Class/Object

com.intel.analytics.bigdl.nn

SpatialBatchNormalization

Related Docs: object SpatialBatchNormalization | package nn

Permalink

class SpatialBatchNormalization[T] extends BatchNormalization[T]

This file implements Batch Normalization as described in the paper: "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift" by Sergey Ioffe, Christian Szegedy This implementation is useful for inputs coming from convolution layers. For non-convolutional layers, see BatchNormalization The operation implemented is:

( x - mean(x) ) y = -------------------- * gamma + beta standard-deviation(x)

where gamma and beta are learnable parameters. The learning of gamma and beta is optional.

Annotations
@SerialVersionUID()
Linear Supertypes
BatchNormalization[T], Initializable, TensorModule[T], AbstractModule[Tensor[T], Tensor[T], T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SpatialBatchNormalization
  2. BatchNormalization
  3. Initializable
  4. TensorModule
  5. AbstractModule
  6. Serializable
  7. Serializable
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: Tensor[T] = null, initBias: Tensor[T] = null, initGradWeight: Tensor[T] = null, initGradBias: Tensor[T] = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def accGradParameters(input: Tensor[T], gradOutput: Tensor[T]): Unit

    Permalink

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

    Definition Classes
    BatchNormalizationAbstractModule
  5. val affine: Boolean

    Permalink

    affine operation on output or not

    affine operation on output or not

    Definition Classes
    BatchNormalization
  6. def apply(name: String): Option[AbstractModule[Activity, Activity, T]]

    Permalink

    Find a module with given name.

    Find a module with given name. If there is no module with given name, it will return None. If there are multiple modules with the given name, an exception will be thrown.

    Definition Classes
    AbstractModule
  7. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  8. def backward(input: Tensor[T], gradOutput: Tensor[T], theGradInput: Tensor[T] = null, theGradWeight: Tensor[T] = null, theGradBias: Tensor[T] = null): Tensor[T]

    Permalink
    Definition Classes
    BatchNormalization
  9. def backward(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Permalink

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

    Definition Classes
    BatchNormalizationAbstractModule
  10. var backwardTime: Long

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  11. val bias: Tensor[T]

    Permalink
    Definition Classes
    BatchNormalization
  12. var biasInitMethod: InitializationMethod

    Permalink
    Attributes
    protected
    Definition Classes
    Initializable
  13. def canEqual(other: Any): Boolean

    Permalink
    Definition Classes
    BatchNormalizationAbstractModule
  14. def checkEngineType(): SpatialBatchNormalization.this.type

    Permalink

    get execution engine type

    get execution engine type

    Definition Classes
    AbstractModule
  15. def clearState(): SpatialBatchNormalization.this.type

    Permalink

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

    Definition Classes
    AbstractModule
  16. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  17. def cloneModule(): AbstractModule[Tensor[T], Tensor[T], T]

    Permalink
    Definition Classes
    AbstractModule
  18. def copyStatus(src: Module[T]): SpatialBatchNormalization.this.type

    Permalink

    Copy the useful running status from src to this.

    Copy the useful running status from src to this.

    The subclass should override this method if it has some parameters besides weight and bias. Such as runningMean and runningVar of BatchNormalization.

    src

    source Module

    returns

    this

    Definition Classes
    BatchNormalizationAbstractModule
  19. val eps: Double

    Permalink

    avoid divide zero

    avoid divide zero

    Definition Classes
    BatchNormalization
  20. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  21. def equals(other: Any): Boolean

    Permalink
    Definition Classes
    BatchNormalizationAbstractModule → AnyRef → Any
  22. def evaluate(dataSet: LocalDataSet[MiniBatch[T]], vMethods: Array[ValidationMethod[T]]): Array[(ValidationResult, ValidationMethod[T])]

    Permalink
    Definition Classes
    AbstractModule
  23. def evaluate(dataset: RDD[Sample[T]], vMethods: Array[ValidationMethod[T]], batchSize: Option[Int] = None): Array[(ValidationResult, ValidationMethod[T])]

    Permalink

    use ValidationMethod to evaluate module

    use ValidationMethod to evaluate module

    dataset

    dataset for test

    vMethods

    validation methods

    batchSize

    total batchsize of all partitions, optional param and default 4 * partitionNum of dataset

    Definition Classes
    AbstractModule
  24. def evaluate(): SpatialBatchNormalization.this.type

    Permalink
    Definition Classes
    AbstractModule
  25. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  26. final def forward(input: Tensor[T]): Tensor[T]

    Permalink

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

    Definition Classes
    AbstractModule
  27. var forwardTime: Long

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  28. def freeze(names: String*): SpatialBatchNormalization.this.type

    Permalink

    freeze the module, i.e.

    freeze the module, i.e. their parameters(weight/bias, if exists) are not changed in training process if names is not empty, set an array of layers that match the given names to be "freezed",

    names

    an array of layer names

    returns

    current graph model

    Definition Classes
    AbstractModule
  29. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  30. def getName(): String

    Permalink

    Get the module name, default name is className@namePostfix

    Get the module name, default name is className@namePostfix

    Definition Classes
    AbstractModule
  31. def getNamePostfix: String

    Permalink
    Definition Classes
    AbstractModule
  32. def getNumericType(): TensorDataType

    Permalink

    returns

    Float or Double

    Definition Classes
    AbstractModule
  33. def getParameters(): (Tensor[T], Tensor[T])

    Permalink

    This method compact all parameters and gradients of the model into two tensors.

    This method compact all parameters and gradients of the model into two tensors. So it's easier to use optim method

    Definition Classes
    AbstractModule
  34. def getParametersTable(): Table

    Permalink

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module. The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    Custom modules should override this function if they have parameters.

    returns

    Table

    Definition Classes
    BatchNormalizationAbstractModule
  35. def getPrintName(): String

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  36. def getScaleB(): Double

    Permalink

    Get the scale of gradientBias

    Get the scale of gradientBias

    Definition Classes
    AbstractModule
  37. def getScaleW(): Double

    Permalink

    Get the scale of gradientWeight

    Get the scale of gradientWeight

    Definition Classes
    AbstractModule
  38. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)]

    Permalink
    Definition Classes
    AbstractModule
  39. def getWeightsBias(): Array[Tensor[T]]

    Permalink

    Get weight and bias for the module

    Get weight and bias for the module

    returns

    array of weights and bias

    Definition Classes
    AbstractModule
  40. val gradBias: Tensor[T]

    Permalink
    Definition Classes
    BatchNormalization
  41. var gradInput: Tensor[T]

    Permalink

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  42. val gradWeight: Tensor[T]

    Permalink
    Definition Classes
    BatchNormalization
  43. def hasName: Boolean

    Permalink
    Definition Classes
    AbstractModule
  44. def hashCode(): Int

    Permalink
    Definition Classes
    BatchNormalizationAbstractModule → AnyRef → Any
  45. def inputs(first: (ModuleNode[T], Int), nodesWithIndex: (ModuleNode[T], Int)*): ModuleNode[T]

    Permalink

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    first

    distinguish from another inputs when input parameter list is empty

    nodesWithIndex

    upstream module nodes and the output tensor index. The start index is 1.

    returns

    node containing current module

    Definition Classes
    AbstractModule
  46. def inputs(nodes: ModuleNode[T]*): ModuleNode[T]

    Permalink

    Build graph: some other modules point to current module

    Build graph: some other modules point to current module

    nodes

    upstream module nodes

    returns

    node containing current module

    Definition Classes
    AbstractModule
  47. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  48. final def isTraining(): Boolean

    Permalink
    Definition Classes
    AbstractModule
  49. var line: String

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  50. def loadModelWeights(srcModel: Module[Float], matchAll: Boolean = true): SpatialBatchNormalization.this.type

    Permalink

    copy weights from another model, mapping by layer name

    copy weights from another model, mapping by layer name

    srcModel

    model to copy from

    matchAll

    whether to match all layers' weights and bias,

    returns

    current module

    Definition Classes
    AbstractModule
  51. def loadWeights(weightPath: String, matchAll: Boolean = true): SpatialBatchNormalization.this.type

    Permalink

    load pretrained weights and bias to current module

    load pretrained weights and bias to current module

    weightPath

    file to store weights and bias

    matchAll

    whether to match all layers' weights and bias, if not, only load existing pretrained weights and bias

    returns

    current module

    Definition Classes
    AbstractModule
  52. val momentum: Double

    Permalink

    momentum for weight update

    momentum for weight update

    Definition Classes
    BatchNormalization
  53. val nDim: Int

    Permalink
  54. val nOutput: Int

    Permalink

    output feature map number

    output feature map number

    Definition Classes
    BatchNormalization
  55. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  56. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  57. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  58. var output: Tensor[T]

    Permalink

    The cached output.

    The cached output. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  59. def parameters(): (Array[Tensor[T]], Array[Tensor[T]])

    Permalink

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

    Definition Classes
    BatchNormalizationAbstractModule
  60. def predict(dataset: RDD[Sample[T]], batchSize: Int = 1, shareBuffer: Boolean = false): RDD[Activity]

    Permalink

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of datatset

    shareBuffer

    whether to share same memory for each batch predict results

    Definition Classes
    AbstractModule
  61. def predictClass(dataset: RDD[Sample[T]], batchSize: Int = 1): RDD[Int]

    Permalink

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    batchSize

    total batchSize for all partitions. if -1, default is 4 * partitionNumber of dataset

    Definition Classes
    AbstractModule
  62. def quantize(): Module[T]

    Permalink
    Definition Classes
    AbstractModule
  63. def reset(): Unit

    Permalink
  64. def resetTimes(): Unit

    Permalink
    Definition Classes
    AbstractModule
  65. var runningMean: Tensor[T]

    Permalink
    Definition Classes
    BatchNormalization
  66. var runningVar: Tensor[T]

    Permalink
    Definition Classes
    BatchNormalization
  67. def saveCaffe(prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): SpatialBatchNormalization.this.type

    Permalink
    Definition Classes
    AbstractModule
  68. def saveDefinition(path: String, overWrite: Boolean = false): SpatialBatchNormalization.this.type

    Permalink

    Save this module definition to path.

