class TensorflowAlbert extends Serializable
This class is used to calculate ALBERT embeddings for For Sequence Batches of WordpieceTokenizedSentence. Input for this model must be tokenzied with a SentencePieceModel,
This Tensorflow model is using the weights provided by https://tfhub.dev/google/albert_base/3 * sequence_output: representations of every token in the input sequence with shape [batch_size, max_sequence_length, hidden_size].
ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS - Google Research, Toyota Technological Institute at Chicago This these embeddings represent the outputs generated by the Albert model. All offical Albert releases by google in TF-HUB are supported with this Albert Wrapper:
TF-HUB Models : albert_base = https://tfhub.dev/google/albert_base/3 | 768-embed-dim, 12-layer, 12-heads, 12M parameters albert_large = https://tfhub.dev/google/albert_large/3 | 1024-embed-dim, 24-layer, 16-heads, 18M parameters albert_xlarge = https://tfhub.dev/google/albert_xlarge/3 | 2048-embed-dim, 24-layer, 32-heads, 60M parameters albert_xxlarge = https://tfhub.dev/google/albert_xxlarge/3 | 4096-embed-dim, 12-layer, 64-heads, 235M parameters
This model requires input tokenization with SentencePiece model, which is provided by Spark NLP
For additional information see : https://arxiv.org/pdf/1909.11942.pdf https://github.com/google-research/ALBERT https://tfhub.dev/s?q=albert
Tips:
ALBERT uses repeating layers which results in a small memory footprint, however the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.
- Alphabetic
- By Inheritance
- TensorflowAlbert
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
TensorflowAlbert(tensorflow: TensorflowWrapper, spp: SentencePieceWrapper, batchSize: Int, configProtoBytes: Option[Array[Byte]] = None, signatures: Option[Map[String, String]] = None)
- tensorflow
Albert Model wrapper with TensorFlowWrapper
- spp
Albert SentencePiece model with SentencePieceWrapper
- batchSize
size of batch
- configProtoBytes
Configuration for TensorFlow session
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- val _tfAlbertSignatures: Map[String, String]
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def predict(tokenizedSentences: Seq[TokenizedSentence], batchSize: Int, maxSentenceLength: Int, caseSensitive: Boolean): Seq[WordpieceEmbeddingsSentence]
- def prepareBatchInputs(sentences: Seq[(WordpieceTokenizedSentence, Int)], maxSequenceLength: Int): Seq[Array[Int]]
- val spp: SentencePieceWrapper
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- def tag(batch: Seq[Array[Int]]): Seq[Array[Array[Float]]]
- val tensorflow: TensorflowWrapper
-
def
toString(): String
- Definition Classes
- AnyRef → Any
- def tokenizeWithAlignment(sentences: Seq[TokenizedSentence], maxSeqLength: Int, caseSensitive: Boolean): Seq[WordpieceTokenizedSentence]
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()