Class

com.intel.analytics.bigdl.nn.abstractnn

AbstractModule

Related Doc: package abstractnn

Permalink

abstract class AbstractModule[A <: Activity, B <: Activity, T] extends Serializable

Module is the basic component of a neural network. It forward activities and backward gradients. Modules can connect to others to construct a complex neural network.

A

Input data type

B

Output data type

T

Numeric type of parameter(e.g. weight, bias). Only support float/double now

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Abs, Adapter, Add, AddConstant, Assert, Assign, AssignGrad, BatchNormalization, BiRecurrent, BiasAdd, BiasAddGrad, BifurcateSplitTable, Bilinear, BinaryTreeLSTM, Bottle, BroadcastGradientArgs, CAdd, CAddTable, CDivTable, CMaxTable, CMinTable, CMul, CMulTable, CSubTable, Cast, Cell, Clamp, Concat, ConcatTable, Container, Contiguous, ControlOps, Conv2D, Conv2DBackFilter, Conv2DTranspose, ConvLSTMPeephole, ConvLSTMPeephole3D, Cosine, CosineDistance, CrossEntropy, DecodeGif, DecodeImage, DecodeJpeg, DecodePng, DecodeRaw, DenseToSparse, DotProduct, Dropout, ELU, Echo, Equal, Euclidean, Exp, FlattenTable, Floor, GRU, GaussianSampler, GradientReversal, Graph, Greater, HardShrink, HardTanh, Identity, IdentityControl, Index, InferReshape, Input, JoinTable, L1Penalty, L2Loss, LSTM, LSTMPeephole, LeakyReLU, Less, Linear, Log, LogSigmoid, LogSoftMax, LogicalAnd, LogicalNot, LogicalOr, LookupTable, MM, MV, MapTable, MaskedSelect, Max, MaxPool, MaxPoolGrad, Mean, Min, MixtureTable, ModuleToOperation, Mul, MulConstant, Narrow, NarrowTable, Negative, NoOp, Normalize, NotEqual, OneHot, Operation, PReLU, Pack, Pad, Padding, PairwiseDistance, ParallelTable, ParseExample, Pow, Power, Prod, QuantizedModule, RReLU, RandomUniform, Rank, ReLU, ReLU6, Recurrent, RecurrentDecoder, ReluGrad, Replicate, Reshape, ResizeBilinear, ResizeBilinearOps, Reverse, RnnCell, RoiPooling, Scale, Select, Select, SelectTable, Sequential, Sigmoid, Slice, SoftMax, SoftMin, SoftPlus, SoftShrink, SoftSign, SparseJoinTable, SparseLinear, SpatialAveragePooling, SpatialBatchNormalization, SpatialContrastiveNormalization, SpatialConvolution, SpatialConvolutionMap, SpatialCrossMapLRN, SpatialDilatedConvolution, SpatialDivisiveNormalization, SpatialFullConvolution, SpatialMaxPooling, SpatialShareConvolution, SpatialSubtractiveNormalization, SpatialWithinChannelLRN, SpatialZeroPadding, SplitTable, Sqrt, Square, Squeeze, Substr, Sum, Sum, Tanh, TanhShrink, TemporalConvolution, TemporalMaxPooling, TensorModule, Threshold, Tile, TimeDistributed, Transpose, TreeLSTM, TruncatedNormal, Unsqueeze, Variable, View, VolumetricConvolution, VolumetricFullConvolution, VolumetricMaxPooling
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. AbstractModule
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new AbstractModule()(implicit arg0: ClassTag[A], arg1: ClassTag[B], arg2: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Abstract Value Members

  1. abstract def updateGradInput(input: A, gradOutput: B): A

    Permalink

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

  2. abstract def updateOutput(input: A): B

    Permalink

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def accGradParameters(input: A, gradOutput: B): Unit

    Permalink

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

  5. def apply(name: String): Option[AbstractModule[Activity, Activity, T]]

    Permalink

    Find a module with given name.

    Find a module with given name. If there is no module with given name, it will return None. If there are multiple modules with the given name, an exception will be thrown.

  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def backward(input: A, gradOutput: B): A

    Permalink

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

  8. var backwardTime: Long

    Permalink
    Attributes
    protected
  9. def canEqual(other: Any): Boolean

    Permalink
  10. def checkEngineType(): AbstractModule.this.type

    Permalink

    get execution engine type

  11. def clearState(): AbstractModule.this.type

    Permalink

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

  12. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  13. def cloneModule(): AbstractModule[A, B, T]

    Permalink
  14. def copyStatus(src: Module[T]): AbstractModule.this.type

    Permalink

    Copy the useful running status from src to this.

    Copy the useful running status from src to this.

    The subclass should override this method if it has some parameters besides weight and bias. Such as runningMean and runningVar of BatchNormalization.

    src

    source Module

    returns

    this

  15. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  16. def equals(other: Any): Boolean

    Permalink
    Definition Classes
    AbstractModule → AnyRef → Any
  17. def evaluate(dataSet: LocalDataSet[MiniBatch[T]], vMethods: Array[ValidationMethod[T]]): Array[(ValidationResult, ValidationMethod[T])]

    Permalink
  18. def evaluate(dataset: RDD[Sample[T]], vMethods: Array[ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    Permalink

    use ValidationMethod to evaluate module

    use ValidationMethod to evaluate module

    dataset

    dataset for test

    vMethods

    validation methods

    batchSize

    total batchsize of all partitions, optional param and default 4 * partitionNum of dataset

  19. def evaluate(): AbstractModule.this.type

    Permalink
  20. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  21. final def forward(input: A): B

    Permalink

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

  22. var forwardTime: Long

    Permalink
    Attributes
    protected
  23. def freeze(names: String*): AbstractModule.this.type

    Permalink

    freeze the module, i.e.

    freeze the module, i.e. their parameters(weight/bias, if exists) are not changed in training process if names is not empty, set an array of layers that match the given names to be "freezed",

    names

    an array of layer names

    returns

    current graph model

  24. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  25. def getName(): String

    Permalink

    Get the module name, default name is className@namePostfix

  26. def getNamePostfix: String

    Permalink
  27. def getNumericType(): TensorDataType

    Permalink

    returns

    Float or Double

  28. def getParameters(): (Tensor[T], Tensor[T])

    Permalink

    This method compact all parameters and gradients of the model into two tensors.

    This method compact all parameters and gradients of the model into two tensors. So it's easier to use optim method

  29. def getParametersTable(): Table

    Permalink

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module. The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    Custom modules should override this function if they have parameters.

    returns

    Table

  30. def getPrintName(): String

    Permalink
    Attributes
    protected
  31. def getScaleB(): Double

    Permalink

    Get the scale of gradientBias

  32. def getScaleW(): Double

    Permalink

    Get the scale of gradientWeight

  33. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)]

    Permalink
  34. def getWeightsBias(): Array[Tensor[T]]

    Permalink

    Get weight and bias for the module

    Get weight and bias for the module

    returns

    array of weights and bias

  35. var gradInput: A

    Permalink

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

  36. def hasName: Boolean

    Permalink
  37. def hashCode(): Int

    Permalink
    Definition Classes
    AbstractModule → AnyRef → Any
  38. def inputs(first: (ModuleNode[T], Int), nodesWithIndex: (ModuleNode[T], Int)*): ModuleNode[T]

    Permalink

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    first

    distinguish from another inputs when input parameter list is empty

    nodesWithIndex

    upstream module nodes and the output tensor index. The start index is 1.

    returns

    node containing current module

  39. def inputs(nodes: ModuleNode[T]*): ModuleNode[T]

    Permalink

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes

    returns

    node containing current module

  40. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  41. final def isTraining(): Boolean

    Permalink
  42. var line: String

    Permalink
    Attributes
    protected
  43. def loadModelWeights(srcModel: Module[Float], matchAll: Boolean = true): AbstractModule.this.type

    Permalink

    copy weights from another model, mapping by layer name

    copy weights from another model, mapping by layer name

    srcModel

    model to copy from

    matchAll

    whether to match all layers' weights and bias,

    returns

    current module

  44. def loadWeights(weightPath: String, matchAll: Boolean = true): AbstractModule.this.type

    Permalink

    load pretrained weights and bias to current module

    load pretrained weights and bias to current module

    weightPath

    file to store weights and bias

    matchAll

    whether to match all layers' weights and bias, if not, only load existing pretrained weights and bias

    returns

    current module

  45. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  46. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  47. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  48. var output: B

    Permalink

    The cached output.

    The cached output. So we don't compute it again when need it

  49. def parameters(): (Array[Tensor[T]], Array[Tensor[T]])

    Permalink

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

  50. def predict(dataset: RDD[Sample[T]], batchSize: Int = 1, shareBuffer: Boolean = false): RDD[Activity]

    Permalink

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of datatset

    shareBuffer

    whether to share same memory for each batch predict results

  51. def predictClass(dataset: RDD[Sample[T]], batchSize: Int = 1): RDD[Int]

    Permalink

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of dataset

  52. def quantize(): Module[T]

    Permalink
  53. def reset(): Unit

    Permalink
  54. def resetTimes(): Unit

    Permalink
  55. def saveCaffe(prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): AbstractModule.this.type

    Permalink
  56. def saveDefinition(path: String, overWrite: Boolean = false): AbstractModule.this.type

    Permalink

    Save this module definition to path.

    Save this module definition to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

  57. def saveModule(path: String, overWrite: Boolean = false): AbstractModule.this.type

    Permalink

    Save this module to path with protobuf format

    Save this module to path with protobuf format

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

  58. def saveTF(inputs: Seq[(String, Seq[Int])], path: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, dataFormat: TensorflowDataFormat = TensorflowDataFormat.NHWC): AbstractModule.this.type

    Permalink
  59. def saveTorch(path: String, overWrite: Boolean = false): AbstractModule.this.type

    Permalink
  60. def saveWeights(path: String, overWrite: Boolean): Unit

    Permalink

    save weights and bias to file

    save weights and bias to file

    path

    file to save

    overWrite

    whether to overwrite or not

  61. var scaleB: Double

    Permalink
    Attributes
    protected
  62. var scaleW: Double

    Permalink

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    Attributes
    protected
  63. def setLine(line: String): AbstractModule.this.type

    Permalink
  64. def setName(name: String): AbstractModule.this.type

    Permalink

    Set the module name

  65. def setNamePostfix(namePostfix: String): Unit

    Permalink
  66. def setScaleB(b: Double): AbstractModule.this.type

    Permalink

    Set the scale of gradientBias

    Set the scale of gradientBias

    b

    the value of the scale of gradientBias

    returns

    this

  67. def setScaleW(w: Double): AbstractModule.this.type

    Permalink

    Set the scale of gradientWeight

    Set the scale of gradientWeight

    w

    the value of the scale of gradientWeight

    returns

    this

  68. def setWeightsBias(newWeights: Array[Tensor[T]]): AbstractModule.this.type

    Permalink

    Set weight and bias for the module

    Set weight and bias for the module

    newWeights

    array of weights and bias

  69. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  70. def toGraph(startNodes: ModuleNode[T]*): Graph[T]

    Permalink

    Generate graph module with start nodes

  71. def toString(): String

    Permalink
    Definition Classes
    AbstractModule → AnyRef → Any
  72. var train: Boolean

    Permalink

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
  73. def training(): AbstractModule.this.type

    Permalink
  74. def unFreeze(names: String*): AbstractModule.this.type

    Permalink

    "unfreeze" module, i.e.

    "unfreeze" module, i.e. make the module parameters(weight/bias, if exists) to be trained(updated) in training process if names is not empty, unfreeze layers that match given names

    names

    array of module names to unFreeze

  75. def updateParameters(learningRate: T): Unit

    Permalink
  76. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  77. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  78. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  79. def zeroGradParameters(): Unit

    Permalink

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

Deprecated Value Members

  1. def save(path: String, overWrite: Boolean = false): AbstractModule.this.type

    Permalink

    Save this module to path.

    Save this module to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Annotations
    @deprecated
    Deprecated

    please use recommended saveModule(path, overWrite)

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped