c

com.johnsnowlabs.ml.tensorflow

TensorflowAlbert

class TensorflowAlbert extends Serializable

This class is used to calculate ALBERT embeddings for For Sequence Batches of WordpieceTokenizedSentence. Input for this model must be tokenzied with a SentencePieceModel,

This Tensorflow model is using the weights provided by https://tfhub.dev/google/albert_base/3 * sequence_output: representations of every token in the input sequence with shape [batch_size, max_sequence_length, hidden_size].

ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS - Google Research, Toyota Technological Institute at Chicago This these embeddings represent the outputs generated by the Albert model. All offical Albert releases by google in TF-HUB are supported with this Albert Wrapper:

TF-HUB Models : albert_base = https://tfhub.dev/google/albert_base/3 | 768-embed-dim, 12-layer, 12-heads, 12M parameters albert_large = https://tfhub.dev/google/albert_large/3 | 1024-embed-dim, 24-layer, 16-heads, 18M parameters albert_xlarge = https://tfhub.dev/google/albert_xlarge/3 | 2048-embed-dim, 24-layer, 32-heads, 60M parameters albert_xxlarge = https://tfhub.dev/google/albert_xxlarge/3 | 4096-embed-dim, 12-layer, 64-heads, 235M parameters

This model requires input tokenization with SentencePiece model, which is provided by Spark NLP

For additional information see : https://arxiv.org/pdf/1909.11942.pdf https://github.com/google-research/ALBERT https://tfhub.dev/s?q=albert

Tips:

ALBERT uses repeating layers which results in a small memory footprint, however the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers.

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TensorflowAlbert
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TensorflowAlbert(tensorflow: TensorflowWrapper, spp: SentencePieceWrapper, batchSize: Int, configProtoBytes: Option[Array[Byte]] = None, signatures: Option[Map[String, String]] = None)

    tensorflow

    Albert Model wrapper with TensorFlowWrapper

    spp

    Albert SentencePiece model with SentencePieceWrapper

    batchSize

    size of batch

    configProtoBytes

    Configuration for TensorFlow session

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val _tfAlbertSignatures: Map[String, String]
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  7. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  13. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  14. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  15. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  16. def predict(tokenizedSentences: Seq[TokenizedSentence], batchSize: Int, maxSentenceLength: Int, caseSensitive: Boolean): Seq[WordpieceEmbeddingsSentence]
  17. def prepareBatchInputs(sentences: Seq[(WordpieceTokenizedSentence, Int)], maxSequenceLength: Int): Seq[Array[Int]]
  18. val spp: SentencePieceWrapper
  19. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  20. def tag(batch: Seq[Array[Int]]): Seq[Array[Array[Float]]]
  21. val tensorflow: TensorflowWrapper
  22. def toString(): String
    Definition Classes
    AnyRef → Any
  23. def tokenizeWithAlignment(sentences: Seq[TokenizedSentence], maxSeqLength: Int, caseSensitive: Boolean): Seq[WordpieceTokenizedSentence]
  24. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped