class TensorflowNer extends Serializable with Logging
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- TensorflowNer
- Logging
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
- new TensorflowNer(tensorflow: TensorflowWrapper, encoder: NerDatasetEncoder, verboseLevel: nlp.annotators.ner.Verbose.Value)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- def calcStat(tp: Int, fp: Int, fn: Int): (Float, Float, Float)
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
- val encoder: NerDatasetEncoder
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getLogName: String
- Definition Classes
- TensorflowNer → Logging
- def getPiecesTags(tokenTags: Array[TextSentenceLabels], sentences: Array[WordpieceEmbeddingsSentence]): Array[Array[String]]
- def getPiecesTags(tokenTags: TextSentenceLabels, sentence: WordpieceEmbeddingsSentence): Array[String]
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
log(value: ⇒ String, minLevel: Level): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
logger: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def measure(labeled: Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]], extended: Boolean = false, enableOutputLogs: Boolean = false, outputLogsPath: String, batchSize: Int = 8, uuid: String = Identifiable.randomUID("annotator")): (Float, Float)
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
outputLog(value: ⇒ String, uuid: String, shouldLog: Boolean, outputLogsPath: String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def predict(dataset: Array[WordpieceEmbeddingsSentence], configProtoBytes: Option[Array[Byte]], includeConfidence: Boolean, includeAllConfidenceScores: Boolean, batchSize: Int): Array[Array[(String, Option[Array[Map[String, String]]])]]
- def saveBestModel(): Session
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- def tagsForTokens(labels: Array[Array[(String, Option[Array[Map[String, String]]])]], pieces: Array[WordpieceEmbeddingsSentence]): Array[Array[(String, Option[Array[Map[String, String]]])]]
- def tagsForTokens(labels: Array[(String, Option[Array[Map[String, String]]])], pieces: WordpieceEmbeddingsSentence): Array[(String, Option[Array[Map[String, String]]])]
- val tensorflow: TensorflowWrapper
-
def
toString(): String
- Definition Classes
- AnyRef → Any
- def train(trainDataset: ⇒ Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]], trainLength: Long, validDataset: ⇒ Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]], validLength: Long, lr: Float, po: Float, dropout: Float, batchSize: Int = 8, useBestModel: Boolean = false, bestModelMetricPreference: String = ModelMetrics.microF1, startEpoch: Int = 0, endEpoch: Int, graphFileName: String = "", test: ⇒ Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]] = Iterator.empty, configProtoBytes: Option[Array[Byte]] = None, validationSplit: Float = 0.0f, evaluationLogExtended: Boolean = false, includeConfidence: Boolean = false, enableOutputLogs: Boolean = false, outputLogsPath: String, uuid: String = Identifiable.randomUID("annotator")): Session
-
val
verboseLevel: nlp.annotators.ner.Verbose.Value
- Definition Classes
- TensorflowNer → Logging
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()