class ContextSpellCheckerApproach extends AnnotatorApproach[ContextSpellCheckerModel] with HasFeatures with WeightedLevenshtein
Trains a deep-learning based Noisy Channel Model Spell Algorithm. Correction candidates are extracted combining context information and word information.
For instantiated/pretrained models, see ContextSpellCheckerModel.
Spell Checking is a sequence to sequence mapping problem. Given an input sequence, potentially
containing a certain number of errors, ContextSpellChecker will rank correction sequences
according to three things:
- Different correction candidates for each word — word level.
- The surrounding text of each word, i.e. it’s context — sentence level.
- The relative cost of different correction candidates according to the edit operations at the character level it requires — subword level.
For an in-depth explanation of the module see the article Applying Context Aware Spell Checking in Spark NLP.
For extended examples of usage, see the article Training a Contextual Spell Checker for Italian Language, the Examples and the ContextSpellCheckerTestSpec.
Example
For this example, we use the first Sherlock Holmes book as the training dataset.
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.annotators.spell.context.ContextSpellCheckerApproach import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val spellChecker = new ContextSpellCheckerApproach() .setInputCols("token") .setOutputCol("corrected") .setWordMaxDistance(3) .setBatchSize(24) .setEpochs(8) .setLanguageModelClasses(1650) // dependant on vocabulary size // .addVocabClass("_NAME_", names) // Extra classes for correction could be added like this val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, spellChecker )) val path = "src/test/resources/spell/sherlockholmes.txt" val dataset = spark.sparkContext.textFile(path) .toDF("text") val pipelineModel = pipeline.fit(dataset)
- See also
NorvigSweetingApproach and SymmetricDeleteApproach for alternative approaches to spell checking
- Grouped
- Alphabetic
- By Inheritance
- ContextSpellCheckerApproach
- WeightedLevenshtein
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
- implicit class ArrayHelper extends AnyRef
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): ContextSpellCheckerModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- def addRegexClass(usrLabel: String, usrRegex: String, userDist: Int = 3): ContextSpellCheckerApproach.this.type
Adds a new class of words to correct, based on regex.
Adds a new class of words to correct, based on regex.
- usrLabel
Name of the class
- usrRegex
Regex to add
- userDist
Maximal distance to the word
- def addVocabClass(usrLabel: String, vocabList: ArrayList[String], userDist: Int = 3): ContextSpellCheckerApproach.this.type
Adds a new class of words to correct, based on a vocabulary.
Adds a new class of words to correct, based on a vocabulary.
- usrLabel
Name of the class
- vocabList
Vocabulary as a list
- userDist
Maximal distance to the word
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def backTrack(dist: Array[Array[Float]], s2: String, s1: String, j: Int, i: Int, acc: Seq[(String, String)]): Seq[(String, String)]
- Definition Classes
- WeightedLevenshtein
- val batchSize: IntParam
Batch size for the training in NLM (Default:
24). - def beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- val caseStrategy: IntParam
What case combinations to try when generating candidates (Default:
CandidateStrategy.ALL). - final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- val classCount: Param[Double]
Min number of times the word need to appear in corpus to not be considered of a special class (Default:
15.0). - final def clear(param: Param[_]): ContextSpellCheckerApproach.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- val compoundCount: Param[Int]
Min number of times a compound word should appear to be included in vocab (Default:
5). - def computeClasses(vocab: HashMap[String, Double], total: Double, k: Int): Map[String, (Int, Int)]
- val configProtoBytes: IntArrayParam
Configproto from tensorflow, serialized into byte array.
Configproto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- final def copy(extra: ParamMap): Estimator[ContextSpellCheckerModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val description: String
- Definition Classes
- ContextSpellCheckerApproach → AnnotatorApproach
- val epochs: IntParam
Number of epochs to train the language model (Default:
2). - final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- val errorThreshold: FloatParam
Threshold perplexity for a word to be considered as an error (Default:
10f). - def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- val finalRate: FloatParam
Final learning rate for the LM (Default:
0.0005f). - final def fit(dataset: Dataset[_]): ContextSpellCheckerModel
- Definition Classes
- AnnotatorApproach → Estimator
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[ContextSpellCheckerModel]
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): ContextSpellCheckerModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): ContextSpellCheckerModel
- Definition Classes
- Estimator
- Annotations
- @varargs() @Since("2.0.0")
- def genVocab(dataset: Dataset[_]): (HashMap[String, Double], Map[String, (Int, Int)])
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def getConfigProtoBytes: Option[Array[Byte]]
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- val graphFolder: Param[String]
Folder path that contain external graph files
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- val initialRate: FloatParam
Initial learning rate for the LM (Default:
.7f). - def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[String]
Input Annotator Types: TOKEN
Input Annotator Types: TOKEN
- Definition Classes
- ContextSpellCheckerApproach → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val languageModelClasses: Param[Int]
Number of classes to use during factorization of the softmax output in the LM (Default:
2000). - val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def learnDist(s1: String, s2: String): Seq[(String, String)]
- Definition Classes
- WeightedLevenshtein
- def levenshteinDist(s11: String, s22: String)(cost: (String, String) => Float): Float
- Definition Classes
- WeightedLevenshtein
- def loadWeights(filename: String): Map[String, Map[String, Float]]
- Definition Classes
- WeightedLevenshtein
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val maxCandidates: IntParam
Maximum number of candidates for every word (Default:
6). - val maxSentLen: IntParam
Maximum length for a sentence - internal use during training (Default:
250) - val maxWindowLen: IntParam
Maximum size for the window used to remember history prior to every correction (Default:
5). - val minCount: Param[Double]
Min number of times a token should appear to be included in vocab (Default:
3.0). - def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onTrained(model: ContextSpellCheckerModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
Output Annotator Types: TOKEN
Output Annotator Types: TOKEN
- Definition Classes
- ContextSpellCheckerApproach → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](feature: StructFeature[T], value: T): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): ContextSpellCheckerApproach.this.type
- Definition Classes
- Params
- def setBatchSize(k: Int): ContextSpellCheckerApproach.this.type
- def setCaseStrategy(k: Int): ContextSpellCheckerApproach.this.type
- def setClassCount(t: Double): ContextSpellCheckerApproach.this.type
- def setCompoundCount(k: Int): ContextSpellCheckerApproach.this.type
- def setConfigProtoBytes(bytes: Array[Int]): ContextSpellCheckerApproach.this.type
- def setDefault[T](feature: StructFeature[T], value: () => T): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): ContextSpellCheckerApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): ContextSpellCheckerApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setEpochs(k: Int): ContextSpellCheckerApproach.this.type
- def setErrorThreshold(t: Float): ContextSpellCheckerApproach.this.type
- def setFinalRate(r: Float): ContextSpellCheckerApproach.this.type
- def setGraphFolder(path: String): ContextSpellCheckerApproach.this.type
Folder path that contain external graph files
- def setInitialRate(r: Float): ContextSpellCheckerApproach.this.type
- final def setInputCols(value: String*): ContextSpellCheckerApproach.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): ContextSpellCheckerApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLanguageModelClasses(k: Int): ContextSpellCheckerApproach.this.type
- def setLazyAnnotator(value: Boolean): ContextSpellCheckerApproach.this.type
- Definition Classes
- CanBeLazy
- def setMaxCandidates(k: Int): ContextSpellCheckerApproach.this.type
- def setMaxWindowLen(w: Int): ContextSpellCheckerApproach.this.type
- def setMinCount(threshold: Double): ContextSpellCheckerApproach.this.type
- final def setOutputCol(value: String): ContextSpellCheckerApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setSpecialClasses(parsers: List[SpecialClassParser]): ContextSpellCheckerApproach.this.type
- def setTradeoff(alpha: Float): ContextSpellCheckerApproach.this.type
- def setValidationFraction(r: Float): ContextSpellCheckerApproach.this.type
- def setWeightedDistPath(filePath: String): ContextSpellCheckerApproach.this.type
- def setWordMaxDistance(k: Int): ContextSpellCheckerApproach.this.type
- val specialClasses: Param[List[SpecialClassParser]]
List of parsers for special classes (Default:
List(new DateToken, new NumberToken)). - final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- val tradeoff: Param[Float]
Tradeoff between the cost of a word error and a transition in the language model (Default:
18.0f). - def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): ContextSpellCheckerModel
- Definition Classes
- ContextSpellCheckerApproach → AnnotatorApproach
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- ContextSpellCheckerApproach → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- val validationFraction: FloatParam
Percentage of datapoints to use for validation (Default:
.1f). - def wLevenshteinDist(s1: String, s2: String, weights: Map[String, Map[String, Float]]): Float
- Definition Classes
- WeightedLevenshtein
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- val weightedDistPath: Param[String]
The path to the file containing the weights for the levenshtein distance.
- val wordMaxDistance: IntParam
Maximum distance for the generated candidates for every word (Default:
3). - def write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from WeightedLevenshtein
Inherited from HasFeatures
Inherited from AnnotatorApproach[ContextSpellCheckerModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[ContextSpellCheckerModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types