    Save this module definition to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  69. var saveMean: Tensor[T]

    Permalink
    Definition Classes
    BatchNormalization
  70. def saveModule(path: String, overWrite: Boolean = false): SpatialBatchNormalization.this.type

    Permalink

    Save this module to path with protobuf format

    Save this module to path with protobuf format

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
  71. var saveStd: Tensor[T]

    Permalink
    Definition Classes
    BatchNormalization
  72. def saveTF(inputs: Seq[(String, Seq[Int])], path: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, dataFormat: TensorflowDataFormat = TensorflowDataFormat.NHWC): SpatialBatchNormalization.this.type

    Permalink
    Definition Classes
    AbstractModule
  73. def saveTorch(path: String, overWrite: Boolean = false): SpatialBatchNormalization.this.type

    Permalink
    Definition Classes
    AbstractModule
  74. def saveWeights(path: String, overWrite: Boolean): Unit

    Permalink

    save weights and bias to file

    save weights and bias to file

    path

    file to save

    overWrite

    whether to overwrite or not

    Definition Classes
    AbstractModule
  75. var scaleB: Double

    Permalink
    Attributes
    protected
    Definition Classes
    AbstractModule
  76. var scaleW: Double

    Permalink

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    The scale of gradient weight and gradient bias before gradParameters being accumulated.

    Attributes
    protected
    Definition Classes
    AbstractModule
  77. def setInit(status: Boolean = true): SpatialBatchNormalization.this.type

    Permalink
    Definition Classes
    BatchNormalization
    Annotations
    @inline()
  78. def setInitMethod(weightInitMethod: InitializationMethod = null, biasInitMethod: InitializationMethod = null): SpatialBatchNormalization.this.type

    Permalink
    Definition Classes
    Initializable
  79. def setLine(line: String): SpatialBatchNormalization.this.type

    Permalink
    Definition Classes
    AbstractModule
  80. def setName(name: String): SpatialBatchNormalization.this.type

    Permalink

    Set the module name

    Set the module name

    Definition Classes
    AbstractModule
  81. def setNamePostfix(namePostfix: String): Unit

    Permalink
    Definition Classes
    AbstractModule
  82. def setScaleB(b: Double): SpatialBatchNormalization.this.type

    Permalink

    Set the scale of gradientBias

    Set the scale of gradientBias

    b

    the value of the scale of gradientBias

    returns

    this

    Definition Classes
    AbstractModule
  83. def setScaleW(w: Double): SpatialBatchNormalization.this.type

    Permalink

    Set the scale of gradientWeight

    Set the scale of gradientWeight

    w

    the value of the scale of gradientWeight

    returns

    this

    Definition Classes
    AbstractModule
  84. def setWeightsBias(newWeights: Array[Tensor[T]]): SpatialBatchNormalization.this.type

    Permalink

    Set weight and bias for the module

    Set weight and bias for the module

    newWeights

    array of weights and bias

    Definition Classes
    AbstractModule
  85. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  86. def toGraph(startNodes: ModuleNode[T]*): Graph[T]

    Permalink

    Generate graph module with start nodes

    Generate graph module with start nodes

    Definition Classes
    AbstractModule
  87. def toString(): String

    Permalink
    Definition Classes
    SpatialBatchNormalizationBatchNormalizationAbstractModule → AnyRef → Any
  88. var train: Boolean

    Permalink

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
    Definition Classes
    AbstractModule
  89. def training(): SpatialBatchNormalization.this.type

    Permalink
    Definition Classes
    AbstractModule
  90. def unFreeze(names: String*): SpatialBatchNormalization.this.type

    Permalink

    "unfreeze" module, i.e.

    "unfreeze" module, i.e. make the module parameters(weight/bias, if exists) to be trained(updated) in training process if names is not empty, unfreeze layers that match given names

    names

    array of module names to unFreeze

    Definition Classes
    AbstractModule
  91. def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Permalink

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    Definition Classes
    BatchNormalizationAbstractModule
  92. def updateOutput(input: Tensor[T]): Tensor[T]

    Permalink

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

    Definition Classes
    BatchNormalizationAbstractModule
  93. def updateParameters(learningRate: T): Unit

    Permalink
    Definition Classes
    AbstractModule
  94. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  95. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  96. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  97. val weight: Tensor[T]

    Permalink
    Definition Classes
    BatchNormalization
  98. var weightInitMethod: InitializationMethod

    Permalink
    Attributes
    protected
    Definition Classes
    Initializable
  99. def zeroGradParameters(): Unit

    Permalink

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

    Definition Classes
    BatchNormalizationAbstractModule

Deprecated Value Members

  1. def save(path: String, overWrite: Boolean = false): SpatialBatchNormalization.this.type

    Permalink

    Save this module to path.

    Save this module to path.

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    overWrite

    if overwrite

    returns

    self

    Definition Classes
    AbstractModule
    Annotations
    @deprecated
    Deprecated

    please use recommended saveModule(path, overWrite)

Inherited from BatchNormalization[T]

Inherited from Initializable

Inherited from TensorModule[T]

Inherited from AbstractModule[Tensor[T], Tensor[T], T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped