definition Classes
    AbstractModule
  61. def predictClass(dataset: RDD[Sample[T]], batchSize: Int = 1): RDD[Int]

    Permalink

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of dataset

    Definition Classes
    AbstractModule
  62. def quantize(): Module[T]

    Permalink
    Definition Classes
    AbstractModule
  63. def reset(): Unit

    Permalink
    Definition Classes
    LinearInitializableAbstractModule
  64. def resetTimes(): Unit

    Permalink
    Definition Classes
    AbstractModule
  65. def saveCaffe(prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): SparseLinear.this.type

    Permalink
    Definition Classes
    AbstractModule
  66. def saveDefinition(path: String, overWrite: Boolean = false): SparseLinear.this.type

    Permalink

    Save this module definition to path.

    Save this module definition to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  67. def saveModule(path: String, overWrite: Boolean = false): SparseLinear.this.type

    Permalink

    Save this module to path with protobuf format

    Save this module to path with protobuf format

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  68. def saveTF(inputs: Seq[(String, Seq[Int])], path: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, dataFormat: TensorflowDataFormat = TensorflowDataFormat.NHWC): SparseLinear.this.type

    Permalink
    Definition Classes
    AbstractModule
  69. def saveTorch(path: String, overWrite: Boolean = false): SparseLinear.this.type

    Permalink
    Definition Classes
    AbstractModule
  70. def saveWeights(path: String, overWrite: Boolean): Unit

    Permalink

    save weights and bias to file

    save weights and bias to file

    path

    file to save

    overWrite

    whether to overwrite or not

    Definition Classes
    AbstractModule
  71. var scaleB: Double

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  72. var scaleW: Double

    Permalink

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    Attributes
    protected
    Definition Classes
    AbstractModule
  73. def setInitMethod(weightInitMethod: InitializationMethod = null, biasInitMethod: InitializationMethod = null): SparseLinear.this.type

    Permalink
    Definition Classes
    Initializable
  74. def setLine(line: String): SparseLinear.this.type

    Permalink
    Definition Classes
    AbstractModule
  75. def setName(name: String): SparseLinear.this.type

    Permalink

    Set the module name

    Set the module name

    Definition Classes
    AbstractModule
  76. def setNamePostfix(namePostfix: String): Unit

    Permalink
    Definition Classes
    AbstractModule
  77. def setScaleB(b: Double): SparseLinear.this.type

    Permalink

    Set the scale of gradientBias

    Set the scale of gradientBias

    b

    the value of the scale of gradientBias

    returns

    this

    Definition Classes
    AbstractModule
  78. def setScaleW(w: Double): SparseLinear.this.type

    Permalink

    Set the scale of gradientWeight

    Set the scale of gradientWeight

    w

    the value of the scale of gradientWeight

    returns

    this

    Definition Classes
    AbstractModule
  79. def setWeightsBias(newWeights: Array[Tensor[T]]): SparseLinear.this.type

    Permalink

    Set weight and bias for the module

    Set weight and bias for the module

    newWeights

    array of weights and bias

    Definition Classes
    AbstractModule
  80. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  81. def toGraph(startNodes: ModuleNode[T]*): Graph[T]

    Permalink

    Generate graph module with start nodes

    Generate graph module with start nodes

    Definition Classes
    AbstractModule
  82. def toString(): String

    Permalink
    Definition Classes
    SparseLinearLinearAbstractModule → AnyRef → Any
  83. var train: Boolean

    Permalink

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
    Definition Classes
    AbstractModule
  84. def training(): SparseLinear.this.type

    Permalink
    Definition Classes
    AbstractModule
  85. def unFreeze(names: String*): SparseLinear.this.type

    Permalink

    "unfreeze" module, i.e.

    "unfreeze" module, i.e. make the module parameters(weight/bias, if exists) to be trained(updated) in training process if names is not empty, unfreeze layers that match given names

    names

    array of module names to unFreeze

    Definition Classes
    AbstractModule
  86. def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Permalink

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    Definition Classes
    SparseLinearLinearAbstractModule
  87. def updateOutput(input: Tensor[T]): Tensor[T]

    Permalink

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

    Definition Classes
    SparseLinearLinearAbstractModule
  88. def updateParameters(learningRate: T): Unit

    Permalink
    Definition Classes
    LinearAbstractModule
  89. var wRegularizer: Regularizer[T]

    Permalink
    Definition Classes
    Linear
  90. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  91. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  92. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  93. val weight: Tensor[T]

    Permalink
    Definition Classes
    Linear
  94. var weightInitMethod: InitializationMethod

    Permalink
    Attributes
    protected
    Definition Classes
    Initializable
  95. val withBias: Boolean

    Permalink
    Definition Classes
    Linear
  96. def zeroGradParameters(): Unit

    Permalink

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

    Definition Classes
    LinearAbstractModule

Deprecated Value Members

  1. def save(path: String, overWrite: Boolean = false): SparseLinear.this.type

    Permalink

    Save this module to path.

    Save this module to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
    Annotations
    @deprecated
    Deprecated

    please use recommended saveModule(path, overWrite)

Inherited from Linear[T]

Inherited from Initializable

Inherited from TensorModule[T]

Inherited from AbstractModule[Tensor[T], Tensor[T], T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped